Система робота -пылесоса с внешним зарядным устройством (варианты) и способ стыковки робота -пылесоса с внешним зарядным устройством

Иллюстрации

Показать все

Система пылесоса-робота может быть использована для уборки пыли и посторонних материалов с пола, окон или газовых вентилей в доме и обеспечивает возможность точного определения пылесосом-роботом местоположения внешнего зарядного устройства, даже если оно находится за пределами зоны, в которой верхняя видеокамера может обнаружить опознавательные метки расположения, а способ стыковки позволяет пылесосу-роботу точно пристыковаться к внешнему зарядному устройству. Система пылесоса-робота содержит внешнее зарядное устройство с выводом питания, подключенным к сети питания общего пользования, опознавательную метку зарядного устройства, нанесенную на внешнее зарядное устройство, пылесос-робот с датчиком опознавательной метки, который обнаруживает опознавательную метку зарядного устройства, и с подзаряжаемой аккумуляторной батарей. Пылесос-робот выполнен с возможностью автоматической пристыковки к выводу питания для подзарядки подзаряжаемой аккумуляторной батареи. Система имеет блок управления выводом питания, смонтированный в составе внешнего зарядного устройства, для подачи питания только во время подзарядки пылесоса-робота и содержащий элемент крепления вывода питания, упругий элемент, подсоединенный одним концом к элементу крепления вывода питания, и подсоединенный другим концом к выводу питания для упругого крепления вывода питания, и микропереключатель, смонтированный между выводом питания и элементом крепления вывода питания и срабатывающий в соответствии с изменением положения вывода питания. Согласно способу стыковки пылесоса-робота с внешним зарядным устройством осуществляют отодвигание пылесоса-робота из положения подключения к внешнему зарядному устройству после получения сигнала к началу работы, при этом пылесос-робот после обнаружения первой опознавательной метки местоположения при посредстве верхней видеокамеры в процессе движения сохраняет в памяти, в качестве данных о точке входа, потолочное изображение, на котором впервые обнаружена первая опознавательная метка местоположения. Пылесосом-роботом выполняют назначенное задание, после ввода командного сигнала на подзарядку пылесос-робот возвращают в точку входа на основании данных текущего местоположения и сохраненных данных о точке входа, при этом данные текущего местоположения вычисляют по снятым верхней видеокамерой потолочным изображениям. Внешнее зарядное устройство обнаруживают посредством обнаружения опознавательной метки зарядного устройства с использованием датчика на корпусе пылесоса-робота, который подключают своим вводом подзарядки к выводу питания внешнего зарядного устройства. Подзаряжаемую аккумуляторную батарею подзаряжают от внешнего источника питания через ввод подзарядки. 5 н. и 24 з.п. ф-лы, 22 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к системе пылесоса-робота, содержащей пылесос-робот с аккумуляторной батареей и внешнее зарядное устройство, и, в частности, к системе пылесоса-робота, способного находить внешнее зарядное устройство, которое размещено в зоне, не обнаружимой видеокамерой, и пристыковываться к упомянутому внешнему зарядному устройству, и к способу стыковки с упомянутым устройством.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

"Пылесосом-роботом" обычно называют устройство, которое автоматически передвигается в предварительно заданных пределах рабочей зоны без обязательных манипуляций со стороны оператора и выполняет назначенные задания, например уборку, которая заключается во всасывании пыли или посторонних материалов с пола, окон или газовых вентилей в доме.

Пылесос-робот определяет при посредстве датчика расстояние до препятствия в доме или офисе, например расстояние до предметов мебели, офисного оборудования, стен и т.д., и выполняет упомянутые задания при движении по маршруту, на котором он избегает столкновений с препятствиями благодаря собранной информации.

Пылесос-робот обычно оборудован аккумуляторной батареей, которая обеспечивает необходимое питание для привода, причем для этой цели обычно применяют подзаряжаемую аккумуляторную батарею. Пылесос-робот выполнен в виде единой системы с внешним зарядным устройством, чтобы при необходимости можно было подзаряжать аккумуляторную батарею.

Чтобы обеспечить возвращение пылесоса-робота к внешнему зарядному устройству для подзарядки, пылесос-робот должен знать, где расположено внешнее зарядное устройство.

Для определения местонахождения внешнего зарядного устройства в традиционных системах внешнее зарядное устройство передает радиосигнал, а пылесос-робот принимает радиосигнал от внешнего зарядного устройства и благодаря этому определяет местоположение внешнего зарядного устройства в зависимости от уровня принятого радиосигнала.

