Способ и устройство управления двигателем внутреннего сгорания с системой впуска воздуха

Иллюстрации

Показать все

Изобретение относится к двигателестроению, в частности к способам и устройствам управления двигателями внутреннего сгорания. Изобретение позволяет упростить устройство управления. В способе управления двигателем внутреннего сгорания (ДВС) с системой впуска воздуха на основании, по меньшей мере, одной управляющей величины и, по меньшей мере, одной измеряемой величины, характеризующей состояние окружающего воздуха, с помощью, по меньшей мере, одной модели определяют, по меньшей мере, одну величину, характеризующую параметры системы впуска воздуха. Модель состоит, по меньшей мере, из первой и второй субмоделей, при этом выходные величины определяют с помощью субмодели на основании входных величин. В качестве входных величин для первой субмодели помимо, по меньшей мере, одной выходной величины второй субмодели дополнительно учитывают управляющую величину и измеряемую величину. При этом в качестве управляющей величины учитывают, по меньшей мере, одну величину, характеризующую количество впрыскиваемого топлива. 2 н. и 15 з.п. ф-лы, 8 ил.

Реферат

Изобретение относится к способу и устройству управления двигателем внутреннего сгорания (ДВС) с системой впуска воздуха.

Способ и устройство управления ДВС с системой впуска воздуха известны, например, из заявки DE 19756619. В заявке описана система для эксплуатации ДВС, установленного прежде всего на транспортном средстве, или автомобиле, при этом воздух подают в камеру сгорания через расположенный во впускной (всасывающей) трубе дроссельный клапан, при этом регистрируют расход воздуха через дроссельный клапан. При этом имеется трубопровод рециркуляции отработавших газов (ОГ), в котором установлен клапан, причем определяют также расход газов через этот клапан в трубопроводе рециркуляции ОГ. На основании обоих измеряемых значений расхода определяют расход воздуха, подаваемого в камеру сгорания. При использовании этого устройства возникает проблема, которая состоит в том, что различные необходимые для вычислений величины очень трудно определять с помощью датчиков. Поэтому недостаток известных систем и способов состоит в том, что для определения различных величин необходимо использовать большое количество датчиков.

В основу изобретения положена задача устранения вышеупомянутых недостатков уровня техники. Для этого в соответствии с изобретением предлагается способ управления ДВС с системой впуска воздуха. Согласно предлагаемому способу на основании по меньшей мере одной управляющей величины и по меньшей мере одной измеряемой величины, характеризующей состояние окружающего воздуха, с помощью по меньшей мере одной модели определяют по меньшей мере одну величину, характеризующую параметры системы впуска воздуха. Отличие предлагаемому способа состоит в том, что используемая модель состоит по меньшей мере из первой и второй субмоделей, при этом выходные величины определяют с помощью субмодели на основании входных величин, в качестве входных величин для первой субмодели помимо по меньшей мере одной выходной величины второй субмодели дополнительно учитывают управляющую величину и измеряемую величину, при этом в качестве управляющей величины учитывают по меньшей мере одну величину, характеризующую количество впрыскиваемого топлива.

С помощью предлагаемых в изобретении способа и устройства можно определить по меньшей мере одну величину, которая характеризует систему впуска воздуха. При этом требуется лишь небольшое число измеряемых величин, которые легко определяются посредством простых, дешевых датчиков. Кроме, того, используются величины, которые при управлении ДВС "зашиты" (сохранены) в устройстве управляющем (приборе).

Как указано выше, модель включает в себя по меньшей мере первую и вторую субмодели, которые определяют выходные величины на основании входных величин, при этом в качестве входных величин первой субмодели наряду по меньшей мере с одной выходной величиной второй субмодели дополнительно учитывают управляющую величину и/или измеряемые величины.

Наиболее простая структура модели получается в том случае, если в качестве управляющей величины использовать количество (расход) топлива, характеризующий количество впрыскиваемого топлива в единицу времени, скважность импульсов для управления системой рециркуляции ОГ, которая характеризует управляющий сигнал, подаваемый на исполнительный орган для воздействия на процесс рециркуляции ОГ, и/или скважность импульсов для управления компрессором, характеризующую, управляющий сигнал подаваемый на исполнительный орган для воздействия на рабочие характеристики турбины и приводимого ею компрессора. Наряду с расходом топлива предпочтительно дополнительно использовать скважность импульсов, используемых для управления системой рециркуляции ОГ, и/или скважность импульсов, используемых для управления компрессором. Это зависит от того, оснащен ли ДВС системой рециркуляции ОГ и/или компрессором.

