Арил- и гетероарилзамещенные гетероциклические производные мочевины, способ ингибирования киназы raf и фармацевтическая композиция

Иллюстрации

Показать все

Изобретение относится к новым производным мочевины формулы I:

где А означает гетероарил, который выбирают из группы, включающей

и

где радикалы В, R1 и R2 имеют значения, указанные в описании. Эти соединения обладают способностью ингибировать фермент киназы RAF и ингибировать рост опухолевых клеток. Изобретение также относится к способу ингибирования киназы RAF в организме млекопитающего, а также к фармацевтическим композициям на основе соединений формулы I. Технический результат - получение новых производных мочевины, обладающих ценными фармацевтическими свойствами. 5 н. и 20 з.п. формулы, 6 табл.

Реферат

Настоящее изобретение относится к применению производных группы арилмочевины для лечения заболеваний, опосредованных киназой raf, и фармацевтических композиций для проведения такой терапии.

Уровень техники

Онкоген р21ras вносит основной вклад в развитие и прогрессию солидных опухолей человека и мутирован в 30% всех опухолей в организме человека (см. статьи Bollton с соавт. Ann. Rep. Med. Chem., 1994, т.29, стр. 165-74; Bos. Cancer Res., 1989, т.49, стр. 4682-9). В нормальной, немутированной форме белок ras является ключевым элементом каскада трансдукции сигнала, управляемого рецепторами ростового фактора практически во всех тканях (см. статью Avruch с соавт. Trends Biochem. Sci., 1994, т.19, стр. 279-83). В биохимическом отношении ras представляет собой гуаниннуклеотид-связывающий белок, а взаимопревращение между ГТФ-связанной активированной формой и ГДФ-связанной инактивированной формой строго контролируется эндогенной ГТФазной активностью ras и другими регуляторными белками. Мутантные формы ras, присутствующие в опухолевых клетках, характеризуются сниженной эндогенной ГТФазной активностью, и, следовательно, этот белок осуществляет передачу неконтролируемых ростовых сингналов опосредованным с ним эффекторам, например, такому ферменту, как киназа raf. Это приводит к опухолевой трансформации клеток, несущих мутантные формы ras (см. статью Magnuson с соавт. Semin. Cancer Biol., 1994, т.5, стр. 247-53). Показано, что ингибирующее действие активной формы ras путем ингибирования сигнального пути с участием киназы raf введением инактивирующих антител против киназы raf или за счет совместной экспрессии доминантной негативной киназы raf или доминантной негативной формы МЕК, субстрата киназы raf, приводит к реверсии трансформированных клеток в нормально растущий фенотип (см. статьи Daum с соавт. Trends Biochem. Sci., 1994, т.19, стр. 474-80; Fridman c соавт. J. Biol. Chem., 1994, т.269, стр. 30105-8). Кроме того, в статье Kolch с соавт. (Nature, 1991, т.349, стр. 426-28) показано, что ингибирование экспрессии киназы raf с помощью антисмысловой ДНК блокирует пролиферацию клеток, вызванную мембранно-ассоциированными онкогенами. Аналогично, ингибирование киназы raf (антисмысловыми олигонуклеотидами) коррелирует in vitro и in vivo с ингибированием роста различных типов опухолей человека (см. статью Monia с соавт. Nat. Med., 1996, т.2, стр. 668-75).

Сущность изобретения

Настоящее изобретение относится к соединениям, которые являются ингибиторами фермента киназы raf. Поскольку этот фермент является эффектором p21ras, ингибиторы быстрого действия могут найти применение в фармацевтических композициях для лечения человека или для применения в ветеринарии, если показано ингибирование raf киназного пути, например, при лечении опухолей и/или опухолевого роста клеток, опосредованного киназой raf. Прежде всего, такие соединения применимы при лечении человека или животных, например, опухолей у мышей, поскольку прогрессия таких опухолей зависит от каскада трансдукции сигнала белком ras и, следовательно, чувствительна к воздействиям, прерывающим этот каскад, например, путем ингибирования киназы raf. Соответственно, соединения по изобретению могут найти применение при лечении солидных опухолей, например таких, как карциномы (например, легких, поджелудочной железы, щитовидной железы, мочевого пузыря или толстой кишки, заболеваний спинного или костного мозга, например, лейкозе, или аденомы, например, ворсинчатой опухоли (полип толстой кишки).

