Передающий узел с качающейся шайбой (варианты) и дифференциальный преобразователь скорости на его основе (варианты)

Иллюстрации

Показать все

Изобретение относится к машиностроению. Передающий узел с качающейся шайбой содержит две обоймы 42 и 43, одна из которых 43 является качающейся шайбой. На обращенных друг к другу поверхностях тел вращения выполнены замкнутые кольцевые дорожки качения 44 и 45, взаимодействующие друг с другом посредством шариков 46 (тел качения), находящихся в постоянном контакте с дорожками качения 44 и 45 на обеих деталях. Угол наклона качающейся шайбы выбран так, чтобы дорожки в месте контакта с телами качения имели друг к другу наклон, меньший или равный углу самозаклинивания тел качения. Приведены варианты. Технический результат - устранение проскальзывания шариков в передающих узлах с качающейся шайбой, а также автоматическое регулирование нажатия на шарик во фрикционно-планетарных шариковых передачах. 4 н. и 43 з.п. ф-лы, 47 ил.

Реферат

Область техники. Изобретение относится к области общего машиностроения, а именно к средствам для передачи вращения с преобразованием скорости, основанным на механизме с качающейся (прецессирующей) шайбой, и может быть использовано в приводах машин и механизмов самого широкого назначения.

Предшествующий уровень техники. Известны преобразователи скорости, называемые и классифицируемые по-разному, но основанные на одинаковом принципе зубчатой передачи с качающейся шайбой.

К ним относится волновая зубчатая торцевая передача по заявке на патент РФ №94023896, МПК F 16 H 1/00. Передающий узел ее содержит качающуюся шайбу с торцевым зубчатым венцом, который находится в зацеплении с неподвижным торцевым зубчатым колесом. Прецессию шайбы вызывает генератор волн в виде эксцентрика с нажимным роликом. Качающаяся шайба связана с ведомым валом с помощью пространственного (или универсального) шарнира.

По аналогичной кинематической схеме построена планетарная прецессионная коническая передача (SU СССР №1414976), волновая передача с жесткими звеньями (SU №653458), коническая волновая передача RU №2145016. Подобные кинематические схемы, но с различиями в выполнении отдельных узлов, реализуют преобразователи скорости по патентам США №3525890; №3640154; №4281566; №4841809; №5562560. Некоторые из них имеют два передающих узла, т.е. реализуют двухступенчатую передачу.

Все вышеописанные преобразователи скорости обладают общими недостатками, которые определяются используемым в них зубчатым зацеплением. Прежде всего, это большое трение и высокие тепловые потери, особенно при повышенных скоростях вращения. Кроме того, в зацеплении одновременно находится всего несколько зубьев, что ограничивает величину передаваемых этими механизмами моментов. Часть из этих недостатков устраняют преобразователи скорости с нутационными или прецессионными системами передачи момента с кулачковым зацеплением звеньев через тела качения (US №4715249; US №4563915; SU №1427115). Дифференциальный преобразователь скорости с качающейся шайбой по патенту US №4563915 имеет передающий узел из трех звеньев. Качающаяся шайба с двумя периодическими по азимуту кулачковыми элементами в виде гребней и впадин, расположенных на ее противоположных торцах, размещена между двух других звеньев в виде тел вращения. Кулачковые поверхности качающейся шайбы через цепочки шариков взаимодействуют с аналогичными кулачковыми элементами на обращенных к качающейся шайбе поверхностях тел вращения. Шарики удерживаются на фиксированном угловом расстоянии друг от друга тонкостенным сепаратором с отверстиями, введенным между взаимодействующими кулачковыми элементами. Гребни и впадины направлены вдоль оси и сконструированы так, чтобы элементы качения двигались по синусоидальной кривой на поверхности воображаемой сферы с центром, совпадающим с центром качающейся шайбы (и центром прецессии). Однако в этом устройстве расположенные на фиксированном расстоянии шарики будут постоянно сцепляться, и расцепляться с кулачковыми поверхностями, так как направленны вдоль оси гребни, и впадины на торцевых поверхностях находятся на разных расстояниях от центра воображаемой сферы.