В качестве измеряемой величины в частном случае осуществления способа используют по меньшей мере частоту вращения, характеризующую частоту вращения вала ДВС, температуру окружающей среды, характеризующую температуру окружающего воздуха, и/или давление окружающей среды, характеризующее давление окружающего воздуха. Предпочтительным является использование частоты вращения, температуру окружающей среды и давления окружающей среды.

Далее в частных вариантах с помощью модели компрессора на основании по меньшей мере частоты вращения вала компрессора, давления окружающей среды, давления наддува и температуры окружающей среды можно определять по меньшей мере количество воздуха, проходящего через компрессор, производительность компрессора и температуру наддувочного воздуха. В этом случае количество воздуха определяют на основании плотности и объема воздуха, проходящего через компрессор, причем плотность воздуха определяют на основании температуры окружающей среды и давления окружающей среды, а объем воздуха определяют на основании частоты вращения вала компрессора и перепада энтальпий, который в свою очередь определяют на основании давления окружающей среды и давления наддува.

Кроме того, с помощью модели трубопровода подачи свежего воздуха высокого давления на основании по меньшей мере количества воздуха, поступающего в трубопровод подачи свежего воздуха высокого давления, содержания в этом воздухе кислорода, температуры наддувочного воздуха и температуры в линии рециркуляции ОГ можно определять по меньшей мере давление наддува, содержание кислорода в воздухе, подаваемом в ДВС, и температуру смеси. В этом случае содержание кислорода, поступающего в ДВС, определяют на основании количества воздуха, поступающего в трубопровод подачи свежего воздуха высокого давления, и содержания в нем кислорода, а также на основании по меньшей мере одной константы, и/или давление наддува определяют путем интегрирования величин изменения давления, задаваемых на основании количества входящего и/или выходящего воздуха и его температуры.

Далее с помощью модели цилиндра на основании по меньшей мере расхода топлива, частоты вращения вала ДВС, давления наддува, температуры смеси и содержания кислорода в воздухе, поступающем в ДВС, можно вычислять по меньшей мере температуру ОГ, количество воздуха, поступающего в ДВС, и количество воздуха, выходящего из ДВС, а также содержание кислорода в этом воздухе. В этом случае температуру ОГ определяют на основании расхода топлива и температуры смеси и/или количество воздуха, поступающего в ДВС и выходящего из него, определяют на основании температуры и давления поступающего в ДВС газа, частоты вращения вала двигателя и/или расхода топлива.

С помощью модели турбины на основании по меньшей мере значения хода исполнительного органа компрессора, температуры ОГ, давления за турбиной и количества воздуха, проходящего через турбину, можно определять по меньшей мере давление ОГ, частоту вращения вала компрессора и температуру в выпускном трубопроводе. При этом давление ОГ определяют на основании значения хода исполнительного органа компрессора, количества воздуха, проходящего через турбину, давления за турбиной и температуры ОГ и/или перепад энтальпий в турбине определяют на основании перепада давлений в турбине, вычисляемого как разность давления ОГ и давления за турбиной, и температуры ОГ, и/или температуру в выпускном трубопроводе определяют на основании перепада энтальпий и температуры ОГ, и/или частоту вращения вала компрессора определяют на основании перепада энтальпий, производительности компрессора и количества воздуха, проходящего через турбину.

С помощью модели турбины на основании по меньшей мере значения хода исполнительного органа компрессора, количества воздуха, проходящего через турбину, давления за турбиной и температуры ОГ можно определять по меньшей мере давление ОГ, частоту вращения вала компрессора и температуру в выпускном трубопроводе. В этом случае давление ОГ определяют на основании значения хода исполнительного органа компрессора, количества воздуха, проходящего через турбину, давления за турбиной и температуры ОГ и/или перепад энтальпий в турбине определяют на основании перепада давлений в турбине и температуры ОГ и/или температуру в выпускном трубопроводе определяют на основании перепада энтальпий и температуры ОГ и/или частоту вращения вала компрессора определяют на основании перепада энтальпий, производительности компрессора и количества воздуха, проходящего через турбину.

