Солнечные элементы, включающие в себя цепочки для аккумуляции света

Иллюстрации

Показать все

Изобретение относится к солнечным источникам света. Технический результат изобретения: получение тонких, легких, портативных, гибких, с хорошей эффективностью - более 5% - солнечных элементов. Сущность: солнечный элемент включает в себя цепочку для аккумуляции света, которая содержит: (а) первую подложку, содержащую первый электрод; и (b) слой стержней для аккумуляции света, электрически соединенных с первым электродом. Каждый из стержней для аккумуляции света содержит полимер формулы I: где m составляет по меньшей мере 1 и может составлять от двух, трех или четырех до 20 или более; X1 представляет собой группу разделения заряда (а предпочтительно, порфириновый макроцикл, который может представлять собой один лиганд двухъярусного сэндвичевого соединения), имеющую возбужденное состояние с энергией, равной или более низкой, чем у X2; и группы от X2 до Хm+1 представляют собой хромофоры (и опять же представляют собой предпочтительно порфириновые макроциклы). 4 н. и 21 з.п. ф-лы, 1 табл., 58 ил.

Реферат

Настоящее изобретение было сделано с помощью правительственной поддержки в соответствии с грантом №DE-FG02-96ER14632 от Department of Energy и грантом №GM36238 от National Institutes of Health. Правительство США имеет определенные права на настоящее изобретение.

Область изобретения

Настоящее изобретение относится к солнечным элементам, в частности к регенеративным солнечным элементам, и к цепочкам для аккумуляции света, пригодным для использования в таких солнечных элементах.

Уровень техники

Молекулярные подходы к преобразованию солнечного света в электрическую энергию имеют богатую историю, поскольку об измеренном ″фотоэффекте″ было впервые сообщено в 1887 году в Вене (Moser, J. Montash. Chem. 1887, 8, 373.).Наиболее перспективные конструкции были разработаны в главных деталях в 1970-е годы (Gerischer, H. Photochem. Photobiol. 1972, 16, 243; Gerischer, H. Pure. Appl. Chem. 1980, 52, 2649; Gerischer, H.; Willig, F. Top. Curr. Chem. 1976, 61, 31). Два распространенных подхода изображены на фигуре 1, оба они используют молекулы, селективно поглощающие солнечный свет, называемые фотосенсибилизаторами или просто сенсибилизаторами (S) и ковалентно связанные с проводящими электродами. Поглощение света сенсибилизатором приводит к появлению возбужденного состояния, S*, которое инжектирует электрон в электрод, а затем окисляет частицу вещества в растворе. Правая часть изображает упрощенный фотоэлектросинтетический элемент. Этот элемент производит как электрическую энергию, так и химические продукты. Для работы изображенным способом в течение нескольких последних десятков лет было разработано множество молекулярных подходов, имеющих целью разложение воды на водород и кислород. В левой части изображены регенеративный элемент, который в итоге преобразует свет в электричество без каких-либо химических продуктов. В представленном регенеративном солнечном элементе имеющие место на фотоаноде реакции окисления обращаются на темновом катоде.

Принципиальная сложность с этими конструкциями солнечных элементов заключается в том, что монослой молекулярного сенсибилизатора на плоской поверхности не поглощает значительную долю падающего видимого света. Как следствие, даже если квантовые выходы переноса электрона по отношению к поглощенным фотонам являются высокими, эффективность преобразования солнечной энергии будет неприемлемо низкой из-за небольшого количества поглощаемого света. Эта проблема была замечена на ранней стадии исследования, и ее пытались обойти путем использования толстых пленок сенсибилизаторов. Эта стратегия использования толстых поглощающих слоев была безуспешной, поскольку межмолекулярное гашение возбужденных состояний в толстой пленке сенсибилизатора уменьшает выход инжекционных электронов в электрод.