Однако при использовании упомянутого способа определения местоположения внешнего зарядного устройства по уровню обнаруженного сигнала, иногда, когда уровень радиосигнала изменяется под воздействием таких внешних факторов, как отраженные сигналы, помехи и т.п., местоположение внешнего зарядного устройства определяется неточно.

Даже после точного определения местоположения внешнего зарядного устройства остается возможность неправильного подключения ввода подзарядки пылесоса-робота к выводу питания внешнего зарядного устройства.

Для устранения упомянутых недостатков известного уровня техники автор в корейской заявке на патент № 10-2002-0066742 (KP10-2002-0066742), поданной 31 октября 2002 г., предложил "Систему пылесоса-робота с внешним зарядным устройством и способ стыковки пылесоса-робота с внешним зарядным устройством", который позволяет пылесосу-роботу точно определить местонахождение внешнего зарядного устройства и пристыковаться к внешнему зарядному устройству.

В соответствии с KP10-2002-0066742 пылесос-робот определяет местоположение внешнего зарядного устройства с использованием верхней видеокамеры по нанесенным на потолок опознавательным меткам местоположения. Стыковка с внешним зарядным устройством всегда выполняется точно, поскольку процедура контролируется по сигналу от амортизатора и сигналу контакта между вводом подзарядки и выводом питания.

Однако система пылесоса-робота по KP10-2002-0066742 ограничена по месту установки внешнего зарядного устройства. А именно, внешнее зарядное устройство размещают только в пределах зоны, распознаваемой верхней видеокамерой пылесоса-робота. Следовательно, систему пылесоса-робота нельзя использовать в зоне с размерами больше дальности обнаружения верхней видеокамеры.

Поэтому очевидна потребность в системе пылесоса-робота и таком способе его стыковки, который позволяет пылесосу-роботу определять местоположение внешнего зарядного устройства даже за пределами зоны распознавания верхней видеокамерой и точно пристыковаться к внешнему зарядному устройству.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩЕСТВА ИЗОБРЕТЕНИЯ

Соответственно, в основу настоящего изобретения положена задача создать систему пылесоса-робота с внешним зарядным устройством, который способен точно определять местоположение внешнего зарядного устройства, даже если внешнее зарядное устройство находится за пределами зоны, в которой верхняя видеокамера может обнаружить опознавательные метки расположения.

Другой задачей, положенной в основу настоящего изобретения, является создание способа стыковки пылесоса-робота и внешнего зарядного устройства, который позволяет пылесосу-роботу точно пристыковаться к внешнему зарядному устройству, даже если внешнее зарядное устройство находится за пределами распознаваемой зоны верхней видеокамеры.

Упомянутая задача решается с помощью системы пылесоса-робота в соответствии с настоящим изобретением, содержащей внешнее зарядное устройство с выводом питания, подключенным к сети питания общего пользования, опознавательную метку зарядного устройства, нанесенную на внешнее зарядное устройство, и пылесоса-робота с датчиком опознавательной метки, который обнаруживает опознавательную метку зарядного устройства, и подзаряжаемой аккумуляторной батарей. Пылесос-робот автоматически пристыковывается к выводу питания для подзарядки подзаряжаемой аккумуляторной батареи. В составе внешнего зарядного устройства смонтирован блок управления выводом питания для подачи питания только во время подзарядки пылесоса-робота.

Блок управления питанием содержит элемент крепления вывода питания, упругий элемент, подсоединенный одним концом к элементу крепления вывода питания, а другим концом - к выводу питания для упругого крепления вывода питания, и микропереключатель, смонтированный между выводом питания и элементом крепления вывода питания и срабатывающий в соответствии с изменением положения вывода питания. Элемент крепления вывода питания содержит опорный кронштейн, закрепленный к корпусу внешнего зарядного устройства, и корпус источника питания подзарядки, смонтированный у нижней поверхности опорного кронштейна и снабженный соединительным выступом, выступающим из верхней поверхности и предназначенным для подключения к микропереключателю.

Опознавательная метка зарядного устройства нанесена со стороны вывода питания. Опознавательная метка зарядного устройства выполнена из ретроотражающего материала, а датчик опознавательной метки является фотодатчиком, который способен обнаруживать ретроотражающий материал.

Опознавательная метка зарядного устройства нанесена на пол перед внешним зарядным устройством. Опознавательная метка зарядного устройства выполнена из металлической ленты, а датчик опознавательной метки является бесконтактным датчиком, который способен обнаруживать металлическую ленту.