С помощью модели выпускного трубопровода на основании по меньшей мере количества воздуха, проходящего через турбину, давления окружающей среды и температуры в выпускном трубопроводе можно определять давление за турбиной.

Кроме того, с помощью модели рециркуляции ОГ на основании значения хода исполнительного органа системы рециркуляции ОГ, температуры и давления на входе и выходе клапана системы рециркуляции ОГ можно определять температуру и количество воздуха, проходящего по трубопроводу системы рециркуляции ОГ. В этом случае количество воздуха, проходящего через клапан системы рециркуляции ОГ, определяют на основании перепада давлений в этом клапане системы рециркуляции ОГ, температуры воздуха, проходящего через этот клапан системы рециркуляции ОГ, и значения хода исполнительного органа системы рециркуляции ОГ, при этом в качестве температуры воздуха в трубопроводе системы рециркуляции ОГ в зависимости от перепада давлений в клапане системы рециркуляции ОГ по выбору используют либо температуру наддувочного воздуха, либо температуру ОГ.

Объектом изобретения является также устройство управления ДВС с системой впуска воздуха. В таком устройстве на основании по меньшей мере одной управляющей величины и по меньшей мере одной измеряемой величины, характеризующей состояние окружающего воздуха, с помощью по меньшей мере одной модели определяют по меньшей мере одну величину, характеризующую параметры системы впуска воздуха. Отличие предлагаемого устройства состоит в том, что модель состоит по меньшей мере из первой и второй субмоделей, с помощью которых на основании входных величин определяются выходные величины, при этом в качестве входных величин для первой субмодели помимо по меньшей мере одной выходной величины второй субмодели дополнительно учитываются управляющая величина и измеряемая величина, причем в качестве управляющей величины учитывается по меньшей мере одна величина, характеризующая количество впрыскиваемого топлива.

Ниже изобретение более подробно рассмотрено на примере предпочтительных вариантов его выполнения со ссылкой на прилагаемые чертежи, на которых показано:

на фиг.1 - блок-схема ДВС вместе с системой впуска воздуха,

на фиг.2 - блок-схема общей модель системы впуска воздуха, и

на фиг.3-8 - блок-схемы различных субмоделей.

Ниже предлагаемые в изобретении способ и устройство рассмотрены на примере дизельного двигателя внутреннего сгорания. Однако применение изобретения не ограничено дизельными двигателями внутреннего сгорания, его можно применять также на других ДВС, прежде всего на бензиновых ДВС с непосредственным впрыскиванием топлива.

В ДВС, условно представленный блоком 100, по трубопроводу подачи свежего воздуха высокого давления, обозначенному позицией 102, подают определенное количество ML22 газа с определенным содержанием МO22 кислорода. Величина МO22 обозначает также содержание, или концентрацию, кислорода в воздухе перед сгоранием. Трубопровод 102 подачи свежего воздуха высокого давления состоит из двух частей. Первая часть обозначена позицией 102а, вторая часть обозначена позицией 102b. Первая часть соответствует трубопроводу на участке до места примешивания ОГ. Вторая часть 102b соответствует трубопроводу на участке после места примешивания ОГ. В первой части 102а может находиться охладитель наддувочного воздуха, условно представленный блоком 104. Воздух в первой части трубопровода 102а подачи свежего воздуха высокого давления характеризуется температурой Т2 и давлением Р2.

По трубопроводу подачи свежего воздуха низкого давления, обозначенному позицией 108, воздух из окружающей среды поступает в компрессор, обозначенный позицией 106, и затем проходит через охладитель 104 наддувочного воздуха в трубопровод 102 подачи свежего воздуха высокого давления. Через компрессор воздух в количестве ML21 с соответствующим содержанием МO21 кислорода проходит в трубопровод 102 подачи свежего воздуха высокого давления. Количество ML21 воздуха, проходящего через трубопровод 108 подачи свежего воздуха низкого давления и характеризующегося содержанием МO21 кислорода, соответствует количеству воздуха, проходящего через компрессор 106, соответственно охладитель 104 наддувочного воздуха и характеризующегося соответствующим содержанием кислорода. Значения температуры Т1 и давления Р1 в трубопроводе 108 подачи свежего воздуха низкого давления соответствуют параметрам (условиям) окружающей среды, т.е. давлению и температуре окружающего воздуха.

