Способ повышения радиолокационного разрешения, система для его осуществления и способ дистанционного выявления системой малоразмерных объектов
Иллюстрации
Показать всеПредлагаемое изобретение относится к технике обследования, например, минных полей и может быть использовано для поиска, обнаружения и распознавания мин, закрытых слоем грунта. Сущность изобретения состоит в том, что в способе повышения радиолокационного разрешения, включающем получение отраженных сигналов при соответствующем обследовании поверхности, эти сигналы получают с помощью когерентного радиолокационного зондирования участков поверхности в определяемых шириной диаграммы направленности антенны секторах наблюдения (10-50)° под ракурсами обследования в диапазоне ±75°, полученные сигналы запоминают в виде соответствующих радиоизображений, после чего для каждого ракурса обследования формируют радиоизображения, соответствующие совокупности сигналов радиоизображений, получаемых по сечениям, параллельным направлению соответствующего ракурса обследования, в проекциях на плоскость, перпендикулярную этим направлениям, а затем производят Фурье-преобразование сформированных проекций радиоизображений, по совокупности которых для каждого участка с помощью метода реконструктивной вычислительной томографии, например преобразования Радона, формируют соответствующую суммарную квазиголограмму с последующим восстановлением по ней с помощью двухмерного обратного Фурье-преобразования радиоизображения соответствующих участков с увеличенным разрешением. Сущность изобретения состоит в том, что система дистанционного выявления малоразмерных объектов включает радиолокационный датчик, связанный с вычислительным устройством, своим выходом подключенным к индикатору, блок согласования, блок формирования радиолокационного изображения, классификатор, два блока памяти, блок определения координат, блок синхронизации, печатающее и радиопередающее и радиоприемное устройства, а также дополнительные индикатор и вычислительное устройство. Сущность изобретения состоит также в том, что в способе дистанционного выявления системой малоразмерных объектов, обследование подстилающей поверхности в зоне предполагаемого нахождения малоразмерных объектов, например в предполагаемом минном поле, производят при облете ЛА этого поля путем его сканирования с одновременным радиолокационным зондированием, например, в дециметровом диапазоне радиоволн с помощью сформированной на бортовой радиолокационной станции (РЛС) или установленных на борту ЛА радиолокационных датчиков (РЛД) синтезированной апертуры, а также путем пошагового дискретного поворота луча антенны на заданные углы в каждом предварительно выбранном элементарном интервале обследования и определением координат мест отражения соответствующих сигналов при каждом шаге поворота луча антенны РЛС в этих интервалах обследования, причем полученные при зондировании отраженные сигналы и координаты соответствующих участков подстилающей поверхности запоминают, а затем формируют соответствующие этим отраженным сигналам сигналы радиоизображения участков и соответствующих им координат обследованного поля. Достигаемым техническим результатом является возможность проведения бесконтактного поиска с высокой вероятностью обнаружения и распознавания малоразмерных объектов, например мин, и в том числе, заглубленных в грунт и соответственно замаскированных. 3 н. и 21 з.п. ф-лы, 7 ил.
Реферат
Предлагаемое изобретение относится к технике обследования, например, минных полей и соответственно может быть использовано для поиска, обнаружения и распознавания мин и, в том числе, например, противотанковых мин и фугасов, закрытых слоем грунта.
Известен способ получения информации о местности, основанный на покадровой съемке подстилающей поверхности с помощью установленной на летательном аппарате (ЛА) фотокамеры [1].
Данный способ обеспечивает возможность получения информации о подстилающей поверхности, но не решает вопроса выявления малоразмерных объектов, например мин.
Наиболее близким аналогом-прототипом является способ получения информации об объектах на местности, основанный на аэросъемке подстилающей поверхности с помощью установленной на носителе фото и телеаппаратуры и последующей обработке полученных данных [2].
Известный способ дает возможность получения с высоким разрешением информации о подстилающей поверхности, однако при его использовании не обеспечена возможность выявления заглубленных объектов.
Известно устройство синтеза радиолокационного изображения, содержащее формирователь опорной функции в виде постоянного запоминающего устройства (ПЗУ), комплексный умножитель, два блока быстрого преобразования Фурье, амплитудный детектор, а также формирователь двумерного матричного сигнала и накопитель [3].
В известном устройстве проведено комплексирование вычислительной среды, инвариантной к траектории и параметрам движения, и обеспечена возможность некогерентного синтеза радиолокационного изображения зондируемой области. Однако это устройство не обеспечивает возможности проведения поиска, а также обнаружения и распознавания малоразмерных объектов.