Упомянутая задача решается также с помощью системы пылесоса-робота в соответствии с настоящим изобретением, содержащей внешнее зарядное устройство и пылесос-робот. Внешнее зарядное устройство содержит вывод питания, подключенный к источнику питания общего пользования, контактную колодку, несущую смонтированный на ней вывод питания и стационарно размещенную в предварительно заданном месте, и опознавательную метку зарядного устройства, нанесенную внизу перед контактной колодкой. Пылесос-робот содержит датчик опознавательной метки, смонтированный на днище корпуса пылесоса-робота и предназначенный для обнаружения опознавательной метки зарядного устройства, привод для перемещения корпуса пылесоса-робота, верхнюю видеокамеру, смонтированную на корпусе пылесоса-робота и предназначенную для съемки изображений потолка, амортизатор, смонтированный по наружной окружности корпуса пылесоса-робота и предназначенный для выдачи сигнала столкновения, когда пылесос-робот сталкивается с препятствием, ввод подзарядки, смонтированный на амортизаторе с возможностью подключения к выводу питания, подзаряжаемую аккумуляторную батарею, установленную на корпусе пылесоса-робота и подзаряжаемую энергией, подводимой через ввод подзарядки, и блок управления, обнаруживающий после получения команды на подзарядку опознавательную метку зарядного устройства при посредстве датчика опознавательной метки и управляющий приводом с целью подключения к внешнему зарядному устройству.

Опознавательная метка зарядного устройства нанесена перпендикулярно относительно контактной колодки. Датчик опознавательной метки смонтирован на днище корпуса пылесоса-робота с ориентацией по направлению, в котором смонтирован амортизатор.

Опознавательная метка зарядного устройства выполнена из металлической ленты, а датчик опознавательной метки является бесконтактным датчиком, способным обнаруживать металлическую ленту.

Блок управления определяет, что ввод подзарядки подлежит подключению к выводу питания, только когда поступает сигнал столкновения от амортизатора, а затем поступает сигнал контакта, указывающий на установление контакта между вводом подзарядки и выводом питания. Кроме того, пылесос-робот содержит блок измерения мощности аккумуляторной батареи, который измеряет остаточное количество энергии в подзаряжаемой аккумуляторной батарее, и после получения сигнала запроса на подзарядку от блока измерения мощности аккумуляторной батареи пылесос-робот прекращает выполнение назначенного задания и возвращается к внешнему зарядному устройству.

В соответствии с изобретением система пылесоса-робота содержит вывод питания, подключенный к источнику питания общего пользования, внешнее зарядное устройство, несущее смонтированный на нем вывод питания и контактную колодку, закрепленную в предварительно заданном положении, опознавательную метку зарядного устройства, нанесенную со стороны вывода питания на передней стороне контактной колодки, и пылесос-робот, который содержит датчик опознавательной метки, смонтированный на корпусе пылесоса-робота и предназначенный для обнаружения опознавательной метки зарядного устройства, секцию привода для перемещения корпуса пылесоса-робота, верхнюю видеокамеру, смонтированную на корпусе пылесоса-робота и предназначенную для съемки изображений потолка, амортизатор, смонтированный по наружной окружности корпуса пылесоса-робота и выполненный с возможностью выдачи сигнала столкновения в случае столкновения с препятствием, ввод подзарядки, смонтированный на амортизаторе с возможностью подключения к выводу питания, подзаряжаемую аккумуляторную батарею, установленную на корпусе пылесоса-робота и подзаряжаемую электроэнергией, подводимой через ввод подзарядки, и блок управления, выполненный с возможностью обнаружения после получения команды на подзарядку опознавательной метки зарядного устройства при посредстве датчика опознавательной метки и управления секцией привода для стыковки пылесоса-робота с внешним зарядным устройством.

Опознавательная метка зарядного устройства выполнена из ретроотражающего материала, а датчик опознавательной метки является фотодатчиком, который выполнен с возможностью обнаружения ретроотражающего материала.

Датчик опознавательной метки установлен на передней стороне пылесоса-робота.

Датчик опознавательной метки установлен с обеих сторон пылесоса-робота.

В другом варианте выполнения система пылесоса-робота содержит внешнее зарядное устройство, подключенное к сети питания общего пользования, пылесос-робот, содержащий корпус, секцию привода для привода группы колес, установленных в нижней части корпуса, верхнюю видеокамеру, смонтированную на верхней части корпуса и предназначенную для съемки изображений потолка с направления, перпендикулярного направлению движения пылесоса-робота, и дистанционный контроллер для радиоуправления пылесосом-роботом, опознавательную метку зарядного устройства, нанесенную на внешнее зарядное устройство; и датчик опознавательной метки, смонтированный на корпусе пылесоса-робота и выполненный с возможностью для обнаружения опознавательной метки зарядного устройства, причем дистанционным контроллером обнаруживается опознавательная метка зарядного устройства при посредстве датчика опознавательной метки, а затем управляется секция привода так, чтобы пылесос-робот пристыковался к внешнему зарядному устройству для подзарядки подзаряжаемой аккумуляторной батареи.