Из ДВС 100 количество ML31 воздуха с содержанием МO31 кислорода поступает в выпускной трубопровод 110 ОГ высокого давления. Величина МO31 обозначает также содержание кислорода после сгорания. В выпускном трубопроводе 110 высокого давления ОГ находятся при температуре Т3 и давлении Р3. Эти величины обозначают также давление Р3 ОГ и температуру Т3 ОГ.

Количество ML32 воздуха поступает из выпускного трубопровода 110 ОГ высокого давления в турбину, обозначенную позицией 112, эта величина ML32 обозначает также количество воздуха, проходящего через турбину. Из турбины 112 отработавшие газы поступают в выпускной трубопровод 114 низкого давления, который называют также выхлопным трубопроводом 114. Среда в выпускном трубопроводе ОГ низкого давления характеризуется температурой Т4 и давлением Р4.

Турбина 112 с помощью вала, обозначенного позицией 111, выполняет функцию привода компрессора 106. Частоту NL вращения вала называют также частотой вращения вала компрессора. Посредством исполнительного органа компрессора, обозначенного позицией 113, можно влиять на рабочие параметры турбины и в результате на рабочие параметры компрессора в целом. При управлении на исполнительный элемент компрессора подается управляющий сигнал LTV, в результате чего происходит регулировка компрессора на величину хода LH. Величину LH называют также ходом компрессора, а величину LTV - скважностью импульсов, подаваемых на исполнительный орган компрессора.

Между выпускным трубопроводом 110 ОГ высокого давления и трубопроводом 102 подачи свежего воздуха высокого давления имеется связь, которая называется линией 116 рециркуляции ОГ. По этой линии 116 рециркуляции ОГ проходит количество МА воздуха, содержание кислорода в котором имеет обозначение МОА. Проходное сечение линии 116 рециркуляции ОГ предпочтительно регулировать с помощью клапана рециркуляции ОГ, обозначенного позицией 118. При управлении на обозначенный позицией 119 исполнительный орган системы рециркуляции ОГ подают управляющий сигнал ATV, в результате чего происходит перемещение клапана 118 рециркуляции ОГ на величину хода АН. Величину АН называют также ходом исполнительного органа системы рециркуляции ОГ, а величину LTV - скважностью импульсов, подаваемых на исполнительный орган системы рециркуляции ОГ.

Частоту N вращения предпочтительно измерять на кривошипе и/или распределительном вале ДВС с помощью датчика частоты вращения, условно представленного блоком 101. Кроме того, предусмотрены исполнительные органы системы подачи, условно представленные блоком 103 и определяющие расход ME впрыскиваемого топлива, подаваемого в ДВС. Для этого на исполнительные органы 103 подают сигнал ME, характеризующий количество, или расход, впрыскиваемого топлива.

Для прецизионного управления ДВС, соответственно исполнительными органами 118 и 113 необходимо знать ряд из представленных выше величин. Прежде всего необходимо знать количество подаваемого в ДВС кислорода, соответственно содержание МO22 кислорода. От количества кислорода вместе с впрыснутым количеством ME топлива зависит количество вредных веществ в ОГ, прежде всего количество сажи, выбрасываемой дизельными ДВС. Кроме того, предпочтительно, чтобы были известны различные значения давления и температуры. Предпочтительно также, чтобы была известна частота NL вращения вала компрессора. Эти величины можно использовать для контроля системы в целом и/или для управления/регулирования.

Более предпочтительно, если эти величины можно определять не прямым методом, а опосредованно с помощью модели и/или одной или нескольких субмоделей. В этом случае не требуются соответствующие датчики.

Согласно изобретению предусмотрена возможность с помощью по меньшей мере одной модели вычислять одну из величин или несколько величин, которые характеризуют систему впуска воздуха, на основании одной или нескольких управляющих величин, прежде всего количества ME впрыскиваемого топлива (расхода топлива), управляющей величины ATV для клапана системы рециркуляции ОГ и управляющей величины LTV для турбины 112, а также по меньшей мере одной измеряемой величины, характеризующей температуру Т1 окружающей среды и/или давление Р1 окружающей среды. Более предпочтительно, если одну или несколько величин, которые характеризуют систему впуска воздуха, можно определять, на основании количества (расхода) ME впрыскиваемого топлива, частоты N вращения, величин, характеризующих температуру Т1 окружающей среды и давление Р1 окружающей среды, и при этом дополнительно используются управляющая величина для клапана 118 рециркуляции ОГ и управляющая величина для компрессора 112. В этом случае особое преимущество состоит в том, что не требуется вычислять расход впрыскиваемого топлива, поскольку эта величина уже предварительно задана и она используется в процессе управления ДВС. Прежде всего для этого используется величина, "зашитая" (сохраненная) в устройстве управления. Кроме того, известна частота вращения N вала ДВС, поскольку она также необходима для управления ДВС. Сказанное относится также к величинам, характеризующим температуру Т1 и давление Р1. Соответствующая изложенная информация относится и к управляющим сигналам, подаваемым на исполнительные органы 118 и 112.