Один из классов толстопленочных сенсибилизаторов предложен в так называемых органических солнечных элементах (Tang, C.W. и Albrecht, A.C. J.Chem.Phys. 1975, 63, 953-961). В данном случае пленка толщиной от 0,01 до 5 мкм, как правило, состоящая из фталоцианинов, периленов, хлорофилов, порфиринов или их смесей, осаждается на поверхности электрода и используется во влажных солнечных элементах, подобным тем, которые изображены, или в виде твердотельных устройств, где второй металл осаждается поверх органической пленки. Органический слой, как предполагается, представляет собой полупроводник с узкой запрещенной зоной и с фотопроводимостью либо n-, либо p-типа, и предлагаемые механизмы преобразования света в электрическую энергию включают в себя экситонный перенос энергии между пигментами в пленке к поверхности электрода, где имеет место перенос электронов через границу раздела. Однако важность этих предлагаемых механистических шагов не является очевидной. Повышение эффективности, которое обуславливается векторным переносом энергии между пигментами, не было убедительно продемонстрировано. Кроме того, длины диффузий экситонов, о которых сообщалось, являются короткими по сравнению с глубиной проникновения света. Соответственно большая часть света поглощается в области, где энергия не может переноситься к поверхности полупроводника. Экситоны также легко гасятся с помощью примесей или захваченного растворителя, что приводит к значительным проблемам, связанным с воспроизводимостью и сложностью изготовления. Известные в настоящее время в данной области техники органические солнечные элементы представляют собой многослойные органические пленки с ″гетеропереходами″ или легированные органические слои, которые дают ˜2%-ную эффективность при низких уровнях облучения, однако эффективность заметно падает, когда облучение приближается к интенсивности солнечного света (Forrest, S.R. et al., J.Appl.Phys. 1989, 183, 307; Schon, J.H. et al., Nature 2000, 403, 408).

Другой класс солнечных элементов на молекулярной основе представляют собой так называемые фотогальванические элементы, которые были основными устройствами для преобразования солнечной энергии на молекулярном уровне в 1940-1950-х годах (Albery, W.J. Acc.Chem.Res. 1982, 15, 142). Эти элементы отличаются от тех, которые обсуждались выше, тем, что возбужденный сенсибилизатор не подвержен переносу электрона через границу раздела. Элементы часто содержат сенсибилизаторы, заключенные в мембрану, которая дает возможность для переноса ионов и переноса заряда; мембрана физически разделяет два темновых металлических электрода и фотогенерируемых окислительно-восстановительных эквивалента. Геометрическое расположение предотвращает прямой перенос электрона в возбужденном состоянии от хромофора к электродам или обратно. Вместо этого, происходит межмолекулярное разделение заряда, и восстановительные и окислительные эквиваленты диффундируют к электродам, где имеет место перенос электрона через границу. Мембранный потенциал Нернста может генерироваться с помощью переноса электронов под действием света, происходящего в мембране. В фотоэлектросинтетических гальванических элементах могут также образовываться химические горючие материалы. Эта общая стратегия сенсибилизации электродов красителями использовалась в разнообразных вариантах в течение многих лет, но абсолютные эффективности оставались очень низкими. Albery сделал вывод, что теоретически в водном регенеративном фотогальваническом элементе может быть достигнута эффективность ˜13%. Однако реализованные к настоящему времени эффективности, как правило, составляют менее 2%.

В 1991 Gratzel и O'Regan сообщили о прорыве (O'Regan, B. et al., J.Phys.Chem. 1990, 94, 8720; O'Regan, B. and Gratzel, M. Nature 1991, 353, 737). Путем замены планарных электродов толстой пористой пленкой коллоидного полупроводника площадь поверхности для связывания сенсибилизатора увеличилась более чем в 1000 раз. Gratzel и O'Regan продемонстрировали, что монослой покрытия из сенсибилизатора, нанесенный на частицы из полупроводника, приводит к поглощению по существу всего падающего света, и эффективности преобразования энергии падающих фотонов в энергию электронов составляют единицу на индивидуальных длинах волн света в регенеративных солнечных элементах. Более того, глобальная эффективность ˜5% была реализована в условиях освещения с отношением масс воздуха в 1,5 (т.е. отношение массы атмосферы на реальном пути между наблюдателем и солнцем к массе в том случае, когда наблюдатель находится на уровне моря и при стандартном атмосферном давлении, а солнце - у него над головой); эта эффективность возросла до величины 10,69%, подтвержденной в настоящее время (Gratzel, M. в ″Future Generation Photovoltaic Technologies″ McConnell, R.D.; AIP Conference Proceedings 404, 1997, page 119). Эти солнечные элементы типа "Gratzel" уже нашли свою нишу на рынке и являются коммерчески доступными в Европе.