Опознавательная метка зарядного устройства нанесена со стороны вывода питания.

Опознавательная метка зарядного устройства выполнена из ретроотражающего материала, а датчик опознавательной метки является фотодатчиком, выполненным с возможностью обнаружения ретроотражающего материала.

Опознавательная метка зарядного устройства наносится на пол перед внешним зарядным устройством.

Опознавательная метка зарядного устройства выполнена из металлической ленты, а датчик опознавательной метки является бесконтактным датчиком, выполненным с возможностью обнаружения металлической ленты.

В соответствии с настоящим изобретением, способ стыковки пылесоса-робота для стыковки с внешним зарядным устройством содержит следующие этапы: пылесос-робот действует из положения подключения к внешнему зарядному устройству после получения сигнала к началу работы; пылесос-робот, после обнаружения первой опознавательной метки местоположения при посредстве верхней видеокамеры в процессе движения, сохраняет в памяти, в качестве данных о точке входа, потолочное изображение, на котором впервые обнаружена опознавательная метка местоположения; пылесос-робот выполняет назначенное задание; после ввода командного сигнала на подзарядку пылесос-робот возвращается в точку входа на основании данных текущего местоположения и сохраненных данных о точке входа, при этом данные текущего местоположения вычисляются по снятым верхней видеокамерой потолочным изображениям; внешнее зарядное устройство обнаруживается посредством обнаружения опознавательной метки зарядного устройства с использованием датчика на корпусе пылесоса-робота; пылесос-робот подключается своим вводом подзарядки к выводу питания внешнего зарядного устройства; и подзаряжаемая аккумуляторная батарея подзаряжается от внешнего источника питания через ввод подзарядки.

Этап обнаружения внешнего зарядного устройства содержит следующие этапы: пылесос-робот движется в прямом направлении, определяет, существует ли впереди препятствие, определяет препятствие и движется в одном направлении вдоль препятствия. Пылесос-робот определяет, обнаружена ли опознавательная метка зарядного устройства в процессе движения, и после обнаружения опознавательной метки зарядного устройства, переходит к этапу подключения к внешнему зарядному устройству. Если опознавательная метка зарядного устройства не обнаружена, то пылесос-робот определяет, превосходит ли пройденное расстояние предварительно заданную контрольную дистанцию, и, если превосходит, разворачивается на 180° и движется вдоль препятствия.

Этап подключения к внешнему зарядному устройству содержит следующие этапы: пылесос-робот поворачивается так, чтобы ввод подзарядки пылесоса-робота был обращен к внешнему зарядному устройству; движется и определяет, получен или нет сигнал столкновения от амортизатора; и после получения сигнала столкновения от амортизатора определяет, получен или нет сигнал контакта. Сигнал контакта указывает, что ввод подзарядки пылесоса-робота находится в контакте с выводом питания внешнего зарядного устройства. Если сигнал контакта не поступает после получения сигнала столкновения от амортизатора, то пылесос-робот корректирует угол своего движения поворотом на предварительно заданный угол и определяет, получен или нет сигнал контакта. Если сигнал контакта не поступает после предварительно заданного числа коррекций угла движения пылесоса-робота, то пылесос-робот отступает в точку входа.

Для каждой коррекции угла движения пылесоса-робота устанавливают значение угла коррекции 15°, а число коррекций угла движения устанавливают равным 6.

Командный сигнал на подзарядку формируется, если недостает мощности на этапе выполнения назначенного задания, или когда этап выполнения назначенного задания завершается.

В системе пылесоса-робота с внешним зарядным устройством в соответствии с настоящим изобретением местоположение внешнего зарядного устройства определяется точно даже в том случае, когда внешнее зарядное устройство находится за пределами зоны обнаружения, в которой верхняя видеокамера пылесоса-робота обнаруживает опознавательную метку местоположения.