Более предпочтительно создать различные субмодели для соответствующих подсистем, при этом каждая субмодель вычисляет различные входные величины и на основании их вычисляет различные выходные величины. При этом предусмотрено получать различные входные величины для различных моделей на основе выходных величин других моделей. В качестве входных величин общей модели в сумме различных субмоделей требуются только легко получаемые измеряемые величины, соответственно известные управляющие величины.

Общая модель системы впуска воздуха и разделение системы впуска воздуха на субмодели показаны на фиг.2.

К современным ДВС предъявляются все более жесткие требования по содержанию вредных веществ в ОГ и удельному расходу топлива. За счет управляемого изменения положения направляющих лопаток турбины турбокомпрессор с изменяемой геометрией турбины позволяет осуществлять подстройку к фактическому режиму работы двигателя. Благодаря этому можно избежать замедленной реакции турбокомпрессора и одновременно увеличить коэффициент полезного действия (кпд) ДВС. Одновременно с помощью рециркуляции ОГ обеспечивается возврат прецизионно регулируемого количества ОГ в трубопровод подачи свежего воздуха высокого давления, благодаря чему значительно уменьшается содержание в ОГ оксидов азота.

В результате системы впуска воздуха современных ДВС вследствие высокой степени взаимодействия контуров регулирования обладают выраженной нелинейностью. Определение существенно важных величин, характеризующих состояние системы впуска воздуха, например, давления в выпускном трубопроводе ОГ высокого давления, которое также называют как противодавление Р3 ОГ, или текущего количества МА рециркулируемых ОГ, с точки зрения метрологии сопряжено с очень высокими трудозатратами или вовсе невыполнимо. Соответствующие датчики или не производятся, или отличаются очень высокой стоимостью.

В современных системах сигналы датчиков при управлении системой впуска воздуха используются для решения ограниченной задачи, т.е. сигнал, характеризующий количество воздуха, соответственно количество ML21 воздуха, проходящего по трубопроводу 108 подачи свежего воздуха низкого давления, используется только для управления или регулирования положения клапана 118 рециркуляции ОГ. Измеряемое значение давления Р2 наддува используют только для воздействия на исполнительный орган турбины 112.

Наличие перекрестных связей, обусловленных строением современных систем управления, не принимается во внимание и поэтому воспринимается в отдельных контурах управления в виде помех.

Согласно предлагаемым в изобретении способу и устройству известная динамика системы описывается приближенно с помощью моделей. При этом выбирают такой уровень абстрагирования от реального поведения системы, чтобы в блоке управления двигателем можно было рассчитывать имеющиеся модели в режиме реального времени. При этом несмотря на упрощенность моделей обеспечивается возможность правильного отражения физических факторов (эффектов) и взаимосвязей между отдельными системами, существенно важных для управления.

Согласно изобретению физические взаимосвязи значительно упрощаются. Предлагаемую в изобретении модель всей системы впуска воздуха, включающую несколько субмоделей, можно применять для решения различных задач. Таким образом, на основании имеющихся сигналов от датчиков или управляющих величин можно приближенно вычислить, например, не поддающиеся измерению параметры системы впуска воздуха, соответственно очень тяжело измеряемые параметры системы впуска воздуха. Имеющуюся информацию, получаемую от датчиков, можно оптимальным образом интегрировать и в результате уменьшать погрешность измерений. Измеряемые величины и вычисляемые величины можно отфильтровывать без потери времени (фазы), т.е. без динамических потерь. Вместо показаний вышедшего из строя датчика можно использовать имеющую физический смысл подставную величину. Кроме того, можно значительно упростить функциональные структуры, для чего необходимо обрабатывать моделируемые неизмеряемые величины. Контроль работы компрессора можно осуществлять благодаря использованию оценочной частоты вращения вала компрессора.