Эти пленки коллоидных полупроводников с высокой площадью поверхности (элементы типа «Gratzel») достигают высокого уровня поглощения, но также имеют следующие значительные недостатки: (1) для высокой эффективности требуется жидкий переход (поскольку очень нерегулярная структура поверхности делает осаждение твердотельного проводящего слоя по существу невозможным). (2) Пленки коллоидных полупроводников требуют стадий высокотемпературного отжига для понижения внутренних напряжений. Такие высокие температуры накладывают жесткие ограничения на типы проводящих подложек, которые могут быть использованы. Например, не могут быть использованы полимерные подложки, которые плавятся при температурах, более низких, чем требуемые температуры отжига. (3) Значительные потери связаны с переносом заряда через толстые пленки полупроводников. Эти потери не понижают заметно фототок, но оказывают большое воздействие на выходное напряжение, и, таким образом, мощность значительно понижается (Hagfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49). В соответствии с этим необходимость в новых молекулярных подходах к конструированию солнечных элементов по-прежнему остается.

Сущность изобретения

Исходя из этого настоящее изобретение предусматривает среди прочих вещей цепочку для аккумуляции света, пригодную для использования при изготовлении солнечных элементов. Цепочка для аккумуляции света содержит:

(a) первую подложку, содержащую первый электрод; и

(b) слой из стержней для аккумуляции света, электрически соединенный с первым электродом, причем каждый из стержней для аккумуляции света содержит полимер формулы I:

где:

m составляет по меньшей мере 1 и может составлять от двух, трех или четырех до 20 или более;

X1 представляет собой группу разделения заряда, имеющую возбужденное состояние с энергией, равной или более низкой, чем у Х2.

X2-Xm+1 представляют собой хромофоры.

В стержнях для аккумуляции света согласно формуле I X1 предпочтительно содержит порфириновый макроцикл, который может быть в форме двухъярусного сэндвичевого соединения. Кроме того, X2-Xm+1 также предпочтительно содержат порфириновые макроциклы.

В одном из предпочтительных вариантов воплощения стержней для аккумуляции света согласно формуле I по меньшей мере один из (например два, три, множество, большинство или все) X1-Xm+1 выбран/выбраны из группы, состоящей из хлоринов, бактериохлоринов и изобактериохлоринов.

Конкретный вариант воплощения цепочки для аккумуляции света, описанной выше, предусматривает движение дырок в направлении, противоположном направлению (переноса) энергии возбужденного состояния вдоль некоторой части или всей длины стержней для аккумуляции света, и содержит:

(a) первую подложку, содержащую первый электрод; и

(b) слой стержней для аккумуляции света, электрически соединенных с первым электродом, причем каждый из стержней для аккумуляции света содержит полимер формулы I:

где:

m составляет по меньшей мере 1 (как правило, от двух, трех или четырех до двадцати или более);

X1 представляет собой группу разделения заряда, имеющую возбужденное состояние с энергией, равной или более низкой, чем у Х2;

X2-Xm+1 представляют собой хромофоры; и

X1-Xm+1 выбраны таким образом, что при инжекции либо электрона, либо дырки из X1 в первый электрод соответствующая дырка или электрон из X1 переносится по меньшей мере к X2 и необязательно к X3, X4 и по всему пути до Xm+1. В варианте воплощения, предпочтительном в настоящее время, X1-Xm+1 выбраны таким образом, что при инжекции электрона из X1 в первый электрод соответствующая дырка из X1 переносится по меньшей мере к X2 и необязательно вплоть до Xm+1.

Цепочки для аккумуляции света обеспечивают интенсивное поглощение света и доставляют (переносят) получающееся в результате возбужденное состояние в заданное положение внутри молекулярной цепочки. Существует множество различных применений цепочек для аккумуляции света. Цепочки для аккумуляции света могут быть использованы в качестве компонентов систем для детектирования низких уровней света, в частности там, где является желательным контроль длины волны света, который собирается. Цепочки для аккумуляции света могут быть использованы в качестве входных элементов в оптоэлектронных устройствах и в качестве входного узла и системы задержки энергии в сигнальных системах на молекулярной основе. Одно из применений последних включает в себя использование во флуоресцентных сенсорах на молекулярной основе. Сенсор на молекулярной основе использует набор групп-зондов (которые связываются с анализируемым веществом), соединенных с основной молекулярной цепью, которая подвергается переносу энергии возбужденного состояния. Связывание единственного анализируемого вещества с любой из групп-зондов приводит к образованию комплекса, который может гасить возбужденное состояние, которое свободно мигрирует вдоль основной цепи (то есть экситон). Явление гашения приводит к уменьшению флуоресценции основной молекулярной цепи. Поскольку только одно присоединенное анализируемое вещество может вызвать явление гашения, чувствительность является гораздо более высокой, чем если бы присутствовало отношение 1:1 групп-зондов и флуоресцентных групп. Ранее такие флуоресцентные сенсоры на молекулярной основе использовали в основной молекулярной цепи хромофоры, поглощающие в УФ или в ближней УФ области. Цепочки для аккумуляции света, описанные здесь, являются идеально приспособленными в качестве компонентов нового класса флуоресцентных сенсоров на молекулярной основе, которые сильно поглощают (и флуоресцируют) в видимой и ближней инфракрасной области.

