Средства, подавляющие отторжение трансплантата

Иллюстрации

Показать все

Изобретение относится к медицине, точнее к трансплантологии, и касается средства, подавляющего отторжение трансплантата. Изобретение раскрывает фармацевтические композиции, содержащие вещество, которое обладает активностью модуляции биологической активности, «индуцируемой активацией лимфоцитарной иммуномодулирующей молекулы» (AILIM) (известной также как «индуцируемый совместный стимулятор» (ICOS), в частности модуляции трансдукции сигнала, опосредованного AILIM. Изобретение обеспечивает подавление, лечение или профилактику отторжения трансплантата, сопровождающего трансплантацию органа, его части или ткани. 2 н. и 9 з.п. ф-лы, 6 ил.

Реферат

Область техники

Настоящее изобретение относится к фармацевтическим композициям, содержащим вещество, которое обладает активностью модуляции биологической активности, «индуцируемой активацией лимфоцитарной иммуномодулирующей молекулы» (AILIM) (известной также как «индуцируемый совместный стимулятор» (ICOS), в частности модуляции трансдукции сигнала, опосредованного AILIM.

Конкретно, настоящее изобретение относится к фармацевтическим композициям, включающим в себя вещество, которое обладает активностью модуляции (например, ингибирования) пролиферации клеток, экспрессирующих AILIM, или модуляции (например, ингибирования) продукции цитокина (например, интерферона-γ, или интерлейкина-4) клетками, экспрессирующими AILIM.

Более конкретно, настоящее изобретение относится (1) к фармацевтическим композициям для ингибирования, лечения или профилактики отторжения трансплантата (иммунологического отторжения), сопровождающего трансплантацию органа, его части или ткани; и (2) к фармацевтическим композициям для усиления ингибирующего, терапевтического или профилактического эффекта иммуносупрессорных агентов на отторжение трансплантата (иммунологическое отторжение), сопровождающее трансплантацию органа, его части или ткани.

Предшествующий уровень техники

Ввиду недавнего пересмотра законов по трансплантации органов в Японии было выполнено несколько трансплантаций органов от пациентов со смертью головного мозга. В одном случае такую выгоду получили от одного донора семь пациентов. В последующем ожидается увеличение количества трансплантаций органов.

С другой стороны, по оценкам, в Японии количество пациентов, пораженных тяжелыми сердечно-сосудистыми и другими заболеваниями, такими как заболевания печени (острая печеночная недостаточность, цирроз печени и т.д.), сердечные заболевания (тяжелая сердечная недостаточность, миокардиопатия, гипертрофия сердца и т.д.), почечные заболевания (почечная недостаточность, хронический гломерулонефрит, диабетическая нефропатия, пиелонефрит и т.д.), легочные заболевания (нарушение функции обоих легких и т.д.) и заболевания поджелудочной железы (лечение больных диабетом), у которых трансплантация органов жизненно важна для лечения, каждый год увеличивается приблизительно на 600 кардиологических пациентов, приблизительно на 3000 пациентов с заболеваниями печени и приблизительно на 500 пациентов с легочными заболеваниями. Хотя законодательные аспекты развиваются, отсутствие органов, которые можно трансплантировать, также является реально существующей в настоящий момент проблемой. Аналогичным образом, отсутствие органов является также серьезной проблемой в США, которые являются продвинутой страной с точки зрения трансплантации. В США приблизительно 4300 человек (1999 г.) ожидают трансплантации сердца и приблизительно 43000 человек (1999 г.) ожидают трансплантации почки. В действительности приблизительно 800 и приблизительно 2300 человек умирают ежегодно, не имея возможности получить соответственно трансплантаты сердца и почки.

Под трансплантацией ткани (такой как кожа, роговица и кость) или органа (такого как печень, сердце, почка, легкое и поджелудочная железа) подразумевают: (1) аутотрансплантацию (аутологичную трансплантацию), (2) изотрансплантацию, (3) аллотрансплантацию и (4) ксенотрансплантацию.

Аутотрансплантация относится к трансплантации части индивидуума в другую часть того же индивидуума и производится, например, в случае лечения ожога путем пересадки собственной здоровой кожи на пораженную область.

Изотрансплантация производится между гомогенными животными. У человека такая трансплантация производится между монозиготными близнецами (например, трансплантация одной из почек или печеночной ткани).

Аллотрансплантация производится между двумя различными индивидуумами, имеющими различный генетический фон, и у человека такая трансплантация производится между дизиготными близнецами или между индивидуумами, которые абсолютно не имеют кровного родства друг с другом.

Ксенотрансплантация производится между индивидуумами различных видов животных. Примером является случай, когда ткань или орган шимпанзе или свиньи пересаживается человеку.