На фиг.2 показана общая модель в виде блок-схемы или структурной схемы. По существу общая модель включает различные субмодели для отдельных компонентов системы впуска воздуха. Субмодель для компрессора 106 условно представлена блоком 206. Субмодель, условно представленную блоком 202 и моделирующую трубопровод 102 подачи свежего воздуха высокого давления, называют моделью трубопровода подачи свежего воздуха высокого давления. Охладитель наддувочного воздуха учитывается в модели 206 компрессора. Еще одна субмодель, условно представленная блоком 200, моделирует ДВС 100, и ее также называют моделью цилиндра. Еще одну субмодель, условно представленную блоком 212, называют моделью турбины, и она моделирует работу турбины 112. Следующая субмодель, условно представленная блоком 218, моделирует процесс рециркуляции ОГ и обозначается также как модель 218 рециркуляции ОГ. Еще одна субмодель, условно представленная блоком 214, моделирует выпускной трубопровод 114, и она называется также моделью выпускного трубопровода низкого давления.

К входным величинам общей модели предпочтительно относятся скважность импульсов LTV, подаваемых на исполнительный орган 113 компрессора, расход ME впрыскиваемого топлива, фактическая частота N вращения вала двигателя, скважность импульсов ATV, подаваемых на исполнительный орган 118 системы рециркуляции ОГ, давление Р1 атмосферы и температура Т1 воздуха окружающей среды. Эти входные величины на фиг.2 условно представлены малыми квадратами.

Вместо этих величин можно также использовать сигналы, характеризующие эти величины. Таким образом можно также вместо величины, характеризующей расход впрыскиваемого топлива, использовать величину, характеризующую расход впрыскиваемого топлива, или сигнал, указывающий на продолжительность впрыска. Вместо скважности импульсов можно использовать, например, непосредственно величину, характеризующую ход исполнительного органа.

В качестве выходной величины можно использовать любую вычисляемую с помощью модели величину, если таковая необходима в процессе управления ДВС. Более предпочтительно использовать следующие выходные величины. К ним относятся давление Р2 наддува, которое соответствует давлению в трубопроводе 102 подачи свежего воздуха высокого давления, противодавление Р3 ОГ, которое соответствует давлению в выпускном трубопроводе 110 ОГ высокого давления между турбиной 112 и ДВС 100, ход LH исполнительного органа 113 турбины 112, частота NL вращения вала компрессора, количество ML21 воздуха, проходящего через компрессор 106, температура Т3 ОГ на входе в турбину, противодавление Р4 ОГ, которое соответствует давлению Р4 в выпускном трубопроводе за турбиной, ход АН исполнительного органа 118 системы рециркуляции ОГ, количество МА воздуха в трубопроводе 116 рециркуляции ОГ, содержание МO31 кислорода после сгорания и содержание кислорода МO22 до сгорания.

Путем простого пересчета предпочтительно с использованием нормирующих констант можно определить также другие сигналы, которые характеризуют соответствующие величины.

Некоторые из этих вычисленных с помощью модели величин не поддаются измерению на ДВС или требуют для решения этой задачи больших трудозатрат. Другие величины, например давление Р2 наддува, могут представлять собой сигналы датчиков. Путем сравнения измеренной и вычисленной с помощью модели величины можно оценить эффективность отображения моделью фактической ситуации. Соответствующие обозначения выходных величин модели, соответственно субмоделей, указаны в кругах, соответственно эллипсах.

На фиг.3 более подробно показана модель компрессора, в которой также учитываются свойства охладителя наддувочного воздуха. В качестве входных величин в модели компрессора обрабатываются сигналы, которые характеризуют различные величины. К ним относятся частота NL вращения вала компрессора, температура Т1 окружающей среды, которая соответствует температуре воздуха на входе в компрессор, давление Р1 окружающей среды, которое соответствует давлению на входе в компрессор, и давление Р2 наддува, которое соответствует давлению на выходе из компрессора. На основании этих сигналов рассчитывают различные выходные величины. К ним относятся в основном снимаемая с вала 111 механическая мощность, или производительность PL компрессора, температура Т2 наддувочного воздуха, которая соответствует температуре сжатого газа на выходе из охладителя наддувочного воздуха, а также количество ML21 воздуха, проходящего через компрессор, соответственно через впускной трубопровод 108.