Кроме того, в соответствии со способом стыковки пылесоса-робота с внешним зарядным устройством пылесос-робот может найти точное местоположение внешнего зарядного устройства и пристыковываться к нему даже в том случае, когда внешнее зарядное устройство находится за пределами зоны распознавания верхней видеокамерой.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Указанные задачи и другие признаки настоящего изобретения очевидны из следующего ниже подробного описания предпочтительного варианта его осуществления, которое ведется со ссылками на прилагаемые чертежи, на которых:

на фиг.1 представлено перспективное изображение системы пылесоса-робота с внешним зарядным устройством в соответствии с настоящим изобретением;

на фиг.2 представлена блок-схема системы пылесоса-робота, изображенного на фиг.1;

на фиг.3A и 3B представлены перспективные изображения пылесоса-робота, изображенного на фиг.1, но со снятой крышкой;

на фиг.4 представлен вид снизу пылесоса-робота, изображенного на фиг.3, показывающий низ корпуса пылесоса-робота;

на фиг.5 представлено изображение, иллюстрирующее движение пылесоса-робота по часовой стрелке в процессе поиска внешнего зарядного устройства;

на фиг.6 представлено изображение, иллюстрирующее способ, который использует датчик обнаружения опознавательной метки пылесоса-робота, изображенного на фиг.5, для обнаружения опознавательной метки зарядного устройства;

на фиг.7 представлено изображение, иллюстрирующее движение пылесоса-робота, изображенного на фиг.1, против часовой стрелки в процессе поиска внешнего зарядного устройства;

на фиг.8 представлено изображение, иллюстрирующее способ, который использует датчик обнаружения опознавательной метки пылесоса-робота, изображенного на фиг.7, для обнаружения опознавательной метки зарядного устройства;

на фиг.9 представлено изображение, иллюстрирующее систему пылесоса-робота, изображенную на фиг.1, в которой вывод питания внешнего зарядного устройства не находится в контакте с вводом подзарядки пылесоса-робота;

на фиг.10 представлено перспективное изображение системы пылесоса-робота с внешним зарядным устройством в соответствии с другим предпочтительным вариантом осуществления настоящего изобретения;

на фиг.11 представлено перспективное изображение пылесоса-робота с внешним зарядным устройством в соответствии с еще одним предпочтительным вариантом осуществления настоящего изобретения;

на фиг.12 представлено покомпонентное перспективное изображение внешнего зарядного устройства;

на фиг.13 представлен вид сверху на изображение фиг.12;

на фиг.14A представлено перспективное изображение пылесоса-робота, изображенного на фиг.13, с которого снята крышка, чтобы показать датчики опознавательной метки, установленные с двух сторон корпуса;

на фиг.14B представлено перспективное изображение пылесоса-робота, изображенного на фиг.13, с которого снята крышка, чтобы показать датчик опознавательной метки, установленный на передней стороне корпуса;

на фиг.15 представлено изображение, иллюстрирующее способ обнаружения опознавательной метки внешнего зарядного устройства при посредстве датчиков опознавательной метки, установленных с двух сторон корпуса;

На фиг.16 представлено изображение, иллюстрирующее процесс движения пылесоса-робота, изображенного на фиг.14B, в переднем направлении при поиске внешнего зарядного устройства;

На фиг.17 представлена блок-схема центрального блока управления, показанного на фиг.2, в соответствии с одним из предпочтительных вариантов осуществления настоящего изобретения;

На фиг.18 представлена схема последовательности операций, иллюстрирующая способ, который система пылесоса-робота, изображенная на фиг.1, использует для стыковки пылесоса-робота с внешним зарядным устройством;

На фиг.19 представлена схема последовательности операций, иллюстрирующая процесс обнаружения внешнего зарядного устройства, изображенного на фиг.18, в соответствии с предпочтительным вариантом осуществления настоящего изобретения;

На фиг.20 представлена схема последовательности операций, иллюстрирующая процесс стыковки пылесоса-робота с внешним зарядным устройством, изображенным на фиг.19, в соответствии с предпочтительным вариантом осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Ниже следует подробное описание настоящего изобретения со ссылками на прилагаемые чертежи.

Как видно из фиг.1-3, система пылесоса-робота содержит пылесос-робот и внешнее зарядное устройство.

Пылесос-робот 10 содержит корпус 11, пылесосный блок 16, привод 20, верхнюю видеокамеру 30, переднюю видеокамеру 32, блок 40 управления, запоминающее устройство 41, приемопередающий блок 43, блок 12 датчика, амортизатор 54 и подзаряжаемую аккумуляторную батарею 50.

Пылесосный блок 16 смонтирован на корпусе 11 для всасывания воздуха вместе с пылью с пола, к которому обращен блок. Пылесосный блок 16 может быть конструктивно выполнен любым из различных известных способов. Например, пылесосный блок 16 может содержать всасывающий электродвигатель (не показан), пылеуловитель для сбора пыли, которая при вращении всасывающего электродвигателя втягивается через всасывающий канал или всасывающую трубу, обращенную к полу.