Настоящее изобретение представляет соединения, которые обычно носят название производные арилмочевины, включая как арил-, так и гетероарилзамещенные аналоги, которые ингибируют путь передачи сигнала с участием киназы raf. Изобретение также предлагает способ лечения заболеваний человека или млекопитающих, опосредованных киназой raf. Таким образом, изобретение относится к соединениям и способам подавления роста опухолевых клеток, опосредованного киназой raf, включающим введение соединения формулы I:

где В обычно означает незамещенный или замещенный арильный или гетероарильный остаток, вплоть до трициклического, включающий до 30 углеродных атомов, содержащий по крайней мере одну 5- или 6-членную ароматическую группу, содержащую 0-4 атомов, которые выбирают из группы, включающей атомы азота, кислорода и серы. А означает гетероарильный остаток, который более подробно описан ниже.

Арильный или гетероарильный остаток В может включать отдельные циклические структуры, а также комбинацию арильных, гетероарильных и циклоалкильных структур. Заместители в этих арильных или гетероарильных остатках могут варьировать в широком диапазоне и включают галоген, водород, гидросульфид, циано, нитро, амины и различные углеродсодержащие остатки, включая такие, которые содержат один или более атомов серы, азота, кислорода и/или галогена. Строение заместителей более подробно описано ниже.

Пригодные арильные или гетероарильные остатки для группы В в формуле 1 включают, не ограничиваясь перечисленным, ароматические циклические структуры, содержащие 4-30 атомов углерода и 1-3 кольца, из которых по крайней мере одно является 5-6-членным ароматическим кольцом. В одном или более этих колец 1-4 атома углерода могут быть заменены атомами кислорода, азота и/или серы.

Примеры подходящих ароматических циклических структур включают фенил, пиридинил, нафтил, пиримидинил, бензотиазолил, хинолин, изохинолин, фталимидинил и их сочетания, такие, как дифениловый эфир (фенилоксифенил), дифениловый тиоэфир (фенилтиофенил), дифениламин (фениламинофенил), фенилпиридиниловый эфир (пиридинилоксифенил), пиридинилметилфенил, фенилпиридиниловый тиоэфир (пиридинилтиофенил), фенилбензотиазолиловый эфир (бензотиазолилоксифенил), фенилбензотиазолиловый тиоэфир (бензотиазолилтиофенил), фенилпиримидиниловый эфир, фенилхинолиновый тиоэфир, фенилнафтиловый эфир, пиридинилнафтиловый эфир, пиридинилнафтиловый тиоэфир и фталимидилметилфенил.

Примеры подходящих гетероциклических групп включают, не ограничиваясь перечисленным, ароматические кольца, содержащие 5-12 атомов углерода, или циклические системы, содержащие 1-3 кольца, из которых по крайней мере одно является ароматическим, в которых один или более, например, 1-4 углеродных атома в одном или более колец могут быть заменены на атомы кислорода, азота или серы. Обычно каждое кольцо содержит 3-7 атомов.

Например, В может означать 2- или 3-фурил, 2- или 3-тиенил, 2- или 4-триазинил, 1-, 2- или 3-пирролил, 1-, 2-, 4- или 5-имидазолил, 1-, 3-, 4- или 5-пиразолил, 2-, 4- или 5-оксазолил, 3-, 4- или 5-изоксазолил, 2-, 4- или 5-тиазолил, 3-, 4- или 5-изотиазолил, 2-, 3- или 4-пиридил, 2-, 4-, 5- или 6-пиримидинил, 1,2,3-триазол-1-, -4- или -5-ил, 1,2,4-триазол-1-, -3- или -5-ил, 1 - или 5-тетразолил, 1,2,3-оксадиазол-4- или -5-ил, 1,2,4-оксадиазол-3- или -5-ил, 1,3,4-тиадиазол-2- или -5-ил, 1,2,4-оксадиазол-3- или -5-ил, 1,3,4-тиадиазол-2- или -5-ил, 1,3,4-тиадиазол-3- или -5-ил, 1,2,3-тиадиазол-4- или -5-ил, 2-, 3-, 4-, 5- или 6-2Н-тиопиранил, 2-, 3- или 4-4Н-тиопиранил, 3- или 4-пиридазинил, пиразинил, 2-, 3-, 4-, 5-, 6- или 7-бензофурил, 2-, 3-, 4-, 5-, 6- или 7-бензотиенил, 1-, 2-, 3-, 4-, 5-, 6- или 7-индолил, 1-, 2-, 4- или 5-бензимидазолил, 1-, 3-, 4-, 5-, 6- или 7-бензопиразолил, 2-, 4-, 5-, 6- или 7-бензоксазолил, 3-, 4-, 5-, 6- или 7-бензизоксазолил, 1-, 3-, 4-, 5-, 6- или 7-бензотиазолил, 2-, 4-, 5-, 6- или 7-бензизотиазолил, 2-, 4-, 5-, 6- или 7-бенз-1,3-оксадиазолил, 2-, 3-, 4-, 5-, 6-, 7- или 8-хинолинил, 1-, 3-, 4-, 5-, 6-, 7- или 8-изохинолинил, 1-, 2-, 3-, 4- или 9-карбазолил, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- или 9-акридинил или 2-, 4-, 5-, 6-, 7- или 8-хиназолинил, или дополнительно по выбору замещенные фенил, 2- или 3-тиенил, 1,3,4-тиадиазолил, 3-пиррил, 3-пиразолил, 2-тиазолил или 5-тиазолил и т.п. Например, В может означать 4-метилфенил, 5-метил-2-тиенил, 4-метил-2-тиенил, 1-метил-3-пиррил, 1-метил-3-пиразолил, 5-метил-2-тиазолил или 5-метил-1,2,4-тиадиазол-2-ил.