Этот недостаток устранен в патентах US №4620456, а также US №5443428. Передающий узел таких преобразователей скорости также включает три звена, одним из которых является качающаяся шайба, а два других представляют собой тела вращения. Промежуточная качающаяся шайба снабжена, по крайней мере, одной кулачковой поверхностью в виде изогнутой дорожки качения, зацепляющейся через цепочку шариков с дорожкой на одном из тел вращения передающего узла. В патенте №4620456 боковая поверхность качающейся шайбы изогнута по сфере, а трохоидальная дорожка качения выполнена в месте пересечения боковой и торцевой поверхности, либо на торцевой поверхности качающейся шайбы. У противоположного торца качающейся шайбы в случае одноступенчатого преобразователя выполнены лунки, зацепляющиеся через вторую цепочку шариков с лунками на другом теле вращения. Тела вращения связаны с валом отбора мощности или корпусом преобразователя соответственно. Для фиксации углового положения шариков относительно друг друга при прохождении ими одновременно выступов или впадин на сопрягаемых дорожках между сопрягаемыми поверхностями введен тонкостенный сепаратор, в отверстиях которого размещены шарики. В двухступенчатом преобразователе на качающейся шайбе с обеих сторон выполнены эпитрохоидальные дорожки качения с разным числом зубьев, сопрягающиеся с гипотрохоидальными дорожками на корпусной и выходной детали.

Шайба качается относительно центра прецессии, являющегося центром симметрии системы, а цепочки шариков находятся в нутирующем движении, т.к. их плоскости смещены от центра прецессии. Шарики совершают колебательное движение как в осевом, так и в радиальном направлении, то есть при работе механизма происходит изменение угла смещения зацепляющихся деталей, что для высокоскоростных механизмов приводит к вибрации и вызываемым ею проблемам: шуму и износу. Кроме того, дорожки качения по эпи- и гипотрохоидальным кривым сложны в изготовлении. Понимая это, авторы предложили изготавливать все детали передаточного механизма из пластмассы, на которой дорожки качения сложной формы можно изготавливать штамповкой. Очевидно, что такие передачи не пригодны для силовых механизмов, а могут быть использованы только для приборов, часов и т.п. изделий.

В патенте US №5443428 описан преобразователь такой же конструкции, но с еще более сложной в расчете и изготовлении кулачковой периодической поверхностью в виде множества сферически расположенных волнообразных выступов и впадин, разработанной для устранения проскальзывания шариков. Две цепочки шариков, лежащие по разные стороны от экваториальной линии сферы, относительно центра сферы совершают только угловые перемещения, поэтому шум и вибрация уменьшены. Однако каждая цепочка шариков относительно оси передающего узла совершает сложное движение, складывающееся из прецессии относительно точки пересечения плоскости цепочки шариков с осью системы и из планетарного движения относительно оси преобразователя. То есть относительно этой оси шарики совершают радиальные перемещения, что оставляет возможность шума и вибраций. Кроме того, особые требования к форме кулачковых поверхностей делают преобразователь мало пригодным в силовых приводах массового применения и изготовления.

Известен преобразователь скорости (US №1748907), передающий узел которого состоит из двух тел вращения: сферической головки, охватываемой качающейся шайбой. На внутренней сферической поверхности качающейся шайбы вдоль экваториальной линии выполнены лунки. Сферическая головка выполнена с замкнутой периодически изогнутой вдоль оси дорожкой качения на ее наружной боковой поверхности в экваториальной области сферы. В лунках расположены шарики, находящиеся в постоянном зацеплении с изогнутой дорожкой качения. В этом передающем узле центр прецессии цепочки шариков совпадает с центром прецессии качающейся шайбы, поэтому цепочка шариков будет участвовать только в прецессирующем движении, и требования к форме выполнения изогнутой дорожки качения значительно уменьшены. Основным недостатком преобразователя являются значительные потери на трение при проскальзывании шариков относительно лунок на качающейся шайбе.

Решению задачи получения передающего узла, в котором тела качения контактируют с периодическими дорожками только с чистым качением, без трения скольжения, посвящено изобретение по заявке WO 008201043, выбранное нами за прототип для одного из вариантов передающего узла. В заявке описан передающий узел из двух тел вращения, содержащий охватывающие друг друга обойму и качающуюся шайбу с сопрягаемыми поверхностями, выполненными по сфере. В экваториальной области сферических поверхностей выполнены периодические дорожки качения, по крайней мере, одна из которых является замкнутой и волнообразно изогнутой. Другая дорожка качения может быть выполнена в виде системы разнесенных по окружности канавок, вытянутых по меридианам сферы. В зацеплении с дорожками качения находятся элементы зацепления в виде тел качения. Для тел качения - шариков число периодов дорожек качения на единицу отличается от числа, кратного четырем, и число периодов дорожек качения качающейся шайбы и обоймы отличается на 2. Дифференциальный преобразователь скорости на основе этого передающего узла содержит первый и второй валы и корпус. Качающаяся шайба связана с одним из этих элементов звеном, преобразующим качающееся движение во вращательное, а с другим из этих элементов звеном, передающим вращение качающейся шайбы независимо от ее качающегося движения. Третий из элементов преобразователя связан непосредственно с обоймой. Чистое качение шариков относительно дорожек в этом изобретении получают двумя путями. В передающем узле с меридиональными канавками их выполняют на наружном охватывающем элементе, компенсируя разницей в расстоянии от точек контакта шарика с внутренней и внешней деталью до центра сферы разный путь, проходимый шариком относительно наклонного фронта волны в замкнутой канавке и относительно меридиональной канавки. Второй путь - это изменение формы поперечного сечения дорожек на подъеме и спуске. При этом изменяется эффективный радиус качения на разных участках дорожек качения, и этим выравнивается путь, проходимый шариком относительно дорожек с разной крутизной фронтов. Таким образом, в обоих случаях цель достигается выравниванием пути, проходимого шариком относительно обеих дорожек качения за одно и то же время. Однако, как показали наши исследования, этого условия недостаточно, чтобы заставить шарики при взаимодействии с дорожками качения только катиться, исключая их проскальзывание.