Особое применение цепочек для аккумуляции света, описываемых здесь, представляет собой применение в солнечных элементах. Солнечный элемент, как здесь описано, как правило, содержит:

(a) первую подложку, содержащую первый электрод;

(b) вторую подложку, содержащую второй электрод, при этом первая и вторая подложки расположены с образованием пространства между ними, и по меньшей мере один элемент из (i) первой подложки и первого электрода и (ii) второй подложки и второго электрода является прозрачным;

(c) слой стержней для аккумуляции света, электрически соединенный с первым электродом, причем каждый из стержней для аккумуляции света содержит полимер формулы I:

где:

m составляет по меньшей мере 1 (а как правило, от двух, трех или четырех до двадцати или более);

X1 представляет собой группу разделения заряда, имеющую возбужденное состояние с энергией, равной или более низкой, чем у X2;

X2-Xm+1 представляют собой хромофоры; и

X1 электрически соединена с первым электродом; и солнечный элемент дополнительно содержит

(d) электролит в пространстве между первой и второй подложками. Подвижный носитель заряда может, необязательно, быть включен в состав электролита.

В конкретном варианте воплощения приведенного выше элемента (иногда упоминаемом здесь как ″конструкция II″), солнечный элемент содержит:

(a) первую подложку, содержащую первый электрод;

(b) вторую подложку, содержащую второй электрод, при этом первая и вторая подложки расположены с образованием пространства между ними, и по меньшей мере один элемент из (i) первой подложки и первого электрода и (ii) второй подложки и второго электрода является прозрачным;

(c) слой стержней для аккумуляции света, электрически соединенный с первым электродом, причем каждый из стержней для аккумуляции света содержит полимер формулы I:

где:

m составляет по меньшей мере 1 (а как правило, от двух, трех или четырех до двадцати или более);

X1 представляет собой группу разделения заряда, имеющую возбужденное состояние с энергией, равной или более низкой, чем у X2;

X2-Xm+1 представляют собой хромофоры;

X1 электрически соединена с первым электродом; и

X1-Xm+1 выбраны таким образом, что при инжекции либо электрона, либо дырки из X1 в первый электрод соответствующая дырка или электрон из X1 переносится к X2 (и, необязательно, к X3, X4, а в некоторых случаях и по всему пути до Xm+1); солнечный элемент дополнительно содержит:

(d) электролит в пространстве между первой и второй подложками; и

(e) необязательно, но предпочтительно подвижный носитель заряда в электролите.

В варианте воплощения, предпочтительном в настоящее время, X1-Xm+1 выбраны таким образом, чтобы при инжекции электрона из X1 в первый электрод соответствующая дырка из X1 переносилась к X2 -Xm+1.

Другой конкретный вариант воплощения (иногда упоминаемый здесь как ″конструкция III″) солнечного элемента, описанного выше, содержит:

(a) первую подложку, содержащую первый электрод;

(b) вторую подложку, содержащую второй электрод, при этом первая и вторая подложки расположены с образованием пространства между ними, и по меньшей мере один элемент из (i) первой подложки и первого электрода и (ii) второй подложки и второго электрода является прозрачным;

(c) слой стержней для аккумуляции света, электрически соединенный с первым электродом, причем каждый из стержней для аккумуляции света содержит полимер формулы I:

где:

m составляет по меньшей мере 1 (а как правило, от двух, трех или четырех до двадцати или более);

X1 представляет собой группу разделения заряда, имеющую возбужденное состояние с энергией, равной или более низкой, чем у X2;

X2-Xm+1 представляют собой хромофоры;

X1 электрически соединена с первым электродом; и

Xm+1 электрически соединена со вторым электродом; солнечный элемент дополнительно содержит

(d) электролит в пространстве между первой и второй подложками.

Опять же, X1-Xm+1 могут быть выбраны таким образом, что при инжекции электронов или дырок (предпочтительно, электронов) из X1 в первый электрод соответствующая дырка или электрон из X1 переносится к X2 или, необязательно, к X3, или X4, или по всему пути до Xm+1.