Подходящие алкильные группы и алкильная часть в заместителях, например, в алкоксигруппе и т.п., включают метил, этил, пропил, бутил и т.п., включая все линейные и разветвленные изомеры, такие как изопропил, изобутил, втор-бутил, трет-бутил и т. п.

Подходящие арильные группы включают, например, фенил и 1- и 2-нафтил.

Подходящие циклоалкильные группы включают циклопропил, циклобутил, циклогексил и т.п. Термин "циклоалкил", используемый в тексте зявки, означает циклические структуры, имеющие или не имеющие алкильных заместителей, причем, например, "C4циклоалкил" включает как циклопропильные группы, замещенные метильной группой, так и циклобутильные группы. Кроме того, термин "циклоалкил" включает насыщенные гетероциклические группы.

Подходящие галогены включают F, Cl, Br и/или I, причем возможны группы, содержащие от одного заместителя до полностью замещенных (когда все атомы водорода в группе замещены на атом галогена), кроме того возможны остатки со смешанным замещением различными галогенами.

Как показано выше, эти кольцевые системы могут содержать или не содержать заместители, такие как галоген, вплоть до полного замещения галогенами. Другие подходящие заместители в группе В включают алкил, алкокси, карбокси, циклоалкил, арил, гетероарил, циано, гидрокси и амино. Эти заместители, обычно обозначаемые в тексте заявки Х и X', включают -CN, -CO2R5, -C(O)NR5R5', -C(O)R5, -NO2, -OR5, -SR5, -NR5R5', -NR5C(O)OR5', -NR5C(O)R5', С110алкил, С210алкенил, С110алкокси, С310циклоалкил, C614арил, С724алкарил, С313гетероарил, С423алкгетероарил, замещенный С110алкил, замещенный С210алкенил, замещенный С110алкокси, замещенный С310циклоалкил, замещенный С423алкгетероарил и -Y-Ar.

Если заместитель Х или X' представляет собой замещенную группу, то предпочтительно он имеет один или более заместителей, которые независимо выбирают из группы, включающей -CN, -CO2R5, -C(O)R5, -C(O)NR5R5', -OR5, -SR5, -NR5R5', -NO2, -NR5C(O)R5', -NR5C(O)OR5' и галоген вплоть до полного замещения галогеном.

Группы R5 и R5' предпочтительно независимо выбирают из группы, включающей Н, С110алкил, С210алкенил, С310циклоалкил, С614арил, С313гетероарил, С724алкарил, С423алкгетероарил, галогенированный вплоть до полного замещения С110алкил, галогенированный вплоть до полного замещения С210алкенил, галогенированный вплоть до полного замещения С3-C10циклоалкил, галогенированный вплоть до полного замещения C614арил, галогенированный вплоть до полного замещения С313гетероарил.

Мостиковая группа Y предпочтительно означает -O-, -S-, -N(R5)-, -(CH2)m-, -С(O)-, -СН(ОН)-, -(СН2)mO-, -(CH2)mS-, -(CH2)mN(R5)-, -O(CH2)m-, -CHXa-, -CXa2, -S-(CH2)m- и -N(R5)(CH2)m-, где m=1-3, а Xa означает галоген.

Группа Ar предпочтительно означает 5- 10-членное ароматическое кольцо, содержащее 0-4 атома, которые выбирают из группы, включающей азот, кислород и серу, и которое может быть незамещенным или замещенным галогеном вплоть до полного замещения и по выбору замещенным группой Zn1, где n1=0-3.

Каждый заместитель Z предпочтительно независимо выбирают из группы, включающей -CN, -CO2R5, -C(O)NR5R5', -C(O)NR5, -NO2, -OR5, -SR5, -NR5R5', -NR5C(O)OR5', -C(O)R5, -NR5C(O)R5', С110алкил, С310циклоалкил, C614арил, С313гетероарил, С724алкарил, С423алкгетероарил, замещенный С110алкил, замещенный С3-C10циклоалкил, замещенный С724алкарил и замещенный С423алкгетероарил. Если Z является замещенной группой, то эта группа имеет один или более заместителей, которые независимо выбирают из группы, включающей -CN, -CO2R5, -C(O)NR5R5', -OR5, -SR5, -NO2, -NR5R5', -NR5C(O)R5' и -NR5C(O)OR5'.