Частота NL вращения вала компрессора подается на вход блока 300 вычисления объема проходящего через компрессор воздуха. Давление Р1 окружающей среды подается на вход блока 310 вычисления плотности и блока 320 вычисления энтальпии. На вход блока 320 вычисления энтальпии подается также давление Р2 наддува. Температура Т1 окружающей среды на входе в компрессор подается на вход блока 380 вычисления температуры, блока 320 вычисления энтальпии и блока 310 вычисления плотности. Сигнал на выходе блока 300 вычисления объема проходящего через компрессор воздуха и сигнал на выходе блока 310 вычисления плотности поступают на вход блока 330 вычисления массового расхода, который выдает сигнал количества (массового расхода) ML21 воздуха. Сигнал на выходе блока 320 вычисления энтальпии поступает сначала в блок 300 вычисления объема проходящего через компрессор воздуха и далее в блок 350 вычисления количества энергии. Сигнал на выходе блока 350 вычисления количества энергии подается на вход блока 340 вычисления мощности и блока 360 вычисления температуры. Дополнительно в блок 340 вычисления мощности поступает сигнал количества (массового расхода) ML21 воздуха. На выходе блока 340 вычисления мощности снимается сигнал PL, характеризующий производительность (механическую мощность на валу) компрессора. Сигнал на выходе блока 360 вычисления температуры подается в модель 370 охладителя наддувочного воздуха, которая в свою очередь подает сигнал в блок 380 вычисления температуры. На выходе блока 380 вычисления температуры получают сигнал, характеризующий температуру Т2.

Объем воздуха, проходящего через компрессор в единицу времени, вычисляется в зависимости от частоты вращения вала компрессора и перепада энтальпий между стороной низкого давления (всасывания) и стороной высокого давления (нагнетания), т.е. между трубопроводом 102 подачи свежего воздуха высокого давления и трубопроводом 108 подачи свежего воздуха низкого давления. Перепад энтальпий вычисляется блоком 320 вычисления энтальпии. При этом объем проходящего через компрессор воздуха увеличивается с увеличением частоты вращения вала компрессора и уменьшается с увеличением перепада энтальпий. Эта зависимость воспроизводится в блоке 300 вычисления объема с помощью рабочей характеристики или путем вычислений. С помощью различных констант осуществляется согласование модели со специфическими характеристиками компрессора.

На основании давления Р1 и температуры Т1 на входе в компрессор блок 310 вычисления плотности вычисляет плотность газа на входе в компрессор в 108 трубопроводе подачи свежего воздуха низкого давления. В блоке 330 вычисления количества вычисляется количество (массовый расход) ML21 воздуха, проходящего через компрессор, путем умножения объемного расхода на плотность воздуха.

В блоке 320 вычисления энтальпии определяется перепад энтальпий газа как разность энтальпий на входе в компрессор и на выходе из компрессора в зависимости от температуры Т1 на входе в компрессор и отношения давления Р1 на входе в компрессор к давлению Р2 на выходе из компрессора. Кроме того, учитываются различные константы, такие как газовая постоянная и экспонента изотропности.

Путем деления перепада энтальпий на кпд компрессора в блоке 350 вычисления количества энергии определяется величина энергии, сообщаемой определенному количеству сжатого газа. Значение кпд компрессора предпочтительно сохранять в запоминающем устройстве. В блоке 340 вычисления мощности происходит умножение величины энергии на величину ML21 проходящего через компрессор потока воздуха. В результате этого умножения получается производительность (мгновенная мощность) PL.

В блоке 360 вычисления температуры вычисляется количество энергии, сообщенной газу при сжатии, т.е. на нагрев газа в компрессоре. Часть этого тепла газ снова отдает в охладителе 104 наддувочного воздуха. Это условие учитывается в условно представленной блоком 370 модели охладителя наддувочного воздуха. Доля тепла, отдаваемая газом, тем больше, чем выше эффективность охладителя наддувочного воздуха, т.е. в зависимости от эффективности охладителя наддувочного воздуха уменьшается характеризующая температуру величина, вычисленная в блоке 360 вычисления температуры. В блоке 380 вычисления температуры к этой величине температуры, на которую нагрелся воздух в компрессоре, прибавляется величина температуры Т1 газа на входе в компрессор, в результате чего получается величина температуры Т2 газа на выходе из компрессора, соответственно за компрессором и охладителем наддувочного воздуха. Если модель необходимо адаптировать к двигателю без охладителя наддувочного воздуха, то величина, характеризующая эффективность радиатора, выставляется на нуль, т.е. в модели 370 охладителя наддувочного воздуха вычитается нуль.