Множество различных электрических устройств, содержащих солнечный элемент, описанный выше, и имеющих схемы (как правило, резистивные нагрузки), электрически присоединенные к нему, могут быть получены с солнечными элементами по настоящему изобретению, как обсуждается более подробно ниже.

Настоящее изобретение объясняется более подробно с помощью прилагаемых чертежей и описания, приведенного ниже.

Краткое описание чертежей

Фигура 1. Схемы двух распространенных молекулярных подходов для преобразования света в электрическую энергию.

Фигура 2. Общая схема линейных цепочек хромофоров (стержни для аккумуляции света).

Фигура 3. Миграция энергии вдоль стержня для аккумуляции света и использование подвижного носителя заряда для регенерации узла разделения заряда после инжекции электронов (конструкция I).

Фигура 4. Миграция энергии и миграция дырок по прыжковому механизму в противоположных направлениях (конструкция II).

Фигура 5. Миграция энергии и миграция дырок по прыжковому механизму в противоположных направлениях в случае, когда стержни для аккумуляции света заключены между двумя электродами (конструкция III).

Фигура 6. Двухъярусные сэндвичевые молекулы, которые могут служить в качестве сенсибилизаторов.

Фигура 7. Механизмы сенсибилизации для полупроводника n -типа с помощью сенсибилизатора S. Здесь ECB и EVB представляют собой соответственно энергии зоны проводимости и валентной зоны полупроводника. EF представляет собой уровень Ферми полупроводника. Eo(S+/0) и Eo(S+/*) представляют собой соответственно формальные потенциалы восстановления для основного и возбужденного состояния. также изображены распределения донорных и акцепторных уровней сенсибилизатора по Gerischer.

Фигура 8. Упрощенное представление механизма сенсибилизации TiO2 с помощью сенсибилизатора S. Возбуждение светом сенсибилизатора образует возбужденное состояние S*, которое инжектирует инжектируемый электрон в полупроводник с константой скорости kinj. Затем окисленный сенсибилизатор S+ регенерируется с помощью внешнего донора электронов (например, йодида) с константой скорости kred. VOC представляет собой фотопотенциал разомкнутой цепи, который представляет собой максимальную свободную энергию Гиббса, которая, в принципе, может быть получена от элемента при условиях постоянного освещения. Конкуренцию производству энергии составляет рекомбинация зарядов kcr,которая может происходить (из полупроводника) с окисленным сенсибилизатором или окисленным продуктом подвижного носителя заряда (например, трийодида).

Фигура 9. Регенеративный солнечный элемент, сконструированный для функционирования, подобного тому, которое описано на фигуре 8, за исключением того, что твердотельный дырочный проводник заменяет активный при окислении-восстановлении электролит йодида/трийодида.

Фигура 10. Примеры строительных блоков, которые могут быть собраны в хромофорные цепочки.

Фигура 11. Синтетический подход (способ) к приготовлению линейных хромофорных цепочек.

Фигура 12. Рациональный синтез составляющего блока на основе димера порфирина для приготовления хромофорных цепочек.

Фигура 13. Твердофазный синтез с использованием связывания Сузуки для получения цепочек, содержащих порфирин, связанный п -фениленом.

Фигура 14. Твердофазный синтез с использованием связывания Сузуки для получения цепочек, содержащих хлорин, связанный п -фениленом.

Фигура 15. Бифункциональные составляющие блоки для использования при полимеризациях Сузуки.

Фигура 16. Рациональный синтез составляющего блока на основе бифункционального порфирина для использования при полимеризациях Сузуки.

Фигура 17. Твердофазный синтез цепочек, содержащих мезо-, мезо-связанный порфирин с присоединенной карбокси-ручкой.

Фигура 18. Твердофазный синтез цепочек, содержащих мезо-, мезо-связанный порфирин с присоединенной этиновой ручкой.

Фигура 19. Присоединение мезо-, мезо-связанной цепочки к содержащей цирконий двухъярусной сэндвичевой молекуле.

Фигура 20. Пример миграции энергии, но не миграции дырок, в хромофорной цепочке.

Фигура 21. Пример миграции энергии и миграции дырки в противоположных направлениях в хромофорной цепочке.

Фигура 22. Пример каскадной миграции энергии и миграции дырки в противоположных направлениях в хромофорной цепочке, миграция дырки происходит в определенной области цепочки.