Арильные и гетероарильные остатки в группе В формулы I предпочтительно выбирают из группы, включающей

,

и

замещенные или незамещенные галогеном вплоть до полного замещения. Х имеет значения, указанные выше, а n=0-3.

Более предпочтительно арил и гетероарил в группе В имеют формулу

где Y выбирают из группы, включающей -О-, -S-, -CH2-, -SCH2-, -CH2S-, -СН(ОН)-, -С(O)-, -CX2a, -CXaH-, -CH2O- и -ОСН2-, а Xa означает галоген.

Q означает шестичленное ароматическое кольцо, содержащее 0-2 атома азота, замещенное или незамещенное галогеном вплоть до полного замещения, а Q1 означает моно- или бициклическую ароматическую структуру, содержащую от 3 до 10 углеродных атома и 0-4 атома, которые выбирают из группы, включающей N, О и S, незамещенную или замещенную галогеном вплоть до полного замещения. X, Z, n и n1 имеют значения, указанные выше, a s=0 или 1.

В предпочтительных вариантах воплощения изобретения Q означает фенил или пиридинил, незамещенный или замещенный галогеном вплоть до полного замещения, а Q1 выбирают из группы, включающей фенил, пиридинил, нафтил, пиримидинил, хинолин, изохинолин, имидазол и бензотиазолил, замещенные или незамещенные галогеном вплоть до полного замещения, или Y-Q1 означает фталимидинил, замещенный или незамещенный галогеном вплоть до полного замещения. Z и Х предпочтительно независимо выбирают из группы, включающей -R6, -OR6, -SR6 и -NHR7, где R6 означает водород, С110алкил или С310циклоалкил, а R7 предпочтительно выбирают из группы, включающей водород, С310алкил, С36циклоалкил и C610арил, где R6 и R7 могут быть замещены галогеном вплоть до полного замещения.

Гетероарильный остаток А в формуле I предпочтительно выбирают из группы, включающей

и

где R1 предпочтительно выбирают из группы, включающей С310алкил, С310-циклоалкил, галогензамещенный С110алкил вплоть до полного замещения и галогензамещенный С310циклоалкил вплоть до полного замещения, и R2 означает C6-C14арил, С314гетероарил, замещенный C6-C14-арил или замещенный С314гетероарил.

Если R2 означает замещенную группу, заместители предпочтительно выбирают из группы, включающей галоген вплоть до полного замещения и Vn, где n=0-3.

Каждый V предпочтительно независимо выбирают из группы, включающей -CN, -OC(O)NR5R5', -CO2R5, -C(O)NR5R5', -OR5, -SR5, -NR5R5', -C(O)R5, -NR5C(O)OR5', -SO2R5, -SOR5, -NR5C(O)R5', -NO2, С110алкил, С310-циклоалкил, С614арил, С313гетероарил, С724алкарил, С424-алкгетероарил, замещенный С110алкил, замещенный С310циклоалкил, замещенный C6-C14арил, замещенный С313гетероарил, замещенный С724-алкарил, замещенный С424алкгетероарил.

Если V означает замещенную группу, V предпочтительно замещена одним или более заместителями, которые независимо выбирают из группы, включающей галоген вплоть до полного замещения, -CN, -CO2R5, -C(O)R5, -C(O)NR5R5', -NR5R5', -OR5, -SR5, -NR5C(O)R5', -NR5C(O)OR5' и -NO2.

Каждый из заместителей R5 и R5' предпочтительно независимо выбирают из группы, включающей Н, С110алкил, С310циклоалкил, C6-C14арил, С313-гетероарил, С724алкарил, С423алкгетероарил, галогензамещенный С110алкил вплоть до полного замещения, галогензамещенный С310-циклоалкил вплоть до полного замещения, галогензамещенный С614арил вплоть до полного замещения, галогензамещенный С313гетероарил вплоть до полного замещения.

R2 предпочтительно означает замещенный или незамещенный фенил или пиридинил, где заместители R2 выбирают из группы, включающей галоген вплоть до полного замещения и Vn1, где n=0-3.