Как указано выше, ожидается, что количество случаев аллотрансплантации от пациентов со смертью мозга увеличится вследствие разработки законодательства, относящегося к трансплантации органов. Однако для разрешения проблемы полного отсутствия органов, которые можно трансплантировать, в настоящее время активно проводятся различные исследования, направленные на практические виды применения ксенотрансплантации, более конкретно на трансплантацию человеку тканей или органов от не относящихся к человеку млекопитающих, таких как свинья.

Хотя и ожидается, что вопрос отсутствия трансплантируемых тканей и органов разрешится разработкой законов о смерти мозга и трансплантации и усовершенствованием методик ксенотрансплантации, существует другое крайне большое препятствие при лечении заболеваний путем аллотрансплантации и ксенотрансплантации. Более конкретно, препятствием является тяжелое иммунологическое отторжение (отторжение трансплантата) у реципиентов, которое происходит после трансплантации тканей или органов от доноров.

Отторжение трансплантата относится к различным иммунным реакциям, которые направлены на отторжение и уничтожение трансплантата (часть живого организма, которая трансплантирована, клетку, ткань или орган) от донора, чей генетический фон отличается от такового у реципиента (т.е. при аллотрансплантации или ксенотрансплантации), поскольку реципиент распознает трансплантат как инородное вещество. Иммунные реакции, которые сопровождают указанную трансплантацию, можно классифицировать на (1) сверхострое отторжение, которое представляет собой сильное отторжение, происходящее непосредственно после трансплантации; (2) острое отторжение, которое наблюдается в пределах нескольких месяцев после трансплантации; и (3) хроническое отторжение, наблюдаемое через несколько месяцев после трансплантации. Кроме того, хотя клеточный иммунитет благодаря иммунокомпетентным клеткам, представленным Т-клетками, и гуморальный иммунитет благодаря антителам происходит эндогенно координированным образом, основная реакция осуществляется клеточным иммунитетом.

В результате отторжения органа трансплантат в конечном итоге становится некротическим и отпадает. Кроме того, у реципиента развиваются не только системные симптомы, такие как лихорадка, лейкоцитоз и ощущение усталости, но также отек и болезненность в участке трансплантации. Кроме того, могут возникнуть тяжелые осложнения, такие как инфекции.

В частности, при трансплантации ксеногенного трансплантата, такого как трансплантат от свиньи, возникает серьезная проблема сверхострого отторжения, в результате которого трансплантат отторгается в пределах нескольких минут.

Для подавления иммунологического отторжения (отторжения трансплантата), сопровождающего такие трансплантации, применяется ограниченное число иммуносупрессорных средств, потому что иммунологическое отторжение, вызванное аллотрансплантацией, происходит главным образом вследствие клеточного иммунитета. Такие иммуносупрессорные средства включают в себя циклоспорин (CsA); такролимус (FK-506); азатиоприн (AZ); микофенолат мофетил (MMF); мизорибин (MZ); лефлуномид (LEF); адренокортикостероиды (также известные как гормоны коры надпочечников, кортикостероиды, кортикоиды), такие как преднизолон и метилпреднизолон; сиролимус (также известный как рапамицин); дезоксиспергуалин (DSG); и FTY720 (химическое название: 2-амино-2-[2-(4-октилфенил)этил]-1,3-пропандиол гидрохлорид).

CTLA4 и CD28, которые являются молекулами, ответственными за трансдукцию совместных стимулирующих сигналов, необходимых для активации Т-клеток (молекулы трансдукции совместных стимулирующих сигналов), и особенно препараты CTLA4, в которых используется растворимая область CTLA4 и кодирующий ее ген, также проходят клиническую разработку в качестве иммуносупрессорных средств.

С другой стороны, недавно, аналогично CTLA4 и CD28, которые являются молекулами, обеспечивающими трансдукцию совместных стимулирующих сигналов, была идентифицирована молекула, названная индуцируемой активацией лимфоцитарной иммуномодулирующей молекулой (AILIM; human, mouse, and rat; Int. Immunol., 12(1), p.51-55, 2000), называемой также индуцируемым совместным стимулятором (ICOS; human; Nature, 397 (6716), р.263-266, 1999); J. Immunol., 166(1), p.1, 2001; J. Immonol., 165(9), р.5035, 2000; Biochem. Biophys. Res. Commun., 276(1), р.335, 2000; Immunity, 13(1), р.95, 2000; J. Exp. MecL, 192(1), р.53, 2000; Eur. J. Immunol., 30(4), р.1040, 2000), в качестве третьей молекулы, преобразующей совместные стимулирующие сигналы, которая преобразует второй сигнал (совместно стимулирующий сигнал), необходимый для активации лимфоцитов, таких как Т-клетки, и сопряжена с сигналом, регулирует функцию активированных лимфоцитов, таких как активированные Т-клетки.