Привод 20 содержит пару передних колес 21a и 21b, установленных с обеих сторон в передней части, пару задних колес 22a и 22b, установленных с обеих сторон в задней части, электродвигатели 23 и 24 для вращения задних колес 22a и 22b, зубчатый ремень 25 для передачи приводного усилия от задних колес 22a и 22b на передние колеса 21a и 21b. Привод 20 дает возможность электродвигателям 23 и 24 вращаться независимо друг от друга в переднем или заднем направлении. Направление движения пылесоса-робота 10 зависит от управления разностью между частотами вращения электродвигателей 23 и 24.

На корпусе 11 смонтирована передняя видеокамера 32 для съемки изображений пространства впереди пылесоса-робота и передачи снятых изображений в блок 40 управления.

Блок 12 датчика содержит датчик 15 опознавательной метки, который обнаруживает опознавательную метку 88 зарядного устройства, датчики 14 препятствий, смонтированные на боковой стороне корпуса 11 с заданными промежутками и предназначенные для того, чтобы испускать сигнал и принимать отраженный сигнал, и датчик 13 пройденного расстояния, который измеряет расстояние, пройденное пылесосом-роботом 10.

Датчик 15 опознавательной метки смонтирован на днище корпуса 11, чтобы обнаруживать опознавательную метку 88 внешнего зарядного устройства 80. В предпочтительном варианте осуществления датчик 15 опознавательной метки может быть смонтирован на передней нижней части корпуса 11, на которой установлен амортизатор 54, чтобы обнаруживать опознавательную метку 88 по мере движения пылесоса-робота 10 в переднем направлении. В частности, три датчика 15a, 15b и 15с опознавательной метки установлены в два ряда таким образом, что, если включаются передний датчик 15a и один из остальных датчиков 15 b или 15c, то система распознает присутствие опознавательной метки 88 зарядного устройства. Комбинацию датчика 15 опознавательной метки и опознавательной метки 88 зарядного устройства можно выполнить с использованием разных способов при условии, что датчик 15 опознавательной метки может правильно обнаруживать опознавательную метку 88 зарядного устройства. Например, опознавательную метку 88 зарядного устройства можно выполнить из металлической ленты, а в качестве датчика 15 опознавательной метки можно применить бесконтактный датчик, способный обнаруживать металлическую ленту.

В соответствии с другим предпочтительным вариантом осуществления настоящего изобретения, представленным на фиг.14A-B, датчик 15' опознавательной метки установлен в верхней части боковой поверхности корпуса 11 пылесоса-робота, чтобы обнаруживать опознавательную метку 89 зарядного устройства, нанесенную на передней стороне внешнего зарядного устройства 80. В зависимости от характера способа, заложенного в память блока 40 управления и используемого для обнаружения внешнего зарядного устройства, датчик 15' опознавательной метки может быть установлен на передней стороне пылесоса-робота 10, т.е. на верхней стороне амортизатора 54, или с обеих сторон пылесоса-робота 10 (см. фиг.14A и 14B). Кроме того, датчик 15' опознавательной метки является датчиком, способным обнаруживать ретроотражающий материал, из которого выполнена опознавательная метка 89 зарядного устройства, и обычно используют фотодатчик отражательного типа. Фотодатчик содержит светоизлучающий элемент, который излучает свет, и светочувствительный элемент, который принимает свет, отраженный от ретроотражающего материала.

Датчик 14 препятствия содержит группу инфракрасных излучающих элементов 14a, которые излучают инфракрасный свет, и группу инфракрасных светочувствительных элементов 14b, подобранных в пары с соответствующими инфракрасными излучающими элементами 14a и принимающих отраженный свет. Пары инфракрасных излучающих элементов 14a и инфракрасных светочувствительных элементов 14b ориентированы по вертикали и размещены по внешней окружности корпуса 11. В другом примере, датчик 14 препятствия может содержать ультрафиолетовый датчик, который излучает и ультрафиолетовый свет и принимает отраженное излучение. Датчик 14 препятствия можно также применить для измерения расстояния от пылесоса-робота 10 до препятствия или стены.

Датчик поворота можно также использовать в качестве датчика 13 пройденного расстояния, определяющего скорости вращения колес 21a, 21b, 22a и 22b. Например, датчик поворота может содержать кодирующий элемент, который определяет частоту вращения электродвигателей 23 и 24. Приемопередающий блок 43 посылает данные, передаваемые при посредстве антенны 42, принимает сигнал при посредстве антенны 42 и передает принятый сигнал в блок 40 управления.