Наиболее близким аналогом-прототипом является система подповерхностного зондирования, основанная на принципе многочастотного зондирования консервативных сред (строительных конструкций, грунтов и т.п.) и содержащая радиолокационный датчик, подключенный к вычислительному устройству, соединенному с устройством индикации [4].
Эта система обеспечивает возможность сканирования и соответственно зондирования поверхности и позволяет вести обнаружение и идентификацию заглубленных в грунт на (1-10) см пластиковых и металлических противотанковых и противопехотных мин, однако возможность проведения с ее помощью дистанционного поиска малоразмерных объектов в настоящее время конструктивно не проработана.
Известен способ дистанционного выявления малоразмерных объектов, например, мин с помощью робототехнических комплексов, использующих при обследовании минных полей эффект ядерного магнитного резонанса с последующей обработкой полученных спектров [5].
Данный способ обеспечивает возможность получения требуемой для обнаружения и распознавания мин информации с вероятностью, достаточно близкой к аналогичной характеристике контактного миноискателя, однако не решает вопроса оперативной обработки такой информации в больших объемах, а, кроме того, не предназначен для дистанционного поиска малоразмерных объектов, например, тех же мин.
Наиболее близким аналогом-прототипом является способ дистанционного выявления малоразмерных объектов, например, мин, с воздушных носителей, например вертолетов, основанный на получении с помощью соответствующих датчиков аэрофотоснимков исследуемых участков подстилающей поверхности, в том числе в инфракрасном или в радиодиапазоне, и последующей обработке и дешифровке полученных данных [6].
Известный способ обеспечивает возможность получения требуемой информации о маломерных объектах и ее оперативного анализа, однако его использование не обеспечивает возможность обнаружения, например мин, заглубленных в грунт.
Задача изобретения состоит в разработке способа, обеспечивающего возможность повышения разрешения при радиолокационном зондировании подстилающей поверхности, системы для осуществления способа, а также способа дистанционного выявления, например с борта летательного аппарата, путем поиска, обнаружения и распознавания этой системой установленных как на подстилающей поверхности, так и заглубленных малоразмерных объектов, например разного типа мин.
Сущность изобретения состоит в том, что в способе повышения радиолокационного разрешения, включающем получение отраженных сигналов при соответствующем обследовании поверхности, эти сигналы получают с помощью когерентного радиолокационного зондирования участков поверхности в определяемых шириной диаграммы направленности антенны секторах наблюдения (10-50)° под ракурсами обследования в диапазоне ±75°, полученные сигналы запоминают в виде соответствующих радиоизображений, после чего для каждого ракурса обследования формируют радиоизображения, соответствующие совокупности сигналов радиоизображений, получаемых по сечениям, параллельным направлению соответствующего ракурса обследования, в проекциях на плоскость, перпендикулярную этим направлениям, а затем производят Фурье-преобразование сформированных проекций радиоизображений, по совокупности которых для каждого участка с помощью метода реконструктивной вычислительной томографии, например преобразования Радона, формируют соответствующую суммарную квазиголограмму с последующим восстановлением по ней с помощью двухмерного обратного Фурье-преобразования радиоизображения соответствующих участков с увеличенным разрешением.