На основании данных недавно проведенных исследований, относящихся к указанной молекуле, прогнозируется, что молекула AILIM, возможно, участвует в развитии различных заболеваний (например, аутоиммунных заболеваний, аллергических состояний и воспалений), вызванных активацией иммунокомпетентных клеток, таких как Т-клетки (в частности, Т-лимфоциты). Однако пока нет сообщений о связи между функциональной модуляцией молекулы AILIM и отторжением трансплантата (иммунологическим отторжением), сопровождающим трансплантацию тканей или органов, а также о попытках подавления, лечения или профилактики таких реакций отторжения, сопровождающих трансплантацию тканей или органов, путем модуляции активности молекулы AILIM.

Кроме того, совсем недавно была идентифицирована новая молекула, названная B7h, B7RP-1, GL50 или LICOS, которая, как считают, является лигандом, взаимодействующим с молекулой трансдукции совместного стимулирующего сигнала AILIM (Nature, Vol.402, №6763, pp.827-832, 1999; Nature Medicine, Vol.5, №12, pp.1365-1369, 1999; J. Immunology, Vol.164, pp.1653-1657, 2000; Curr. Biol., Vol.10, №6, pp.333-336, 2000).

В результате идентификации указанных двух видов новых молекул, а именно AILIM (ICOS) и B7RP-1 (B7h, GL50, LICOS), было выявлено, что в дополнение к известным первому и второму путям трансдукции сигналов между CD28 и CD80 (B7-1)/CD86 (B7-2) и между CTLA4 и CD80 (B7-1)/CD 86 (B7-2) имеется новый третий путь трансдукции совместного стимулирующего сигнала, который существенен для указанной выше активации лимфоцитов, таких как Т-клетки, и регуляции функции активированных Т-клеток, которая функционирует посредством взаимодействия между AILIM (ICOS) и B7RP-1 (B7h, GL50, LICOS).

Проводятся тщательные исследования биологических функций указанных новых молекул, регуляции данными молекулами функций лимфоцитов, таких как Т-клетки, через третью трансдукцию совместного стимулирующего сигнала данными молекулами и связи между новой трансдукцией сигналов и заболеваниями.

Описание изобретения

Более конкретно, целью настоящего изобретения является предоставление способов и фармацевтических средств, которые подавляют, лечат или предотвращают иммунологическое отторжение (отторжение трансплантата), сопровождающее трансплантацию ткани или органа (аллотрансплантацию или ксенотрансплантацию), путем применения медицинских и фармацевтических методик (например, фармацевтических агентов, таких как соединения с низкой молекулярной массой, и антител) для модуляции биологической функции новой молекулы, AILIM, которая, как считают, трансдуцирует второй сигнал (совместно стимулирующий сигнал), необходимый для активации лимфоцитов, таких как Т-клетки, и сопряжена с сигналом, модулирует функцию активированных лимфоцитов, таких как активированные Т-клетки.

Другой целью является предоставление способов усиления супрессорного эффекта на отторжение трансплантата существующими иммуносупрессорными средствами (циклоспорином, азатиоприном, адренокортикостероидами, FK-506 и т.д.) с использованием таких фармацевтических средств, которые модулируют биологическую функцию AILIM (например, таких фармацевтических средств как соединения с низкой молекулярной массой и антитела).

В результате тщательных исследований биологической функции AILIM млекопитающих и способа подавления иммунологического отторжения (отторжения трансплантата), которое представляет собой серьезную проблему, сопровождающую трансплантацию (аллотрансплантацию или ксенотрансплантацию) трансплантатов (клеток, ткани или органа), авторы настоящего изобретения обнаружили, что (1) фармацевтические агенты, которые модулируют функцию AILIM, значимо подавляют иммунологическое отторжение (отторжение трансплантата), сопровождающее трансплантацию ткани (тканей) или органа (органов), и (2) супрессорный эффект существующих иммуносупрессорных агентов на отторжение трансплантата усиливается при использовании фармацевтических средств, которые модулируют функцию AILIM; и в результате было оформлено настоящее изобретение.

Фармацевтическая композиция согласно изобретению может применяться в качестве лекарственного средства для модуляции различных реакций in vivo, в которые вовлечена трансдукция совместно стимулирующего сигнала к клеткам, экспрессирующим AILIM, опосредуемая AILIM (например, пролиферации клеток, экспрессирующих AILIM, продукции цитокина (цитокинов) клетками, экспрессирующими AILIM, иммунного цитолиза или апоптоза клеток, экспрессирующих AILIM, и активности для индукции зависимой от антител клеточной цитотоксичности против клеток, экспрессирующих AILIM), и/или в качестве лекарственного средства для профилактики начала и/или прогрессирования различных заболеваний, которые связаны с трансдукцией сигналов, опосредованной AILIM, и для лечения или профилактики таких заболеваний.