Каждый V1 предпочтительно независимо выбирают из группы, включающей замещенные или незамещенные С16алкил, С310циклоалкил, С610арил, -NO2, -NH2, -С(O)-С1-6алкил, -С(O)N-(С1-6алкил)2, -C(O)NH-C1-6алкил-O-C1-6-алкил, -NHC(O)H, -NHC(O)OH, -N(С1-6алкил)С(O)-С1-6алкил, -N-(C1-6-алкил)С(O)-С1-6алкил, -NHC(O)-С1-6алкил, -ОС(O)NH-С6-14арил, -NHC(O)O-С1-6-алкил, -S(O)-С1-6алкил и -SO21-6алкил. Если V1 означает замещенную группу, V1 предпочтительно замещен одним или более атомами галогена вплоть до полного замещения.

Наиболее предпочтительно R2 выбирают из замещенного или незамещенного фенила или пиридинила, в которых заместители означают галоген или Wn (n=0-3).

W предпочтительно выбирают из группы, включающей -NO2, -С1-3алкил, -NH(O)СН3, -CF3, -ОСН3, -F, -Cl, -NH2, -ОС(O)NH-фенил, замещенный галогеном вплоть до полного замещения, -SO2СН3, пиридинил, фенил, галогензамещенный фенил вплоть до полного замещения, С1-6алкил замещенный фенил.

Изобретение также относится к соединениям в объеме общей формулы I, описанной выше. Более конкретно эти соединения включают производные пиразолилмочевины формулы

фурилмочевины формулы

и тиенилмочевины формулы

где R1, R2 и В имеют значения, указанные выше.

Настоящее изобретение относится также к фармацевтически приемлемым солям формулы I. Подходящие фармацевтически приемлемые соли хорошо известны специалистам в данной области техники и включают соли оснований с неорганическими и органическими кислотами, такими, как хлористоводородная кислота, бромистоводородная кислота, серная кислота, фосфорная кислота, метансульфоновая кислота, сульфоновая кислота, уксусная кислота, трифторуксусная кислота, яблочная кислота, винная кислота, лимонная кислота, молочная кислота, щавелевая кислота, янтарная кислота, фумаровая кислота, малеиновая кислота, бензойная кислота, салициловая кислота, фенилуксусная кислота и миндальная кислота. Кроме того, фармацевтически приемлемые соли включают соли неорганических оснований, такие, как соли с катионами щелочных металлов (например, Li+, Na+ или K+), щелочно-земельных металлов (например, Mg+2, Са+2 или Ва+2), аммонийным катионом, а также кислотные соли органических оснований, включая алифатические и ароматические замещенные аммонийные катионы и четвертичные аммонийные катионы, образующиеся при протонировании или пералкилировании триэтиламина, N,N-диэтиламина, N,N-дициклогексиламина, пиридина, N,N-диметиламинопиридина (DMAP), 1,4-диазабицикло[2,2,2]октана (DABCO), 1,5-диазабицикло-[4,3,0]нон-5-ена (DBN) и 1,8-диазабицикло[5,4,0]ундец-7-ена (DBU).

Ряд соединений формулы I имеют асимметрические атомы углерода и, следовательно, могут существовать в виде рацематов и оптически активных форм. Способы разделения смесей энантиомеров и диастереомеров хорошо известны специалистам в данной области техники. Настоящее изобретение включает любую выделенную рацемическую или оптически активную форму соединений, описанных формулой I, которая является ингибитором киназы raf.

Соединения формулы I получают с использованием известных химических реакций и методик, некоторые из которых являются пригодными для применения в промышленности. Тем не менее, здесь представлены следующие общие препаративные методы, чтобы специалисты в данной области техники могли использовать их для синтеза ингибиторов, причем более подробное описание методик приводится в экспериментальной части, посвященной синтезу конкретных соединений.

Сведения, подтверждающие возможность осуществления изобретения

Общие препаративные методы

Гетероциклические амины синтезируют по известным методикам [см. в книгах Katritzky с соавт. Comprehensive Heterocyclic Chemistry (Химия гетероциклических соединений), Permagon Press: Oxford, UK (1984); March, Advanced Organic Chemistry (Органическая химия), 3ье изд., John Wiley:New York (1985)].

Например, как показано на схеме I, 5-аминопиразолы, замещенные в положении N-1 арильными или гетероарильными остатками, можно синтезировать путем взаимодействия α-цианокетонов (2) с соответствующим арил- или гетероарилгидразином (3, R2=арил или гетероарил). Цианокетон (2), в свою очередь, можно получить с помощью взаимодействия иона ацетамидата с соответствующим ацилпроизводным, таким как сложный эфир, галогенид кислоты или ангидрид кислоты. В случае, если остаток R1 требует стабилизации подходящим анионом, 2-арил- и 2-гетероарилфураны могут быть синтезированы по реакции Мицунобу путем взаимодействия цианокетона 2 со спиртом 5 с последующей циклизацией енольного простого эфира 6 в присутствии катализатора-основания с образованием фуриламина 7.