Сущность изобретения состоит в том, что в систему дистанционного выявления малоразмерных объектов, включающую радиолокационный датчик, связанный с вычислительным устройством, своим выходом подключенным к индикатору, введены блок согласования, блок формирования радиолокационного изображения, классификатор, два блока памяти, блок определения координат, блок синхронизации, печатающее и радиопередающее и радиоприемное устройства, а также дополнительные индикатор и вычислительное устройство, причем радиолокационный датчик первым выходом подключен к первому входу блока согласования, своим выходом соединенного с первым входом блока формирования радиолокационного изображения, подключенного к первому входу первого блока памяти, выходом соединенного с первым входом радиопередающего устройства, вторым (управляющим) входом подключенного к первому выходу вычислительного устройства, вторым выходом соединенного со вторым (управляющим) входом первого блока памяти, третьим выходом соединенного с управляющим входом радиолокационного датчика, а четвертым выходом подключенного ко входу блока синхронизации, своими первым и вторым выходами соединенного со вторыми (синхронизирующими) входами соответственно блока согласования и блока формирования радиолокационного изображения, а группой выходов подключенного к группе соответствующих входов радиолокационного датчика, вторым выходом соединенного с третьим входом блока согласования, при этом вычислительное устройство входом-выходом соединено со входом-выходом первого блока памяти, а пятым и шестым выходами подключено соответственно к первым входам индикатора и блока определения координат, своими первым и вторым выходами соответственно соединенного с первым входом вычислительного устройства и вторым входом индикатора, а радиовходом связанного с радиовходом системы, причем радиопередающее устройство своим радиовыходом связанно с радиовходом радиоприемного устройства, выходом подключенного к первому входу второго блока памяти, своим выходом подключенного к первому входу классификатора, выходом соединенного с первым входом дополнительного вычислительного устройства, своими первым, вторым и третьим выходами подключенного соответственно ко вторым входам радиоприемного устройства, второго блока памяти и классификатора, четвертым и пятым выходами соединенного с первыми входами второго индикатора и печатающего устройства соответственно, а входом-выходом соединенного с входом-выходом второго блока памяти, при этом входы вычислительного и дополнительного вычислительного устройств подключены соответственно к первому и второму входам системы, выход печатающего устройства связан с выходом системы, оптические выходы индикаторов связаны с соответствующими оптическими выходами системы, а группа радиовходов-выходов радиолокационного датчика связана с соответствующей группой входов-выходов системы.
При этом радиолокационный датчик содержит две фазированные антенные решетки, каждая из которых состоит из М независимо подключенных приемо-передающих модулей, где, например, М=1, ..., 12, сумматор, два коммутатора, генератор, модулятор и блок формирования заданного распределения амплитуд и фаз сигналов для управления положением антенного луча для каждого из приемо-передающих модулей, причем приемо-передающие модули первыми электрическими входами соединены с соответствующими выходами первого коммутатора, первым входом подключенного к первому выходу генератора, первым (управляющим) входом соединенного с входом радиолокационного датчика, а вторым входом подключенного к выходу модулятора, входом соединенного с первым входом группы входов радиолокационного датчика, при этом второй вход группы входов радиолокационного датчика подключен ко входу блока формирования заданного распределения амплитуд и фаз сигналов для управления положением антенного луча для каждого из приемо-передающих модулей решеток, своими первым и вторым выходами соединенного соответственно со вторым входом первого коммутатора и первым входом второго коммутатора, своим вторым входом подключенного к третьему входу группы входов радиолокационного датчика, а соответствующими N=2M выходами соединенного со вторыми электрическими входами соответствующих приемо-передающих модулей, причем электрические выходы приемо-передающих модулей подключены к соответствующим входам сумматора, выходом соединенного с первым (электрическим) выходом радиолокационного датчика, второй выход генератора подключен ко второму выходу радиолокационного датчика, радио-входы-выходы которого связаны с соответствующими радио-входами-выходами приемо-передающих модулей.
Сущность изобретения состоит в том, что в способе дистанционного выявления системой малоразмерных объектов, включающем их поиск, обнаружение и распознавание и основанном на обследовании с борта летательного аппарата (ЛА) подстилающей поверхности путем ее радиолокационного зондирования и обработке полученных отраженных сигналов, обследование подстилающей поверхности в зоне предполагаемого нахождения малоразмерных объектов, например в предполагаемом минном поле, производят при облете ЛА этого поля путем его сканирования с одновременным радиолокационным зондированием, например, в дециметровом диапазоне радиоволн с помощью сформированной на бортовой радиолокационной станции (РЛС) или установленных на борту ЛА радиолокационных датчиков (РЛД) синтезированной апертуры, а также путем пошагового дискретного поворота луча антенны на заданные углы в каждом предварительно выбранном элементарном интервале обследования и определением координат мест отражения соответствующих сигналов при каждом шаге поворота луча антенны РЛС в этих интервалах обследования, причем полученные при зондировании отраженные сигналы и координаты соответствующих участков подстилающей поверхности запоминают, а затем формируют соответствующие этим отраженным сигналам сигналы радиоизображения участков и соответствующих им координат обследованного поля, после чего, например, по величине интенсивности отраженных сигналов и плотности их расположения на этих участках сигналов соответствующей интенсивности вначале определяют наличие малоразмерных объектов и координаты мест их нахождения, а потом по соответствующим отраженным сигналам производят формирование признаков, характеризующих находящиеся в этих местах объекты, и сопоставляют эти признаки с соответствующими эталонами, причем обследование проводят в «привязке», например, к характерным точкам подстилающей поверхности и/или к специальным маякам, например, к радиомаякам и/или оптическим отражателям, которые устанавливают в зоне предполагаемого нахождения малоразмерных объектов.