Согласно изобретению количество ML воздуха вычисляется с учетом плотности и объема воздуха, проходящего через компрессор. Плотность определяется по температуре Т1 и давлению Р1 воздуха окружающей среды. Объем потока воздуха вычисляется с учетом частоты вращения вала компрессора и перепада энтальпий на впуске и выпуске из компрессора. При этом перепад энтальпий вычисляется с учетом разности давлений и температуры Т1 газа. Это означает, что с учетом частоты NL вращения вала компрессора, давления Р1 окружающей среды, давления Р2 наддува и температуры Т1 окружающей среды с помощью модели компрессора вычисляются количество ML21 воздуха, проходящего через компрессор, производительность PL компрессора и температура наддувочного воздуха.

Более предпочтительно, если с помощью датчиков измеряются только температура Т1 и давление Р1, а остальные величины определяются с помощью других моделей.

На фиг.4 показана субмодель трубопровода подачи свежего воздуха высокого давления, т.е. модель впускного трубопровода 102 в виде блок-схемы. Подводящий трубопровод между компрессором 106 и впускным клапаном цилиндра моделируется как емкость, в которой параметры состояния газа связаны между собой с помощью уравнения состояния идеального газа. С целью упрощения в модели не учтены скорость потока свежего воздуха и все связанные со скоростью получающиеся результаты. В качестве входных величин для этой модели предпочтительно использовать количество ML21 воздуха, выходящего из компрессора, температуру Т2 наддувочного воздуха на выходе из охладителя 104 наддувочного воздуха, количество ML22 воздуха, которое поступает в ДВС, количество МА воздуха, которое рециркулируется ОГ в трубопровод 102 подачи свежего воздуха высокого давления, температуру ТА в системе рециркуляции ОГ, соответствующую температуре рециркулируемых ОГ, и содержание кислорода МОА в рециркулируемых ОГ.

На основании этих входных величин посредством физически обоснованных логических операций вычисляются выходные величины. В качестве выходных величин вычисляются давление Р2 наддува в трубопроводе 102 подачи свежего воздуха высокого давления, температура Т2 наддувочного воздуха в трубопроводе подачи свежего воздуха высокого давления и содержание МO2 кислорода в подаваемом в ДВС воздухе.

Субмодель трубопровода 102 подачи свежего воздуха высокого давления по существу включает в себя блок 400 вычисления количества кислорода, блок 410 вычисления давления, блок 420 вычисления температуры, а также интегратор 432, на котором вычисляется общая масса.

В состав блока 400 вычисления количества кислорода входят по существу первый субблок 402 вычисления количества кислорода, второй субблок 404 вычисления количества кислорода и третий субблок 406 вычисления количества кислорода, результаты или выходные сигналы которых суммируются в блоке 408 суммирования с соответствующим знаком и затем интегрируются в блоке 409 интегрирования. На вход первого субблока вычисления количества кислорода подаются величины, соответствующие количеству ML22 воздуха, которое соответствует поступающему в ДВС количеству воздуха, и содержание МO22 кислорода в воздухе, поступающем в ДВС. На вход второго субблока 404 второго вычисления количества кислорода подается сигнал ML21, соответствующий нагнетаемому компрессором количеству воздуха. На вход третьего субблока вычисления количества кислорода подается сигнал МОА, соответствующий содержанию кислорода в трубопроводе рециркуляции ОГ, и сигнал МА, соответствующий протекающему в трубопроводе рециркуляции ОГ количеству воздуха.

Путем умножения каждого соответствующего количества воздуха на соответствующее содержание кислорода, получаемое на выходе первого, второго и третьего субблоков вычисления количества кислорода, определяют количество кислорода в каждом соответствующем количестве воздуха. При этом во втором субблоке вычисления количества кислорода количество ML21 воздуха умножается на постоянный коэффициент, который соответствует содержанию кислорода в воздухе окружающей среды при нормальных условиях. Различные количества кислорода интегрируют с учетом знака, т.е. поступающие со знаком плюс и отходящие со знаком минус.

В сумматоре 430 и интеграторе 432 отдельные количества воздуха, поступающие в трубопровод 102 подачи свежего воздуха вы