Амортизатор 54 выполнен по внешней окружности корпуса 11, чтобы амортизировать удары, когда пылесос-робот 10 сталкивается с препятствием, например со стеной, и передает сигнал столкновения в блок 40 управления. Амортизатор 54 опирается на упругий элемент (не показан) так, чтобы он имел возможность смещения в переднезаднем направлении параллельно полу, по которому движется пылесос-робот 10. Кроме того, на амортизаторе 54 установлен датчик для выдачи сигнала столкновения в блок 40 управления, когда амортизатор 54 сталкивается с препятствием. Соответственно, когда амортизатор 54 сталкивается с препятствием, то в блок 40 управления передается предварительно заданный сигнал столкновения. На высоте, соответствующей выводу 82 питания внешнего зарядного устройства 80, на передней стороне амортизатора 54 установлен ввод 56 подзарядки. Если применяется трехфазный источник питания, то число вводов 56 подзарядки равно трем.

Подзаряжаемая аккумуляторная батарея 50 смонтирована на корпусе 11 и подключена к вводу 56 подзарядки на амортизаторе 54. Соответственно, когда ввод 56 подзарядки подключен к выводу 82 питания внешнего зарядного устройства 80, то подзаряжаемая аккумуляторная батарея 50 подзаряжается от сети переменного тока. То есть, когда пылесос-робот 10 подключен к внешнему зарядному устройству 80, то энергия, поступающая из сети переменного тока по шнуру 86 питания, подается с вывода 82 питания внешнего зарядного устройства 80 через ввод 56 подзарядки на амортизаторе 54 в подзаряжаемую аккумуляторную батарею 50.

Кроме того, предусмотрен блок 52 измерения мощности аккумуляторной батареи, который измеряет остаточное количество энергии в подзаряжаемой аккумуляторной батарее 50. Если измеренная энергия подзаряжаемой аккумуляторной батареи 50 становится ниже предварительно заданного предельного уровня, то блок 52 измерения мощности аккумуляторной батареи выдает сигнал запроса на подзарядку в блок 40 управления.

Блок 40 управления обрабатывает сигналы, поступающие через приемопередающий блок 43, и соответственно управляет соответствующими элементами. На корпусе 11 может быть дополнительно предусмотрено клавиатурное устройство ввода (не показано) с набором клавиш для ввода функциональных параметров, и в этом случае блок 40 управления может обрабатывать введенные клавишами сигналы, поступающие с клавиатурного устройства ввода.

В отсутствие работы блок 40 управления осуществляет управление таким образом, что пылесос-робот 10 ожидает команды в режиме подзарядки с подключением к внешнему зарядному устройству 80. Пока пылесос-робот находится в таком режиме ожидания, т.е. в состоянии подключения к внешнему зарядному устройству 80, запас энергии в подзаряжаемой аккумуляторной батарее 50 все время может быть на предварительно заданном уровне.

Блок 40 управления получает при посредстве верхней видеокамеры 30 изображение потолка, на который нанесена опознавательная метка 10 местоположения. По потолочным изображениям вычисляется текущее местоположение пылесоса-робота 10. Рабочий маршрут пылесоса-робота 10 планируется в соответствии с инструкциями и, в соответствии с этим, пылесос-робот 10 выполняет назначенное задание в процессе движения по запланированному маршруту.

Блок 40 управления отделяется от внешнего зарядного устройства 80, выполняет задание в соответствии с инструкцией, а затем возвращается и четко пристыковывается к внешнему зарядному устройству 80 с ориентацией по потолочным изображениям, снятым верхней видеокамерой 30, и сигналам от датчика 15 опознавательной метки.

Внешнее зарядное устройство 80 содержит вывод 82 питания и контактную колодку 84. Вывод 82 питания соединен со шнуром 86 питания через внутренний трансформатор и силовой кабель и стыкуется с вводом 56 подзарядки пылесоса-робота 10 для подачи питания в подзаряжаемую аккумуляторную батарею 50. Шнур 86 питания подключается к сети питания переменного тока. Внутренний трансформатор может отсутствовать.

Контактная колодка 84 предназначена для крепления вывода 82 питания на высоте, равной высоте расположения ввода 56 подзарядки пылесоса-робота 10. Вывод 82 питания закреплен в определенном положении на контактной колодке 84. Если применяется трехфазный источник питания, то на контактной колодке 84 монтируют выводы 82 питания.

Внешнее зарядное устройство 80 содержит корпус 81 зарядного устройства, вывод 82 питания и блок 100 управления выводом питания. Как видно из фиг.1 и 10, внешнее зарядное устройство 80 предусматривает возможность работы с трехфазным питанием, или, как видно из фиг.11-13, это устройство может обеспечивать питание от 100˜240 В сети переменного тока общего пользования. В соответствии с приведенным примером осуществления настоящего изобретения, используется сеть питания общего пользования, как показано на фиг.11-13.