При этом зондирование подстилающей поверхности осуществляют в диапазоне, например, дециметровых волн, а зондирующие сигналы формируют в виде повторяющейся во времени ограниченной последовательности когерентных импульсов на различных несущих частотах.
Кроме того, синтезирование апертуры антенны проводят в течение времени длительности импульсов, имеющих одинаковые несущие частоты на каждом элементарном интервале обследования.
При этом элементарный интервал обследования выбирают равным (0,5-2,0) сек, а отраженные сигналы запоминают в виде массива данных, представляющего собой, например, n-мерное (где, например, n=4) представление величин этих отраженных сигналов, а также сигналов, соответствующих координатам мест отражения, и углов сканирования соответствующих мест отражения на исследованных участках подстилающей поверхности.
При этом величины интенсивности сигналов при обнаружении находящихся на этой поверхности и/или заглубленных малоразмерных объектов получают путем суммирования величин сигналов, полученных при каждом пролете ЛА, но отраженных от одних и тех же точек поверхности, с последующим сравнением этих суммарных сигналов с заданным пороговым сигналом и соответствующим выделением с отнесением к координатам на этой поверхности результирующих сигналов и их совокупностей, а используемые для распознавания признаки с помощью, например, преобразования Радона получают в виде квазиголограмм радиоизображения соответствующего малоразмерного объекта при соответствующей обработке запомненных совокупностей сигналов, отраженных от соответствующих мест нахождения этих объектов.
При этом выделение признаков, сопоставление их с соответствующими эталонами и последующую классификацию объектов производят с помощью алгоритмов, работающих на принципах обработки с помощью нейронных сетей, например по алгоритму Кохонена.
Кроме того, обследование предполагаемого минного поля производят путем его облета со сканированием и при соответствующем зондировании каждого участка обследуемой подстилающей поверхности в трех и более ракурсах, а после обнаружения мест нахождения малоразмерных объектов вокруг этих мест осуществляют облет с соответствующим сканированием и зондированием этих участков подстилающей поверхности.
При этом величину шага дискретного поворота радиолокационного луча антенны РЛС выбирают соответствующей ширине этого луча в горизонтальной плоскости, а заданный угол поворота выбирают соответствующим углу охвата участка сектором отклонения луча антенны РЛС ЛА.
Кроме того, радиомаяки и/или оптические отражатели устанавливают путем, например, их сбрасывания с борта ЛА при его полете и эти маяки устанавливают на границах минного поля, например, по его периметру, причем расстояние между установленными на периметре маяками выбирают соответствующим ширине полосы обследования при разовом пролете ЛА.
Кроме того, маяки устанавливают по периметру минного поля и на участках подстилающей поверхности, на которых обнаружены малоразмерные объекты.
Кроме того, на участках подстилающей поверхности, на которых обнаружены малоразмерные объекты, устанавливают оптические средства разметки.
Кроме того, при обследовании минного поля его облет осуществляют по маршруту от каждого установленного, например, по периметру данного поля маяка к каждому другому маяку, причем заранее определяют координаты этих маяков, например, в земной системе координат, при этом в качестве исходной (начальной) точки выбирают местонахождение, например, установленного на периметре радиомаяка, а эти маяки устанавливают на расстоянии, соответствующем, например, (0,3-0,9) ширины обзора при пролете.
При этом сигналы радиомаяков, установленных на границах минного поля и на участках подстилающей поверхности, на которых обнаружены малоразмерные объекты, выбраны с отличающимися по частоте излучаемыми сигналами.
Предложенные способ повышения разрешения радиолокационного зондирования, система для его осуществления и способ дистанционного выявления системой малоразмерных объектов обеспечивают возможность проведения бесконтактного для соответствующего оператора, например минера, поиска с высокой вероятностью обнаружения и распознавания мин, и в том числе, заглубленных в грунт и соответственно замаскированных.
Дело в том, что при решении задачи обнаружения и распознавания малоразмерных целей, в том числе разного типа мин, определяющим фактором является соотношение мощностей отражения радиолокационного сигнала от объекта и непосредственно от окружающей его среды (отношение сигнал/фон).