В частности, фармацевтическая композиция согласно изобретению может модулировать (подавлять или стимулировать) пролиферацию клеток, экспрессирующих AILIM, или может модулировать (подавлять или стимулировать) продукцию цитокинов (например, интерферона-γ или интерлейкина-4) клетками, экспрессирующими AILIM, и может предотвращать различные патологические состояния, запускаемые различными физиологическими феноменами, при которых вовлечена трансдукция сигналов, опосредованная AILIM, и обеспечивает возможность лечения или профилактики различных заболеваний.

Применение фармацевтической композиции согласно изобретению обеспечивает возможность подавления, профилактики и/или лечения иммунологического отторжения (отторжения трансплантата), которое является серьезной проблемой при тех видах лечения, при которых орган (печень, сердце, легкое, почка, поджелудочная железа и т.д.), его часть или ткань (такая как кожа, роговица и кость) от донора трансплантируется (аллотрансплантируется или ксенотрансплантируется) реципиенту, пораженному тяжелым сердечно-сосудистым заболеванием.

Кроме того, применение фармацевтической композиции согласно изобретению обеспечивает возможность усиления подавляющего отторжение трансплантата эффекта существующих иммуносупрессорных средств, вводимых для подавления иммунологического отторжения при таких видах лечения путем трансплантации.

Более конкретно, настоящие изобретения включают в себя следующее:

(1) Фармацевтическую композицию для подавления, лечения или предотвращения отторжения трансплантата, сопровождающего трансплантацию органа, его части или ткани, причем указанная композиция включает в себя вещество, обладающее активностью модуляции трансдукции сигнала, опосредованной AILIM, и фармацевтически приемлемый носитель.

(2) Фармацевтическую композицию для усиления эффекта одного или нескольких иммуносупрессорных средств для подавления, лечения или предотвращения отторжения трансплантата, сопровождающего трансплантацию органа, его части или ткани, причем указанная композиция включает в себя вещество, обладающее активностью модуляции трансдукции сигнала, опосредованной AILIM, и фармацевтически приемлемый носитель.

(3) Фармацевтическую композицию по п.(2), в которой указанное иммуносупрессорное средство представляет собой одно или несколько терапевтических средств, выбранных из группы, состоящей из азатиоприна, адренокортикостероида, циклоспорина, мизорибина и тикролимуса (FK-506), микофенолата мофетила, лефлуномида, сиролимуса, деоксиспергулина, FTY720 и препарата CTLA4.

(4) Фармацевтическую композицию по любому из пп.(1)-(3), причем указанная трансплантация представляет собой аллотрансплантацию.

(5) Фармацевтическую композицию по любому из пп.(1)-(3), причем указанная трансплантация представляет собой ксенотрансплантацию.

(6) Фармацевтическую композицию по любому из пп.(1)-(5), причем указанный орган представляет собой печень, сердце, почку, легкое или поджелудочную железу.

(7) Фармацевтическую композицию по любому из пп.(1)-(5), причем указанная ткань представляет собой кожу, роговицу или костную ткань.

(8) Фармацевтическую композицию по любому из пп.(1)-(7), в которой указанное вещество представляет собой белковое вещество.

(9) Фармацевтическую композицию по п. (8), причем указанное белковое вещество выбрано из группы, состоящей из

a) антитела, которое связывается с AILIM, или части указанного антитела;

b) полипептида, содержащего целиком или частично внеклеточную область AILIM;

c) гибридного полипептида, содержащего целиком или частично внеклеточную область AILIM и целиком или частично константную область тяжелой цепи иммуноглобулина; и

а) полипептида, который связывается с AILIM.

(10) Фармацевтическую композицию по любому из пп.(1)-(7), в которой указанное вещество представляет собой небелковое вещество.

(11) Фармацевтическую композицию по п.(10), причем указанное небелковое вещество представляет собой ДНК, РНК или химически синтезированное соединение.

Настоящие изобретения подробно описаны ниже с введением определений терминов и способов получения веществ, применяемых в данном изобретении.

В данном описании термин «млекопитающее» означает человека, корову, козу, кролика, мышь, крысу, хомяка и морскую свинку; предпочтительным является человек, корова, крыса, мышь или хомяк, а особенно предпочтительным является человек.

"AILIM" согласно изобретению представляет собой аббревиатуру «индуцируемая активацией лимфоцитарная иммуномодулирующая молекула» и означает молекулу поверхности клетки млекопитающего, имеющую структуру и функцию, описанные в предыдущих сообщениях (J. Immunol., 166 (1), p.1, 2001; J. Immunol., 165 (9), р.5035, 2000; Biochem. Biophys. Res. Commun., 276 (1), p.335, 2000; Immunity, 13(1), р.95, 2000; J. Exp. Med., 192 (1), р.53, 2000; Eur. J. Immunol., 30 (4), р.1040, 2000; Int. Immunol., 12 (1), р.51, 2000; Nature, 397 (6716), р.263, 1999; GenBank Accesion Number: BAA82129 (человек); ВАА82128 (крыса); ВАА82127 (крысиный вариант); ВАА82126 (мышь)).