Схема I

Некоторые общие методы синтеза гетероциклических аминов

Замещенные анилины получают по стандартным методам [см. в книгах March, Advanced Organic Chemistry (Органическая химия), 3ье изд., John Wiley:New York (1985); Larock, Comprehensive Organic Transformations (Превращения органических соединений), VCH Publishers: New York (1989)]. Как показано на схеме II, ариламины обычно синтезируют восстановлением нитроарилов с использованием металлических катализаторов, таких как Ni, Pd или Pt, и H2 или переносчиков гидрида, таких как формиат, циклогексадиен или боргидрид [см. в книге Rylander, Hydrogenation Methods (Методы гидрирования), Academic Press: London, UK (1985)]. Нитроарилы можно также восстанавливать непосредственно с использованием эффективных источников гидрида, такого как LiAIH4 [см. в книге Seyden-Penne, Reduction by the Alumino- and Borohydrides in Organic Synthesis (Восстановление алюмо- и боргидридами в органическом синтезе), VCH Publishers: New York (1991)], или при использовании металлов с нулевой валентностью, таких как Fe, Sn или Са, в большинстве случаев в кислой среде. Существует множество методов синтеза нитроарилов [см. в книгах March, Advanced Organic Chemistry (Органическая химия), 3ье изд., John Wiley:New York (1985); Larock, Comprehensive Organic Transformations (Превращения органических соединений), VCH Publishers:New York (1989)].

Схема II Восстановление нитроарилов в ариламины

Нитроарилы обычно получают электрофильным ароматическим нитрованием с использованием HNO3 или альтернативного источника NO2+. Перед восстановлением нитроарилы могут быть модифицированы.

Таким образом нитроарилы, замещенные потенциально удаляемой группой (F, Cl, Br и т.п.), могут вступать в реакции замещения при взаимодействии с нуклеофилами, такими как тиолат (как показано на схеме III) или феноксиды. Нитроарилы можно также вводить в реакцию конденсации типа реакции Ульмана (Ullman) (см. схема III).

Схема III

Некоторые реакции нуклеофильного ароматического замещения с использованием нитроарилов

Как показано на схеме IV, мочевину можно получать при взаимодействии гетероарилизоцианата (12) с ариламином (11). Гетероарилизоцианат можно синтезировать из гетероариламина обработкой фосгеном или аналогами фосгена, такими как трихлорметилхлорформиат (дифосген), бис(трихлорметил)карбонат(трифосген) или N,N'-карбонилдиимидазол(CDI). Изоцианат можно также получить из производных гетероциклической карбоновой кислоты, таких как эфир, ацилгалогенид или ангидрид, с помощью перегруппировки Курциуса. Таким образом, реакция производного кислоты 16 с источником азида и последующая прегруппировка приводят к образованию изоцианата. Соответствующая карбоновая кислота (17) также может быть подвергнута перегруппировке Курциуса с использованием дифенилфосфорилазида (DPPA) или подобного реагента. Кроме того, мочевина может быть получена по реакции арилизоцианата (20) с гетероциклическим амином.

Схема IV Некоторые методы синтеза мочевины (Het=гетероцикл)

В конечном итоге, производные мочевины могут быть модифицированы далее с использованием методов, известных специалистам в данной области техники. Например, 2-арил- и 2-гетероарилтиенилмочевины можно получить из соответствующих 2-галогентиенил производных мочевины по реакции перекрестного сочетания с использованием переходного металла (как описано для 2-бромтиофена 25, схема V). Таким образом, взаимодействие нитрила 20 с эфиром α-тиоацетата приводит к образованию 5-замещенного-3-амино-2-тиофенкарбоксилата 21 (Ishizaki и соавт., Патент Японии 6025221). Декарбоксилирование эфира 21 можно проводить путем защиты аминогруппы, например, как в трет-бутокси(ВОС)карбамате (22), с последующим омылением и обработкой кислотой. Если в качестве защитной группы используют ВОС-группу, декарбоксилирование может сопровождаться удалением защитной группы с образованием замещенной 3-тиофенаммонийной соли (23). По альтернативному способу аммонийную соль 23 можно получить непосредственно путем омыления сложного эфира 21 с последующей обработкой кислотой.

После завершения синтеза мочевины, описанного выше, последующее бромирование мочевины приводит к образованию предпоследнего промежуточного производного галогентиофена (25). Затем реакция перекрестного сочетания тиофена 25 с соответствующим трибутил- или триметилоловом (R2=арил или гетероарил) в присутствии палладия приводит к образованию требуемой 2-арил- или 2-гетероарилтиенилмочевины.

Схема V Синтез и взаимопревращения производных мочевины

Изобретение также включает фармацевтические композиции, содержащие соединение формулы 1 и физиологически приемлемый носитель.