При этом мощность фона в элементе разрешения зависит от удельной эффективной поверхности рассеяния (ЭПР) фона и линейного разрешения радиолокационного датчика (РЛД) и определяется соотношением [7]:
Pф=kσфδρδD,
где k - коэффициент, учитывающий затухание сигнала при распространении в среде, σф - удельная ЭПР фона, δρ и δD - линейное разрешение по поперечной и продольной координатам участка местности, облучаемого при обнаружении объекта, а мощность сигнала, отраженного от объекта, определяют как
Рc=kσo,
где σо - значение ЭПР малоразмерного объекта.
Особенности, связанные с подповерхностным расположением объекта (мины), существенно усложняют структуру формирования сигнала Рс, поэтому задачу его получения обычно решают экспериментально. Так известно [8], что при обнаружении на площадке размером 1 м × 1 м и использовании радиоизлучения РЛС в дециметровом диапазоне радиоволн на частоте 1 ГГц (0.3 м) для заглубленной металлической противотанковой мины типа М-20 имеет место отношение Рс/Рф ˜ 2 ( или 3 дб), причем вероятность обнаружения мины в таких условиях менее 0,1.
Вероятность обнаружения в этом случае можно повысить путем улучшения разрешения РЛД за счет, например, использования в составе РЛД широкополосной (в диапазоне рабочих частот) активной фазированной антенной решетки (АФАР).
Ориентируясь на величину полосы рабочих частот (Δf) АФАР порядка (250-300) МГц, в соответствии с зависимостью [9]:
τu=1/Δf,
где τu - эквивалентная длительность сжатого импульса, получаем величину эквивалентной длительности сжатого импульса τu=(3.3-4) нс.
Тогда согласно соотношению δρr=сτu/2, где с=3×108 м/с - скорость распространения радиоволн, разрешение по радиальной дальности составляет δρr=(0.5...0,6) м.
При этом разрешение по горизонтальной дальности (подстилающей поверхности) составит:
δD=ρr/cosθy,
где θy - угол между направлением наблюдения и подстилающей поверхностью (угол наблюдения). С учетом такой особенности на ближней границе участка радиолокационного наблюдения имеем θy ˜ 60° и соответственно получаем δD=(1,0-1,2) м.
Потенциальную разрешающую способность РЛД при боковом обзоре подстилающей поверхности вдоль линии пути (δρx), описывает соотношение
δρx=λro/2Lsinθx, (1)
где λ - длина радиоволны сигналов зондирования РЛД, ro - наклонная дальность до середины участка, L - длина пути перемещения антенны РЛД, θx - угол наблюдения относительно вектора путевой скорости ЛА.
Подставляя в формулу (1) значение несущей частоты зондирующих сигналов РЛД из некоторого участка дециметрового диапазона (0,5-1,5) ГГц, например, среднее его значение, равное 1 ГГц, а также принимая угол θx=90°, значение ro=85 м и длину пути L=25 м за время полета летательного аппарата в течение ˜1с, получаем величину радиального разрешения δρx ˜ 0.5 м.
Однако в действительности при использовании для компенсации влияния различных факторов, таких как, например, формирование ложных отметок из-за высокого уровня боковых лепестков когерентной обработки сигналов, составляющих примерно -13 дб по отношению к главному максимуму, и для повышения устойчивости процесса обработки информации использование весовых сглаживающих функций, имеет место ухудшение разрешающей способности [11]. Так, с учетом такой обработки реальное значение разрешения в поперечном направлении (по кросс-дальности) при θx=90° можно ожидать δρx=(0,7-1) м, а с учетом того, что принимаются «кадры» наблюдения и при θx=30° значение δρx в этих кадрах удвоится. Однако для них разрешение по дальности будет лучше почти в 2 раза, чем для «кадров» наблюдения при θx=90°. В среднем для всех «кадров» когерентной обработки на выбранном элементарном интервале обследования длительностью ˜1 с можно принять δρx=˜1 м и δD=˜ 1 м.
Дальнейшее улучшение разрешающей способности РСА возможно посредством введения некогерентной обработки отдельно сформированных «кадров» наблюдения при когерентной обработке. Получение этих результатов основано на применении методов реконструктивной вычислительной томографии, в частности, на базе применения преобразования Радона [12].