Как видно из фиг.12, корпус 81 зарядного устройства содержит подключаемый к сети питания шнур 86 питания (фиг.11), корпус 87a источника питания подзарядки со смонтированном в нем источником 87 питания подзарядки, теплоотвод 81 для рассеивания тепла, выделяемого в источнике 87 питания подзарядки, и кожух 81b зарядного устройства. В кожухе 81b зарядного устройства предусмотрено отверстие 82' для вывода, через которое вывод 82 питания выступает наружу.

Вывод 82 питания соединен со шнуром 86 питания через источник 87 питания подзарядки и силовой кабель и стыкуется с вводом 56 подзарядки пылесоса-робота 10 для подачи питания в подзаряжаемую аккумуляторную батарею 50. Тип применяемого вывода 82 питания определяют в соответствии с видом питания, используемого внешним зарядным устройством 80. Например, при питании трехфазной индуктивной мощностью, могут быть предусмотрены три вывода 82 питания, как показано на фиг.1, а при питании от бытовой сети предусматриваются два вывода 82 питания, как показано на фиг.11. Блок 100 управления выводом питания соединен с выводом 82 питания так, чтобы питание подавалось только в том случае, когда ввод 56 питания пылесоса-робота 10 подключен к выводу 82 питания.

Блок 100 управления выводом питания содержит элемент 110 крепления вывода питания, упругий элемент 120, подсоединенный одним концом к элементу 110 крепления вывода питания, а другим концом - к выводу 82 питания для упругого крепления вывода 82 питания, и микропереключатель 130, смонтированный между выводом 82 питания и элементом 110 крепления вывода питания и срабатывающий в соответствии с изменением положения вывода 82 питания.

Элемент 110 крепления вывода питания обеспечивает установку вывода 82 питания на высоте, равной высоте расположения ввода 56 подзарядки пылесоса-робота 10, и фиксирует вывод 82 питания в заданном положении. В конструкции элемента 110 крепления вывода питания предусмотрен опорный кронштейн 83a, закрепленный к корпусу зарядного устройства 81, и корпус 87a источника питания подзарядки, смонтированный у нижней поверхности опорного кронштейна 83a и снабженный соединительным выступом 87b, выступающим из верхней поверхности и предназначенным для подключения к микропереключателю 130.

В предпочтительном варианте осуществления, упругий элемент 120 может быть выполнен в форме винтовой пружины. Один конец упругого элемента 120 подсоединен к первому опорному выступу 111, выступающему из элемента 110 крепления вывода питания, а другой конец - ко второму опорному выступу 82a, выступающему с внутренней стороны вывода 82 питания.

Микропереключатель 130 установлен на соединительном выступе 87b, выступающем с верхней стороны корпуса 87a источника питания подзарядки, и содержит двухпозиционный переключающий элемент 131, выступающий из зоны контакта с концом вывода 82 питания. Когда вывод 82 питания действует с усилием выше возвратного усилия упругого 120 элемента и находится в контакте с микропереключателем 130, переключающий 131 элемент находится в состоянии включения и поэтому допускает подвод питания к выводу 82 питания.

Опознавательная метка 88 зарядного устройства нанесена на пол перед внешним зарядным устройством 80, чтобы пылесос-робот 10 мог распознавать местоположение внешнего зарядного устройства 80 при посредстве датчика 15 опознавательной метки (см. фиг.1). В предпочтительном варианте осуществления, опознавательная метка 88 зарядного устройства может быть нанесена перпендикулярно относительно внешнего зарядного устройства 80 таким образом, чтобы датчик 15 опознавательной метки мог точно определить местоположение внешнего зарядного устройства 80. Если датчиком 15 опознавательной метки служит бесконтактный датчик, то опознавательную метку 88 зарядного устройства целесообразно выполнить из металлической ленты, которую обнаруживает бесконтактный датчик. Длину опознавательной метки 88 зарядного устройства назначают достаточной для того, чтобы опознавательную метку 88 зарядного устройства обнаруживали, по меньшей мере, два датчика из группы датчиков 15a, 15b и 15c опознавательной метки, расположенных на днище корпуса 11, когда пылесос-робот 10 продвигается вдоль стены мимо внешнего зарядного устройства 80. Например, как показано на фиг.6 и 8 для пылесоса-робота 10 с тремя датчиками 15a, 15b и 15c опознавательной метки, эту метку устанавливают так, чтобы два датчика, 15a и 15b или 15a и 15c, из трех могли обнаружить опознавательную метку 88 зарядного устройства. Как видно из фиг.10, опознавательная метка 89 зарядного устройства в соответствии с другим предпочтительным вариантом осуществления настоящего изобретения нанесена на передней стороне контактной колодки 84 внешнего зарядного устройства 80, чтобы распознавать положение внешнего зарядного устройства 80 при посредств