Особенно предпочтительно термин означает AILIM, полученную у человека (например, International Immunology, Vol.12, №1, р.51-55, 2000).

Указанная AILIM также называется ICOS (Nature, Vol.397, №6716, р.263-266, 1999) или антиген JTT-1/антиген JTT-2 (не прошедшая экспертизу опубликованная заявка на патент Японии №(JP-A) Hei 11-29599, Международная патентная заявка №WO98/38216), и указанные названия молекул взаимозаменяемы и относятся к одной и той же молекуле.

Кроме того, "AILIM", на которую имеются ссылки в данном изобретении, включает в себя полипептид, имеющий аминокислотные последовательности AILIM от каждого млекопитающего, описанные в ранее опубликованных литературных источниках, а особенно предпочтительно также полипептид, имеющий по существу такую же аминокислотную последовательность, что и последовательность человеческой AILIM. Более того, варианты человеческой AILIM, аналогичные ранее идентифицированному варианту AILIM, полученному у крысы (GenBank Accesion Number: BAA82127), также включены в термин "AILIM" согласно изобретению.

В настоящем описании выражение «имеющий по существу такую же аминокислотную последовательность» означает, что "AILIM" согласно изобретению включает в себя полипептид, имеющий аминокислотную последовательность, в которой множественные аминокислоты, предпочтительно от 1 до 10 аминокислот, особенно предпочтительно от 1 до 5 аминокислот, были замещены, подвергнуты делеции и/или модифицированы, и полипептиды, имеющие аминокислотную последовательность, в которой множественные аминокислоты, предпочтительно от 1 до 10 аминокислот, особенно предпочтительно от 1 до 5 аминокислот, были добавлены, пока полипептиды имеют по существу такие же биологические свойства, как и полипептид, включающий в себя аминокислотную последовательность, показанную в предыдущих сообщениях.

Такие замены, делеции или инсерции аминокислот могут быть достигнуты в соответствии с обычным способом (Experimental Medicine: SUPPLEMENT, "Handbook of Genetic Engineering" (1992), и т.д.).

Примерами являются синтетический олигонуклеотид с сайт-направленным мутагенезом (дуплексный способ с гэпами), точковый мутагенез, посредством которого точковую мутацию вводят случайным методом путем обработки нитритом или сульфитом, способ, при котором делеционный мутант получают с помощью фермента Ва131 и т.д., кассетный мутагенез, способ сканирования линкера, способ ошибки включения, способ затравки ошибочного спаривания оснований, способ синтеза сегмента ДНК и т.д.

Синтетический олигонуклеотид с сайт-направленным мутагенезом (дуплексный способ с гэпами) можно осуществить, например, следующим образом. Область, которую желают подвергнуть мутагенезу, клонируют в вектор фага М13, имеющий амбер-мутацию, для получения одноцепочечной ДНК фага. Затем RF I ДНК вектора М13, не имеющую амбер-мутации, линеаризуют путем обработки рестриктазой, ДНК смешивают с указанной выше одноцепочечной ДНК фага, денатурируют и подвергают отжигу, посредством этого формируя «дуплексную ДНК с гэпами». Синтетический олигонуклеотид, в который вводят мутации, гибридизируют с дуплексной ДНК с гэпами, и закрытую кольцевую двунитевую ДНК получают, обеспечивая реакцию с ДНК-полимеразой и ДНК-лигазой. Клетки Е. coli mutS с недостаточной репаративной активностью ошибочного спаривания трансфицируют указанной ДНК. Клетки Е. coli, не обладающие супрессорной активностью, инфицируют выращенными фагами и проводят скрининг только фагов, не имеющих амбер-мутаций.

В способе, которым вводится точечная мутация нитратом, используют, например, принцип, как указано ниже. Если ДНК обрабатывают нитритом, нуклеотиды дезаминируются, в результате чего аденин превращается в гипоксантин, цитозин - в урацил, а гуанин - в ксантин. Если дезаминированная ДНК вводится в клетки, "А:Т" и "G:C" замещаются соответственно "G:C" и "А:Т", потому что основания гипоксантина, урацила и ксантина спариваются соответственно с цитозином, аденином и тимином при репликации ДНК. Действительно, фрагменты одноцепочечной ДНК, обработанные нитритом, гибридизируются с «дуплексной ДНК с гэпами», а затем мутантные штаммы отделяют путем манипулирования таким же образом, как при получении синтетического олигонуклеотида с сайт-направленным мутагенезом (дуплексный способ с гэпами).