Оценку достижимой разрешающей способности при использовании таких методов можно получить, например, путем построения двумерного портрета в декартовой системе координат по совокупности проекций - одномерных портретов, синтезированных на малых угловых интервалах, сдвинутых по ракурсу относительно друг друга, где соответствующие значения потенциальной разрешающей способности для центральных точек синтезированного двумерного портрета получены в виде следующих зависимостей [13]:
Здесь βо - угловой интервал наблюдения, эквивалентный суммарному ракурсу проекций - одномерных портретов, синтезированных на малых угловых интервалах, сдвинутых по ракурсу относительно друг друга.
Отсюда, при βo=π имеем
и
Представленные оценки получены на базе формирования функции неопределенности (ФН), что соответствует когерентной обработке сигналов [9]. В данном методе синтезирования на малых угловых интервалах двумерного портрета по его одномерным проекциям ведется без учета нелинейной зависимости фазы от ракурса, что в действительности ухудшает характеристики разрешения относительно потенциально достижимых.
Оценку пространственной селекции вдоль отрезка ρ=(ρx, ρy) в полярной системе координат формируют на базе определения ширины модуля ФН на уровне 0.7 (-3 дб) [10]. При этом для кругового обзора при угловом размере РСА βо=2π потенциальная разрешающая способность по всем пространственным координатам равна δρ=0.18λ, что при гипотетически принятой длине волны λ=0.3 м дает δρ=0.05 м.
При формировании квазиголограммы учитывают формальную возможность для каждого радиоизображения участка местности с помощью последующего проведения процедуры преобразования Фурье вновь получить исходную радиоголограмму. В данном случае такую процедуру осуществляют для каждой проекции, соответствующей преобразованию Радона радиоизображения выделенного участка местности, причем для всех полученных проекций этого участка формируют совокупность отдельных радиоголограмм, каждой из которых свойственно отображение местности под другими ракурсами наблюдения. Соединение таких радиоголограмм с обеспечением необходимой их софазировки дает объединенную радиоголограмму общего интервала ракурсов наблюдения выделенного участка. Однако осуществление такой процедуры сопряжено с трудностями реализации необходимой фазировки и учета нелинейности формирования объединенной радиоголограммы, которая при больших ракурсах наблюдения становится кольцевой. В связи с этим реально получаемое представление подобной радиоголограммы названо квазиголограммой.
В отсутствие когерентности при «сшивании» отдельных «кадров» когерентной обработки на элементарных интервалах обследования имеет место расширение ФН и, как следствие, существенное ухудшение разрешения. Однако это обстоятельство может быть компенсировано, например, предложенным в данном техническом решении режимом проведения телескопического обзора участка местности, при котором разрешающая способность уменьшается всего в 2-3 раза и достигает соответственно значения δρ˜0.15 м. Величину разрешающей способности по всем пространственным координатам δρ˜0.25 м следует ожидать при 3-х кратном обзоре участка местности с изменением курсового угла прямолинейных траекторий вертолета над зондируемым участком местности, а при однократном обзоре местности и некогерентной обработке информации, например по семи кадрам обзора когерентной обработки, разрешение по всем пространственным координатам составит δρ˜0.5 м.
Обеспечение разрешения δρ˜0.5 м по всем координатам по сравнению с разрешением δρ˜1 м дает дополнительное увеличение отношения сигнал/фон в 4 раза (на 6 дб) и суммарное его значение 9 дб. В этом случае в соответствии с приведенными в литературе близкими к данной тематике данными [10] значение вероятности обнаружения противотанковой мины составит 0,25. Использование следующего уровня разрешения δρ˜0.25 м обеспечит обнаружение таких мин с вероятностью не ниже 0,95. В случае мин меньшего размера, в частности, противопехотных мин разрешение δρ˜0.25 м позволит их обнаруживать с вероятностью также не ниже 0,95. Более высокое разрешение δρ˜0.15 м в режиме телескопического обзора даст возможность фиксировать радиоизображение обнаруженных мин с особенностями формирования их «блестящих» при радиооблучении (радиозондировании). Это, в свою очередь, при использовании настоящего технического решения позволяет осуществлять распознавание типов мин с помощью, например, нейроструктур, обеспечивающих в данном случае распознавание, в частности, противотанковых мин с вероятностью не ниже 0,95 и противопехотных с вероятностью не ниже 0,9.