Соединения можно вводить перорально, местно, парентерально, ингаляцией или в виде аэрозоля или под язык, ректально или вагинально с использованием композиций, содержащих унифицированные дозы. Термин "введение путем инъекции" включает внутривенные, внутримышечные, подкожные и парентеральные инъекции, а также использование метода вливания. Кожное введение может включать местную аппликацию или чрескожное введение. Одно или несколько соединений можно использовать в сочетании с одним или несколькими нетоксичными фармацевтически приемлемыми носителями и, если необходимо, с другими активными комопонентами.

Композиции, предназначенные для перорального применения, получают по любому известному специалистам способу получения фармацевтических композиций. Для придания приятного вкуса такие композиции могут включать один или несколько агентов, которые выбирают из группы, включающей разбавители, подсластители, ароматизаторы, красители и консерванты. Таблетки содержат активный компонент в смеси с нетоксичными фармацевтически приемлемыми наполнителями, пригодными для изготовления таблеток. Например, такими наполнителями могут быть инертные разбавители, такие как карбонат кальция, карбонат натрия, лактоза, фосфат кальция или фосфат натрия; гранулирующие или дезинтегрирующие агенты, например, кукурузный крахмал или альгиновая кислота; и связующие агенты, например, стеарат магния, стеариновая кислота или тальк. Таблетки могут быть без оболочки или могут быть покрыты известными методами с целью замедлить дезинтеграцию и всасывание в желудочно-кишечном тракте и тем самым обеспечить пролонгированное действие в течение определенного времени. Например, может использоваться материал, обеспечивающий замедленное действие, такой как глицерилмоностеарат или глицерилдистеарат. Эти соединения можно также получить в твердой, быстро рассасывающейся форме.

Композиции для перорального применения погут быть получены в виде твердых желатиновых капсул, где активный компонент смешан с инертным твердым разбавителем, например, карбонатом кальция, фосфатом кальция или каолином, или в виде мягких желатиновых капсул, где активный компонент смешан с водой или масляной средой, например, арахисовым маслом, жидким парафином или оливковым маслом.

Жидкие суспензии содержат активные компоненты в смеси с наполнителями, пригодными для получения водных суспензий. Такими наполнителями являются суспендирующие агенты, например, натриевая соль карбоксиметилцеллюлозы, метилцеллюлоза, гидроксипропилметилцеллюлоза, альгинат натрия, поливинилпирролидон, камедь трагаканта и аравийская камедь; диспергирующими и смачивающими агентами могут быть природные фосфатиды, например, лецитин или продукты конденсации алкиленоксида с жирными кислотами, например, полиоксиэтиленстеарат, или продукты конденсации этиленоксида с высшими алифатическими спиртами, например, гептадекаэтиленоксиэтанол, или продукты конденсации этиленоксида с неполными эфирами сорбита с жирными кислотами, такие как полиоксиэтиленсорбитмоноолеат, или продукты конденсации этиленоксида с неполными эфирами ангидросорбита с жирными кислотами, например, полиэтиленангидросорбитмоноолеат. Водные суспензии могут также содержать один или несколько консервантов, например, этил- или н-пропил-пара-гидроксибензоат, один или несколько красителей, один или несколько ароматизаторов и один или несколько подсластителей, таких как сахароза или сахарин.

Диспергируемые порошки и гранулы, пригодные для приготовления водной суспензии путем добавления воды, содержат активный компонент в смеси с диспергирующим или смачивающим агентом, суспендирующим агентом и одним или несколькими консервантами. Примером пригодных диспергирующих или смачивающих агентов являются описанные выше компоненты. Кроме них в композиции могут присутствовать дополнительные наполнители, например, подсластители, ароматизаторы и красители.

Соединения можно также использовать для получения неводных композиций, например, масляных суспензий, которые можно получить суспендированием активных компонентов в растительном масле, например, арахисовом масле, оливковом масле, кунжутном масле или масле ореха арахис, или в минеральном масле, таком как жидкий парафин. Масляные суспензии могут содержать загустители, например, пчелиный воск, твердый парафин или цетиловый спирт. Для придания приятного вкуса в композиции для перорального применения можно добавить подсластители, упоминавшиеся выше, и ароматизаторы. Эти композиции могут быть защищены добавлением антиоксиданта, такого как аскорбиновая кислота.