Термин «цитокин», как во фразе «продукция цитокина клетками, экспрессирующими AILIM», в настоящем изобретении означает произвольный цитокин, продуцируемый клетками, экспрессирующими AILIM» (в частности, Т-клетками).

Примерами Т-клеток являются Т-клетки типа Th1 и типа Th2, a цитокин согласно изобретению, в частности, означает цитокин, продуцируемый Т-клетками типа Тh1 и/или произвольный цитокин, продуцируемый Т-клетками типа Th2.

Цитокины, продуцируемые Т-клетками типа Th1, включают в себя IFN-γ, IL-2, TNF, IL-3, а цитокины, продуцируемые Т-клетками типа Th2, включают в себя IL-3, IL-4, IL-5, IL-10 и TNF (Cell, Vol.30, №9, pp.343-346, 1998).

Термин «вещество», используемый в настоящем изобретении, конкретно «вещество, обладающее активностью модуляции трансдукции сигнала, опосредованной AILIM», а конкретнее «вещество, обладающее активностью ингибирования пролиферации клеток, экспрессирующих AILIM, или ингибирования продукции цитокина клетками, экспрессирующими AILIM», означает естественно встречающееся вещество или произвольное искусственно полученное вещество.

Здесь выражение «трансдукция сигнала, опосредованная AILIM» означает трансдукцию сигнала через AILIM, ведущую к изменению любого фенотипа описанных выше клеток, экспрессирующих AILIM, или в следующих примерах (изменение клеточной пролиферации, активации клеток, инактивации клеток, апоптоэа и/или способности продуцировать произвольный цитокин из клеток, экспрессирующих AILIM).

«Вещество» можно главным образом классифицировать на «белковое вещество» и «небелковое вещество».

Примеры «белковых веществ» следующие: полипептиды, антитела (поликлональные антитела, моноклональные антитела или части моноклональных антител).

Когда вещество представляет собой антитело, оно предпочтительно является моноклональным антителом. Когда вещество представляет собой моноклональное антитело, оно включает в себя не только моноклональные антитела, полученные у млекопитающего, не являющегося человеком, но также следующие рекомбинантные химерные моноклональные антитела, рекомбинантные гуманизированные моноклональные антитела и человеческие моноклональные антитела.

Когда вещество представляет собой полипептид, оно включает в себя следующие полипептиды, фрагменты полипептидов (олигопептиды), гибридные полипептиды и химически модифицированные полипептиды. Примерами олигопептидов являются пептиды, включающие в себя от 5 до 30 аминокислот, предпочтительно от 5 до 20 аминокислот. Химическую модификацию можно конструировать в зависимости от различных целей, например для увеличения периода полужизни в крови в случае введения in vivo, или для увеличения устойчивости против распада, или для увеличения всасывания в пищеварительном тракте при пероральном введении.

Примеры полипептидов следующие:

(1) Полипептид, содержащий полностью или частично внеклеточную область AILIM;

(2) Гибридный полипептид, содержащий полностью или частично внеклеточную область AILIM и полностью или частично константную область тяжелой цепи иммуноглобулина; или

(3) Полипептид, который связывается с AILIM.

Примерами «небелковых веществ» являются ДНК, РНК и химически синтезированные соединения.

Здесь «ДНК» означает «ДНК, которую можно применять в качестве препарата антисмысловой ДНК, включающего в себя частичную нуклеотидную последовательность ДНК, кодирующую указанную выше AILIM (предпочтительно человеческую AILIM), или ее химически модифицированную ДНК, которая может быть сконструирована на основе ДНК (кДНК или геномной ДНК), кодирующей AILIM». Конкретно, антисмысловая ДНК может ингибировать транскрипцию ДНК, кодирующей AILIM, в мРНК, или трансляцию мРНК в белок путем гибридизации с ДНК или РНК, кодирующей AILIM.

Используемая здесь фраза «частичная нуклеотидная последовательность» относится к частичной нуклеотидной последовательности, содержащей произвольное число нуклеотидов в произвольной области. Частичная нуклеотидная последовательность содержит от 5 до 100 последовательных нуклеотидов, предпочтительно от 5 до 70 последовательных нуклеотидов, предпочтительнее - от 5 до 50 последовательных нуклеотидов, а еще предпочтительнее - от 5 до 30 последовательных нуклеотидов.