Фигура 23. Другой пример твердофазного синтеза с использованием связывания Сузуки для получения цепочек, содержащих хлорин с этиновой ручкой, связанный п-фениленом.

Фигура 24. Присоединение цепочки, содержащей хлорин, связанный п-фениленом, к двухъярусной сэндвичевой молекуле, содержащей цирконий.

Фигура 25. Пример обратимой миграции энергии и необратимой миграции дырки в хромофорной цепочке.

Фигура 26. Цепочка, содержащая бактериохлорин, связанный дифенилэтином.

Фигура 27. Составляющие блоки на основе хлорина, которые имеют заместители (функциональные ручки) в двух из мезо-положений, и ни одного - в β-положениях.

Фигура 28. В порфирине, имеющем самую высокую заселенную молекулярную орбиталь (HOMO) a2u, которая имеет электронную плотность преимущественно в мезо-положениях, и малую - в β-положениях, более высокие скорости (в 2,5-10 раз) наблюдаются, когда линкеры находятся в мезо, а не в β-положениях.

Фигура 29. Четыре различных составляющих блока на основе хлорина, а также номенклатура хлорина, демонстрирующая обозначения A-D колец согласно IUPAC-IUB.

Фигура 30. Ориентация переходного дипольного момента для длинноволновой полосы поглощения в хлорине со свободным основанием и металлохлорин.

Фигура 31. Парное взаимодействие составляющих блоков на основе хлорина при вхождении в ковалентно связанные цепочки.

Фигура 32. Самая высокая заселенная молекулярная орбиталь хлорина представляет собой орбиталь a2, которая имеет заметную электронную плотность на каждой из мезо- и невосстановленных β -позиций.

Фигура 33 иллюстрирует синтез составляющего блока на основе транс-хлорина с двумя β-заместителями.

Фигура 34A. Синтез новой β-замещенной Восточной половины при синтезе хлорина.

Фигура 34B. Синтез новой β-замещенной Восточной половины при синтезе хлорина, продолжающий процесс, представленный на фигуре 34A.

Фигура 35 иллюстрирует синтез новой β-замещенной Западной половины составляющего блока на основе хлорина.

Фигура 36. Другие составляющие блоки на основе хлорина, которые могут быть получены с использованием такой же стратегии синтеза, изображенной выше, и которые имеют по существу такие же физические свойства.

Фигура 37. Синтез составляющих блоков на основе транс мезо-замещенного хлорина (тип III) путем расширения процесса для приготовления хлоринов, несущих на себе соседние (цис) мезо-замещенные хлорины.

Фигура 38. Второй процесс получения составляющих блоков на основе транс мезо-замещенного хлорина (тип III).

Фигура 39. Различные составляющие блоки на основе мезо-замещенного хлорина, которые могут быть получены с помощью синтеза, описанного выше.

Фигура 40. Взаимосвязь антенных комплексов и реакционного центра для получения дырок и электронов из энергии возбуждения, стекающей с антенны.

Фигура 41. Цепочки для аккумуляции света, которые поглощают свет и подвергаются эффективному внутримолекулярному переносу энергии.

Фигура 42. Здесь представлено новое средство для удаления окислительного эквивалента из узла разделения заряда. Энергия протекает вдоль цепочки для аккумуляции света к узлу разделения заряда (УРЗ), в то время как окислительный эквивалент (дырка) протекает в обратном направлении от УРЗ к позиции в антенне, где имеют место последующие реакции с переносом электрона.

Фигура 43. Конструкция согласно фигуре 42 имеет два значительных ответвления. (1) Только два канала для доступа требуются на УРЗ: один для испускания электронов, и один тот, куда втекает энергия возбуждения, а вытекают окислительные эквиваленты (дырки).

Фигура 44 иллюстрирует линейную цепочку на основе цинк- порфиринов, имеющих различные мезо-заместители.

Фигура 45 иллюстрирует линейную цепочку Mg- и Zn -порфиринов, имеющих различные мезо-заместители.

Фигура 46 иллюстрирует линейную цепочку металлохлоринов, имеющих различные мезо-заместители.

Фигура 47 иллюстрирует линейную цепочку порфиринов и хлоринов, имеющих различные мезо-заместители.

Фигура 48 иллюстрирует линейную цепочку β-замещенных хлоринов и мезо-замещенных хлоринов.

Фигура 49 иллюстрирует линейную цепочку из компонентов порфирина, хлорина и фталоцианина.

Фигура 50 иллюстрирует каскадную (катарактную, от англ. cataract) линейную цепочку, использующую домены, состоящие из множества изоэнергетических пигментов.