Фармацевтические композиции по изобретению могут быть изготовлены в форме водно-масляных эмульсий. В качестве масляной фазы может использоваться растительное масло, например, оливковое масло или арахисовое масло, или минеральное масло, например, вазелиновое масло, или их смеси. Подходящими эмульгирующими агентами могут быть природные камеди, например, аравийская камедь или камедь трагаканта, природные фосфатиды, например, соевые бобы, лецитин, и эфиры или неполные эфиры ангидросорбита с жирными кислотами, например, ангидросорбит моноолеат, и продукты конденсации указанных неполных эфиров с этиленоксидом, например, полиоксиэтиленсорбитанмоноолеат. Эмульсии также могут содержать подсластители и ароматизаторы.

Сиропы и эликсиры могут быть приготовлены с подсластителями, например, глицерином, пропиленгликолем, сорбитом и сахарозой. Такие композиции могут также содержать средство, снижающее раздражение, консервант, ароматизатор и краситель.

Соединения по изобретению можно также использовать в форме суппозиториев для ректального или вагинального применения. Эти композиции получают путем смешивания лекарственного средства с подходящим, не вызывающим раздражения наполнителем, который является твердым при обычной температуре, но становится жидким при температуре тела, т.е. будет плавиться при ректальном или вагинальном введении с высвобождением лекарственного средства. Такие материалы включают кокосовое масло и полиэтиленгликоли.

Соединения по изобретению можно вводить чрескожно с использованием способов, известных специалистам в данной области [см., например, в книге Chien, Transdermal Controlled Systemic Medications (Трансдермально-регулируемое системное медикаментозное лечение), Marcel Dekker, Inc., (1987); Lipp с соавт., публикация международной патентной заявки WO 94/04157, 3.03.94]. Например, раствор или суспензия соединения формулы I в подходящем летучем растворителе по выбору, содержащий агенты, способствующие проникновению, объединяют с другими добавками, известными специалистам в данной области, такими как материалы матрицы и бактерицидные средства. После стерилизации полученную смесь можно переработать по известной технологии в лекарственные формы. Кроме того, после обработки эмульгирующими агентами и водой из раствора или суспензии соединения формулы 1 можно получить лосьон или мазь.

Подходящие растворители для приготовления систем чрескожной доставки известны специалистам в данной области, они включают низшие спирты, такие как этанол или изопропиловый спирт, низшие кетоны, такие как ацетон, эфиры низших карбоновых кислот, такие как этилацетат, полярные простые эфиры, такие кактетрагидрофуран, низшие углеводороды, такие как гексан, циклогексан или бензол, или галогенированные углеводороды, такие как дихлорметан, хлороформ, трихлортрифторэтан или трихлорфторэтан. Подходящие растворители могут также включать смеси одного или нескольких соединений, которые выбирают из низших спиртов, низших кетонов, эфиров низших карбоновых кислот, полярных простых эфиров, низших углеводородов, галогенированных углеводородов.

Подходящие способствующие проникновению агенты для систем чрескожной доставки известны специалистам в данной области, они включают, например, моногидрокси- или полигидроксиспирты, такие как этанол, пропиленгликоль или бензиловый спирт, насыщенные или ненасыщенные жирные С818спирты, такие как лауриловый спирт или цетиловый спирт, насыщенные или ненасыщенные жирные С818кислоты, такие как стеариновая кислота, насыщенные или ненасыщенные жирные сложные эфиры, содержащие до 24 атомов углерода, такие как метиловый, этиловый, пропиловый, изопропиловый, н-бутиловый, втор-бутиловый, изобутиловый, трет-бутиловый или моноглицериновый эфиры уксусной кислоты, капроновой кислоты, лауриновой кислоты, миристиновой кислоты, стеариновой кислоты и пальмитиновой кислоты, или диэфиры насыщенных или ненасыщенных дикарбоновых кислот, содержащие до 24 углеродных атомов, такие как диизопропиладипат, диизобутиладипат, диизопропилсебацат, диизопропилмалеат или диизопропилфумарат. Дополнительные материалы, способствующие проникновению, включают фосфатидилпроизводные, такие как лецитин или кефалин, терпены, амиды, кетоны, мочевину и их производные, а также простые эфиры, такие как диметилизосорбит и моноэтиловый эфир диэтиленгликоля. Подходящие композиции, способствующие проникновению, могут также включать смеси одного или нескольких агентов, которые выбирают из группы: моногидрокси- или полигидроксиспирты, насыщенные или ненасыщенные жирные С818спирты, насыщенные или ненасыщенные жирные С818кислоты, насыщенные или ненасыщенные жирные сложные эфиры, содержащие до 24 атомов углерода, диэфиры насыщенных или ненасыщенных дикарбоновых кислот, содержащие до 24 углеродных атомов, фосфатидилпроизводные, такие как лецитин или кефалин, терпены, амиды, кетоны, мочевину и их производные, и простые эфиры.

Подходящие связующие материалы для систем чрескожной доставки известны специалистам в данной области, они включают, например,