Когда ДНК используют в качестве препарата антисмысловой ДНК, последовательность ДНК может быть химически частично модифицирована для продления периода полужизни (устойчивости) в крови, когда ДНК вводят пациентам, для увеличения способности проникновения ДНК через внутрицитоплазматическую мембрану или для увеличения устойчивости к разрушению или всасывания перорально введенной ДНК в пищеварительных органах. Химические модификации включают в себя, например, модификацию фосфатной связи, рибозы, нуклеотида, сахарного фрагмента и 3'-конца и/или 5'-конца в структуре ДНК олигонуклеотида.

Модификации фосфатных связей включают в себя, например, превращение одной или нескольких связей в фосфодиэфирные связи (D-олиго), фосфоротиоатные связи, фосфородитиоатные связи (S-олиго), метилфосфатные (МР-олиго) связи, фосфороамидатные связи, нефосфатные связи или метилфосфонотиоатные связи или их комбинации. Модификация рибозы включает в себя, например, превращение в 2'-фторрибозу или 2'-O-метилрибозу. Модификация нуклеотида включает в себя, например, превращение в 5-пропинилурацил или 2-аминоаденин.

Здесь «РНК» означает «РНК, которую можно использовать в качестве препарата антисмысловой РНК, содержащей частичную нуклеотидную последовательность РНК, кодирующей указанную выше AILIM (предпочтительно человеческую AILIM}, или ее химически модифицированную РНК, которая может быть сконструирована на основе РНК, кодирующей AILIM». Антисмысловая РНК может ингибировать транскрипцию ДНК, кодирующей AILIM, в мРНК или трансляцию мРНК в белок путем гибридизации с ДНК или РНК, кодирующие AILIM.

Используемая здесь фраза «частичная нуклеотидная последовательность» относится к частичной нуклеотидной последовательности, включающей в себя произвольное число нуклеотидов в произвольной области. Частичная нуклеотидная последовательность содержит от 5 до 100 последовательных нуклеотидов, предпочтительно от 5 до 70 последовательных нуклеотидов, предпочтительнее - от 5 до 50 последовательных нуклеотидов, а еще предпочтительнее - от 5 до 30 последовательных нуклеотидов.

Последовательность антисмысловой РНК может быть химически частично модифицирована для продления периода полужизни в крови, когда РНК вводят пациентам, для увеличения способности проникновения РНК через внутрицитоплазматическую мембрану или для увеличения устойчивости к разрушению или всасывания перорально введенной РНК в пищеварительных органах. Химические модификации включают в себя такие модификации как модификации, которые относятся к указанной выше антисмысловой ДНК.

Примерами «химически синтезированного соединения» являются произвольные соединения, за исключением указанной выше ДНК, РНК и белковые вещества, имеющие молекулярную массу примерно от 100 до 1000 или менее, предпочтительно соединение, имеющее молекулярную массу примерно от 100 до 800, а предпочтительнее - молекулярную массу примерно от 100 до 600.

Термин «полипептид», включенный в определение указанного выше «вещества», означает часть (фрагмент) полипептидной цепи, составляющей AILIM (предпочтительно человеческую AILIM), предпочтительно всю или часть внеклеточной области полипептида, составляющего AILIM (от 1 до 5 аминокислот могут быть необязательно добавлены в N-концевую и/или С-концевую области).

AILIM в соответствии с настоящим изобретением представляет собой трансмембранную молекулу, проникающую через клеточную мембрану и содержащую 1 или 2 полипептидные цепи.

В настоящем описании «трансмембранный белок» означает белок, который соединен с клеточной мембраной посредством гидрофобной области пептида, который «прошивает» липидную двухслойную мембрану один или несколько раз, и структура которого в целом состоит из трех основных областей, то есть внеклеточной области, трансмембранной области и цитоплазматической области, как и во многих рецепторах или молекулах клеточной поверхности. Такой трансмембранный белок составляет каждый рецептор или молекулу клеточной поверхности в виде мономера или в виде гомодимера, гетеродимера или олигомера, сопряженного с одной или несколькими цепями, имеющими такую же или другую аминокислотную последовательность(и).

Здесь «внеклеточная область» означает всю или часть частичной структуры (частичная область) всей структуры упомянутого выше трансмембранного белка, где частичная структура существует снаружи мембраны. Другими словами, она означает всю или часть области трансмембранного белка, за исключением области, включенной в мембрану (трансмембранной области), и области, существующей в цитоплазме, следующей за трансмембранной областью (цитоплазматическая область).

«Гибридный полипептид», включенный в упомянутые выше «белковые вещества», означает гибридный полипептид, включающий в себя всю или часть внеклеточной области полипептида, составляющего AILIM (предпочтительно человеческую AILIM), и «всю или часть константной области тяжелой цепи иммуноглобулина (Ig, предпочтительно человеческого Ig)≫. Предпочтительно гибридный полипептид представляет собой гибридный полипептид, имеющий внеклеточную область AILIM и часть константной области тяжелой цепи человеческого IgG, и особенно предпочтительно гибридный полипептид внеклеточной области AILIM и области (Fc) тяжелой цепи человеческого IgG, включающей в себя шарнир, домен СH2 и домен СH3. В качестве IgG предпочтителен IgG1, а в качестве AILIM предпочтительна человеческая, мышиная или крысиная AILIM (предпочтительно человеческая).