Фигура 51 иллюстрирует реакции, пригодные для использования при приготовлении олигомеров стержней для аккумуляции света.

Фигура 52. Полимеризация in situ, приводящая к получению стержня для аккумуляции света на поверхности (например, Au или TiO2), которая будет служить в качестве одного из электродов солнечного элемента.

Фигура 53 иллюстрирует синтез мезо-замещенных хлоринов с помощью методик, описанных ранее.

Фигура 54 иллюстрирует синтез предшественников восточной половины (ВП) β-замещенного хлорина.

Фигура 55 дополнительно иллюстрирует синтез предшественников восточной половины β-замещенного хлорина.

Фигура 56 иллюстрирует синтез западной половины (ЗП) β -замещенного хлорина.

Фигура 57 иллюстрирует синтез β-замещенного хлорина.

Фигура 58 иллюстрирует синтез транс β-замещенного хлорина.

Подробное описание предпочтительных вариантов воплощения

Солнечные элементы, описанные здесь, требуют использования линейных хромофорных цепочек (стержней для аккумуляции света), которые обеспечивают сильное поглощение света. Кроме того, когда это желательно, описанные здесь солнечные элементы обеспечивают миграцию энергии и миграцию заряда в противоположных направлениях. Таким образом, хромофорные цепочки поглощают свет и могут проявлять внутреннее выпрямление на молекулярном уровне в потоке энергии возбужденного состояния и дырок в основном состоянии.

Без какого-либо желания ограничить настоящее изобретение можно заметить, что некоторые потенциальные преимущества солнечных элементов, описанных здесь, включают в себя следующие: они тонкие (например, стержни имеют длину не более 500 или даже 200 нанометров), легкие, портативные, гибкие, с хорошей эффективностью, твердотельные (в одном из вариантов воплощения), простые в изготовлении и имеют рациональный молекулярный дизайн. В самом деле, предполагается, что описанное здесь изобретение, сделает возможным там, где это желательно, количественное преобразование падающих фотонов в электроны на индивидуальных длинах волн света и с общими эффективностями >5% при солнечном освещении.

I. Определения

Здесь используются следующие термины и фразы:

Подложка, как здесь используется, предпочтительно представляет собой твердый материал (который может быть гибким или жестким), пригодный для использования при присоединении одной или нескольких молекул. Подложки могут быть сформированы из материалов, включая, но не ограничиваясь этим, стекло, органические полимеры, пластик, кремний, минералы (например, кварц), полупроводниковые материалы, керамика, металлы и тому подобное. Подложка может находиться в любой пригодной для использования форме, включая плоскую, планарную, искривленную, стержнеобразную и тому подобное. Подложка может быть по своей природе проводящей и служить в качестве электрода сама по себе, или электрод может быть сформирован на подложке или соединен с ней с помощью соответствующих средств (например, осаждения слоя золота или слоя проводящего оксида). Либо одна, либо обе подложки в солнечных элементах могут быть прозрачными (то есть длины волн света, которые возбуждают хромофоры, могут проходить через подложку и соответствующий электрод даже в том случае, если они визуально выглядят мутными). В цепочках для аккумуляции света подложка и электрод могут быть любого пригодного для использования типа. Одна из подложек может быть непрозрачной по отношению к длинам волн света, которые возбуждают хромофоры. Одна из подложек может быть отражающей или снабженной отражающим покрытием с тем, чтобы свет, который проходит через цепочки или стержни, отражался назад в цепочки или стержни.

Термин ″электрод″ относится к любой среде, способной переносить заряд (например, электроны) к стержню для аккумуляции света и/или от него. Предпочтительные электроды представляют собой металлы (например, золото, алюминий), неметаллы (например, проводящие оксиды, карбиды, сульфиды, селениды, теллуриды, фосфиды и арсениды, такие как сульфид кадмия, теллурид кадмия, диселенид вольфрама, арсенид галлия, фосфид галлия и тому подобное), и проводящие органические молекулы. Электроды могут быть приготовлены практически с любой 2-мерной или 3-мерной форме.

Термин ″проводящий оксид″, как он здесь используется, относится к любому пригодному для использования проводящему оксиду, включая бинарные оксиды металлов, такие как оксид олова, оксид индия, оксид титана, оксид меди и оксид цинка, или тройные (третичные) оксиды металлов, такие как титанат стронция и титанат бария. Другие примеры пригодных для использования проводящих оксидов включают в себя, но не ограничиваются этим, оксид индия олова, диоксид титана, оксид олова, оксид галлия индия, оксид цинка и оксид цинка индия. Полупроводники на основе оксидов металлов могут быть собственными или легированными малыми количествами материалов для контроля проводимости.