На фиг.1 приведена структурная схема системы дистанционного выявления малоразмерных объектов, на фиг.2 приведена структурная схема радиолокационного датчика, на фиг.3 показан пример условной разметки обследуемого поля, на фиг.4 приведена схема сканирования в течение элементарного интервала времени при облете, на фиг.5 приведена схема сканирования при «телескопическом» обследовании, на фиг.6 показан пример превышения сигналами, отраженными от разных участков подстилающей поверхности, сигналов порогового уровня, заданного равным 8 дБ, на фиг.7 приведено сравнение вероятностей обнаружения при использовании известных методов и предложенного способа на основе реконструктивной томографии с использованием преобразования Радона.
Система дистанционного выявления малоразмерных объектов, для осуществления способа (фиг.1) содержит радиолокационный датчик (РЛД) 1, предназначенный для обеспечения соответственно излучения сигналов, например дециметрового диапазона радиоволн, приема отраженных сигналов при зондировании подстилающей поверхности и формирования соответствующих сигналов для последующей обработки. РЛД 1 первым выходом подключен к первому входу блока 2 согласования (БС), выполненного в виде (на фиг. не показаны) последовательно соединенных преобразователя частоты и АЦП [11] и своим выходом соединенного с первым входом блока 3 формирования радиолокационного изображения (БФРЛИ), выполненного в виде, например, процессорного устройства «Багет» [14].
Выход блока 3 формирования радиолокационного изображения подключен ко входу блока 41 памяти, выполненного в виде оперативного запоминающего устройства, например, на плате типа РСЛ-6646В [15], выходом соединенного с первым входом радиопередающего устройства 5, предназначенного для передачи полученной при полете ЛА и записанной в блоке 41 памяти информации для ее последующей обработки в соответствующий наземный центр (на фиг. не показан) и выполненного в виде соответствующего устройства типа UC4 Marcad Delivery Receiver радиосистемы серии UC фирмы SHURE [16].
Вторым (управляющим) входом радиопередающее устройство 5 подключено к первому выходу вычислительного устройства 61, предназначенного для управления работой связанных с ним блоков и устройств системы и для обработки и передачи сигналов этих блоков и соответствующих устройств и выполненного в виде промышленного компьютера IPPC-950T фирмы Advantech [15], своими вторым выходом соединенного со вторым (управляющим) входом первого блока 41 памяти, группой выходов подключенного к первой группе входов РЛД 1, а третьим выходом соединенного со входом блока 7 синхронизации, выполненного в виде генератора тактовых импульсов [17].
Кроме того, вычислительное устройство 61 своим входом-выходом соединено со входом-выходом первого блока 41 памяти, а четвертым и пятым выходами подключено соответственно к первым входам индикатора 81 и блока 9 определения координат, своими первым и вторым выходами соответственно соединенного с первым входом вычислительного устройства 61 и вторым входом индикатора 81, а радиовходом связанного с радиовходом системы.
Индикатор 81 предназначен для создания визуального представления, например у пилота ЛА, о заданной трассе облета минного поля и степени выполнения этого задания и выполнен в виде соответствующего устройства типа GV-D900 [16].
Блок 9 определения координат (БОК) предназначен для получения информации о координатах обследуемых участков подстилающей поверхности и местонахождения обнаруженных малоразмерных объектов, а также координатной привязке ЛА и выполнен в виде спутникового радионавигационного комплекса СРНК-21ДМ [18].
Блок 7 синхронизации своими первым и вторым выходами соединен со вторыми (синхронизирующими) входами соответственно блока 2 согласования и блока 3 формирования радиолокационного изображения, а группой выходов подключен к группе соответствующих входов РЛД 1, вторым выходом соединенного с третьим входом блока 2 согласования.
Радиопередающее устройство 5 своим радиовыходом связано с радиовходом радиоприемного устройства 10, предназначенного для получения информации с борта ЛА для последующей обработки соответствующими устройствами системы и выполненного в виде соответствующего устройства типа UC1 радиосистемы серии UC фирмы SHURE [16].
Радиоприемное устройство 10 выходом соединено с первым входом второго блока 42 памяти, выполненного в виде оперативного запоминающего устройства, например, на плате типа РСЛ-6646В [15] и своим выходом подключенного к первому входу классификатора 11, предназначенного для реализации процедур обнаружения малоразмерных объектов и их распознавания и выполненного в виде нейросетевого микропроцессора NM 6403 [19].