Используемое здесь выражение «вся или часть константной области тяжелой цепи иммуноглобулина (Ig)» означает константную область или область Fc тяжелой цепи полученного у человека иммуноглобулина (Н-цепи) или ее часть. Иммуноглобулин может представлять собой любой иммуноглобулин, относящийся к любому классу и любому подклассу. В частности, иммуноглобулин включает в себя иммуноглобулины IgG (IgG1, IgG2, IgG3 и IgG4), IgM, иммуноглобулины IgA (IgA1 и IgA2), IgD и IgE. Предпочтительно иммуноглобулин представляет собой IgG (IgG1, IgG2, IgG3 и IgG4) или IgM. Примеры особенно предпочтительных иммуноглобулинов согласно изобретению представляют собой те, которые относятся к IgG, полученным у человека (IgG1, IgG2, IgG3 и IgG4).

Иммуноглобулин имеет Y-образную структурную единицу, в которой четыре цепи составлены из двух гомологичных легких цепей (L-цепей), а две гомологичные тяжелые цепи (Н-цепи) соединены посредством дисульфидных связей (связей S-S). Легкая цепь составлена из вариабельной области (VL) легкой цепи и константной области (СL) легкой цепи. Тяжелая цепь составлена из вариабельной области (VH) тяжелой цепи и константной области (СH) тяжелой цепи.

Константная область тяжелой цепи составлена из некоторых доменов, имеющих аминокислотные последовательности, уникальные для каждого класса (IgG, IgM, IgA, IgD и IgE) и каждого подкласса (IgG1, IgG2, IgG3 и IgG4, IgA1 и IgA2).

Тяжелая цепь иммуноглобулинов G ((IgG1, IgG2, IgG3 и IgG4) составлена из VH, домена СH1, шарнира, домена СH2 и домена СH3 в данном порядке от N-конца.

Аналогичным образом тяжелая цепь IgG1 составлена из VH, домена Cγ1l, шарнира, домена Cγ12 и домена Cγ13 в данном порядке от N-конца. Тяжелая цепь IgG2 составлена из VH, домена Cγ2l, шарнира, домена Cγ22 и домена Сγ23 в данном порядке от N-конца. Тяжелая цепь IgG3 составлена из VH, домена Сγ31, шарнира, домена Сγ32 и домена Сγ33 в данном порядке от N-конца. Тяжелая цепь IgG4 составлена из VH, домена Cγ41, шарнира, домена Сγ42 и домена Сγ43 в данном порядке от N-конца.

Тяжелая цепь IgA составлена из VH, домена Cα1, шарнира, домена Сα2 и домена Сα3 в данном порядке от N-конца.

Аналогичным образом, тяжелая цепь IgA1 составлена из VH, домена Cα1l, шарнира, домена Cα12 и домена Cα13 в данном порядке от N-конца. Тяжелая цепь IgA2 составлена из VH, домена Cα21, шарнира, домена Сα22 и домена Сα23 в данном порядке от N-конца.

Тяжелая цепь IgD составлена из VH, домена Сδ1, шарнира, домена Сδ2 и домена Сδ3 в данном порядке от N-конца.

Тяжелая цепь IgM составлена из VH, домена Сμ1, домена Сμ2, домена Сμ3 и домена Сμ4 в данном порядке от N-конца и не имеет шарнира, как видно у IgG, IgA и IgD.

Тяжелая цепь IgE составлена из VH, домена Сε1, домена Сε2, домена Сε3 и домена Сε4 в данном порядке от N-конца и не имеет шарнира, как видно у IgG, IgA и IgD.

Если, например, IgG обработан папаином, он расщепляется на слегка N-концевой стороне вне дисульфидных связей, находящихся в шарнире, где дисульфидные связи соединяют две тяжелых цепи для генерирования двух гомологичных Fab-фрагментов, где фрагмент тяжелой цепи, составленный из VH и СH1, соединен с одной легкой цепью посредством дисульфидной связи; и один Fc, в котором два гомологичных фрагмента тяжелой цепи, составленные из шарнира, домена СH2 и домена СH3, соединены посредством дисульфидных связей (см. "Immunology Illustrated", original 2nd ed., Nankodo, pp.65-75 (1992); и "Focus of Newest Medical Science 'Recognition Mechanism of Immune System'", Nankodo, pp.4-7 (1991); и т д.).

Конкретно, «часть константной области тяжелой цепи иммуноглобулина», упомянутая выше, означает часть константной о