Термин ″гетероциклический лиганд″, как он здесь используется, относится в целом к любой гетероциклической молекуле, состоящей из атомов углерода и содержащей по меньшей мере один, а предпочтительно, множество гетероатомов (например, N, O, S, Se, Te), причем эти гетероатомы могут быть одинаковыми или различными, и эта молекула способна к образованию координационного сэндвичевого соединения с другим гетероциклическим лигандом (который может быть таким же или иным) и металлом. Такие гетероциклические лиганды, как правило, представляют собой макроциклы, в частности, производные тетрапиррола, такие как фталоцианины, порфирины и порфиразины.

Термин ″порфириновый макроцикл″ относится к порфирину или порфириновому производному. Такие производные включают в себя порфирины с дополнительными кольцами, орто-конденсированными или ортопери-конденсированными с порфириновым ядром; порфирины, имеющие замещение одного или нескольких атомов углерода порфиринового кольца атомом другого элемента (скелетное замещение); производные, имеющие замещение атома азота порфиринового кольца атомом другого элемента (скелетное замещение азота); производные, имеющие иные заместители, чем водород, расположенные на периферических (мезо-, β-) или внутренних атомах порфирина; производные с замещением одной или нескольких связей порфирина (гидропорфирины, например, хлорины, бактериохлорины, изобактериохлорины, декагидропорфирины, корфины, пиррокорфины и тому подобное); производные, полученные с помощью координационного связывания одного или нескольких металлов с одним или несколькими атомами порфирина (металлопорфирины); производные, имеющие один или несколько атомов, включая пиррольные и пиррометениловые блоки, вставленные в порфириновое кольцо (растянутые порфирины); производные, имеющие одну или несколько групп, удаленных из порфиринового кольца (сжатые порфирины, например, коррин, коррол) и сочетания указанных выше производных (например, фталоцианины, порфиразины, нафталоцианины, субфталоцианины и изомеры порфирина). Предпочтительные порфириновые макроциклы содержат по меньшей мере одно 5-членное кольцо.

Термин порфирин относится к циклической структуре, как правило, состоящей из четырех пиррольных колец вместе с четырьмя атомами азота и двумя атомами водорода, которые легко могут быть замещены атомами различных металлов. Типичный порфирин представляет собой гемин.

″Хлорин″ является по существу тем же термином, что и порфирин, но отличается от порфирина тем, что имеет частично насыщенное пиррольное кольцо. Основным хромофором хлорофилла, т.е. зеленого пигмента для фотосинтеза растений, является хлорин.

″Бактериохлорин″ по существу является тем же, что и порфирин, но отличается от порфирина тем, что имеет два частично насыщенных не соседствующих друг с другом (то есть транс) пиррольных кольца.

″Изобактериохлорин″ является по существу тем же, что и порфирин, но отличается от порфирина тем, что имеет два частично насыщенных соседних (то есть цис) пиррольных кольца.

Термины ″координационное сэндвичевое соединение″ или ″координационный сэндвичевый комплекс″ относятся к соединению формулы LnMn-1, где каждый L представляет собой гетероциклический лиганд, такой как порфириновый макроцикл, каждый M представляет собой металл, n равно 2 или больше, наиболее предпочтительно 2 или 3, и каждый металл располагается между парой лигандов и связывается с одним или несколькими гетероатомами (а как правило, со множеством гетероатомов, например, с 2, 3, 4, 5) в каждом лиганде (в зависимости от окисленного состояния металла). Таким образом, координационные сэндвичевые соединения не являются металлоорганическими соединениями, такими как ферроцен, в которых металл соединяется с атомами углерода. Лиганды в координационном сэндвичевом соединении, как правило, размещаются в виде пакета (то есть являются ориентированными в целом лицом друг к другу и соосно совмещенными друг с другом, хотя они могут иметь или не иметь возможность вращаться вокруг этой оси по отношению друг к другу). Смотри, например, D. Ng and J. Jiang, Chem. Soc. Rev. 26, 433-442 (1997). Координационные сэндвичевые соединения могут быть ″гомолептическими″ (где все лиганды L являются одинаковыми) или ″гетеролептическими″ (где по меньшей мере один лиганд L является иным, чем все остал