Классификатор 11 выходом соединен с первым входом дополнительного вычислительного устройства 62, предназначенного для обработки поступающих информационных сигналов и построения карты-схемы расположения и координатной привязки малоразмерных объектов, например, мин в обследованной зоне, а также для обеспечения взаимодействия соответствующих блоков и устройств системы и выполненного в виде промышленного компьютера IPPC-950T фирмы Advantech [15].
Вычислительное устройство 62 своими первым, вторым и третьим выходами подключено соответственно ко вторым входам радиоприемного устройства 10, второго блока 42 памяти и классификатора 11, четвертым и пятым выходами - к первым входам соответственно дополнительного индикатора 82 и печатающего устройства 12, а входом-выходом соединено со входом-выходом второго блока 42 памяти.
Дополнительный индикатор 82 выполнен в виде соответствующего устройства типа GV-D900 [16], а печатающее устройство 12 выполнено в виде принтера hp LaserJet 1200.
При этом группа радио-входов-выходов РЛД 1 связана с соответствующей группой входов-выходов системы, входы вычислительных устройств 61 и 62 подключены соответственно к первому и второму входам системы, оптические выходы индикаторов 81 и 82 связаны с соответствующими выходами системы, а выход печатающего устройства связан с выходом системы.
Радиолокационный датчик 1 (фиг.2) содержит антенное устройство (на фиг. не обозначено), выполненное в виде активной фазированной антенной решетки (АФАР) [20], состоящей из двух антенных решеток (на фиг. не показано) по М независимо подключенных приемо-передающих модулей 13 в каждой, где М=1, ..., 12, и представляет собой отдельно установленную антенную решетку, а также сумматор 14, два коммутатора 15, генератор 16, модулятор 17 и блок 18 формирования заданного распределения амплитуд и фаз сигналов для управления положением антенного луча для каждого из приемо-передающих модулей 13, причем приемо-передающие модули 13 первыми электрическими входами соединены с соответствующими выходами первого коммутатора 151, первым входом подключенного к первому выходу генератора 16, а вторым входом соединенного с первым выходом блока 18 формирования заданного распределения амплитуд и фаз сигналов для управления положением антенного луча каждого из приемо-передающих модулей 13, вторые электрические входы которых подключены к соответствующим выходам второго коммутатора 152, первым входом соединенного со вторым выходом блока 18 формирования заданного распределения амплитуд и фаз сигналов для управления положением антенного луча каждого из приемо-передающих модулей 13, а вторым входом подключенного к первому входу первой группы входов радиолокационного датчика 1, первым выходом соединенного с выходом сумматора 14, соответствующими входами подключенного к выходам соответствующих приемо-передающих модулей 13, а вторым выходом соединенного с выходом генератора 16, первым входом подключенного к выходу модулятора 17, своим первым входом соединенного с третьим входом первой группы входов, а вторым входом подключенного к первому входу второй группы входов радиолокационного датчика 1, при этом второй и третий входы второй группы входов радиолокационного датчика 1 соединены со вторыми входами соответственно генератора 16 и блока 18 формирования заданного распределения амплитуд и фаз сигналов для управления положением антенного луча каждого из приемо-передающих модулей 13, которые радио-входами-выходами связаны с соответствующими радио-входами-выходами радиолокационного датчика 1.
Приемо-передающие модули 13 предназначены для излучения СВЧ-сигналов дециметрового диапазона и приема соответствующих отраженных, например, от подстилающей поверхности при ее зондировании сигналов и выполнены в виде, например, элементов типа М-2730 [21]. Сумматор 14 выполнен в виде распределителя СВЧ [22] и электрическими входами соединенных с соответствующими выходами.
Коммутаторы 15 выполнены в виде соответствующих устройств [17], причем коммутатор 151 предназначен для переключения режимов (передача или прием) работы приемо-передающих модулей 13 и соответствующего распределения мощности СВЧ сигналов, подводимых к этим модулям от генератора 16, выполненного на основе высокочастотного транзистора, например, транзистора типа 2Т634А-2 [20], а коммутатор 152 предназначен для передачи на каждый из приемо-передающих модулей 13 соответствующих значений параметров соответствующих сигналов от блока 18 формирования заданного распределения амплитуд и фаз сигналов для управления положением антенного луча.
Модулятор 17 предназначен для формирования параметров излучаемого импульсного сигнала, а именно: длительности, периода повторения и частотной модуляции, и выполнен в виде микросхемы типа AT90S4433 [21], а блок 18 формирования текущего закона распределения амплитуд и фаз сигналов для управления положением антенного луча выполнен в ви