Кроме того, прототип, как и каждый из вышеописанных преобразователей скорости с качающейся шайбой, имеет неподвижный корпус, с которым в каждой конкретной конструкции связана вполне конкретная деталь, а передающий узел имеет внутренний объем, ограниченный корпусом. Преобразователь с собственным корпусом, как правило, не встраивается в приводные механизмы, а размещается и компонуется снаружи, что увеличивает габариты устройства в целом. Таким образом, задачей изобретения является разработка универсального, простого в изготовлении, минимального по удельным весогабаритным характеристикам и удобного для встраивания в самые разнообразные машины и механизмы передающего узла и преобразователя скорости.

Найденное нами условие качения шариков оказалось пригодным не только для передающих узлов с периодическими дорожками качения. Применение его в шариковых фрикционно-планетарных передающих узлах позволило создать целый класс простейших передающих механизмов, лишенных главного недостатка всех фрикционных передач, а именно возникновения проскальзывания при изнашивании деталей. Передающий узел известных шариковых фрикционно-планетарных передач (SU №844863, SU №1229484, RU №2010141) содержит два тела вращения с дорожками качения, между которыми в гнездах сепаратора расположены тела качения - шарики. Одно из тел вращения связано с входным валом, другое с корпусом или другим валом, а с выходным валом преобразователя скорости связан сепаратор, который преобразует орбитальное движение шариков во вращение выходного вала. При простоте конструкции, основной проблемой фрикционно-планетарных шариковых передач является необходимость нажимного механизма, который предотвращает проскальзывание шариков при увеличении передаваемого момента или при износе шариков и дорожек качения в процессе эксплуатации. Нажимные механизмы, в основном, используют различные упругие элементы.

Техническим результатом настоящего изобретения является устранение проскальзывания шариков в передающих узлах с качающейся шайбой. При этом для фрикционно-планетарных шариковых передач решается задача автоматического регулирования величины нажатия на шарик без применения специальных механизмов.

Передающие узлы, выполненные по изобретению, являются основой не только для дифференциальных преобразователей скорости, они могут иметь самостоятельное применение, например, в мешалках. Возможно создание механизма, непосредственно преобразующего энергию колебательного движения, (например, морских волн) в энергию вращения с увеличенной или уменьшенной скоростью вращения. Дополнительным техническим результатом, достигаемым отдельными вариантами изобретения, является его компоновка в виде подшипникового узла, без неподвижного корпуса, в котором какая-то из деталей становится неподвижной при посадке преобразователя скорости на его рабочее место.

Более просто понять сущность изобретения на примере передающего узла с качающейся шайбой во фрикционно-планетарных шариковых преобразователях скорости, поэтому начнем описание с этого варианта реализации изобретения.

Сущность изобретения.

В соответствии с изобретением передающий узел содержит два тела вращения, одно из которых выполнено с возможностью двух независимых движений: качаться относительно другого и вращаться вокруг собственной оси, наклонной к оси другого тела вращения и является качающейся шайбой. На обращенных друг к другу поверхностях тел вращения выполнены замкнутые кольцевые дорожки качения, взаимодействующие друг с другом посредством тел качения, находящихся в постоянном контакте с дорожками обоих тел вращения. Угол наклона качающейся шайбы выбран так, чтобы дорожки в месте контакта с телами качения имели друг к другу наклон, меньший или равный углу самозаклинивания тел качения. На практике этот угол для обычных конструктивных материалов можно принять в диапазоне 0,1-10 градусов. При выполнении этого условия тела качения, например шарики, будут зажаты между поверхностями качающейся шайбы и второго тела вращения без проскальзывания и при вращении одного из них будут вовлекаться в орбитальное движение относительно другого. В своем орбитальном движении шарики как кулачки воздействуют на шайбу, вызывая ее качание. Таким образом, передающий узел с качающейся шайбой будет реализовать принцип фрикционно-планетарной шариковой передачи, в которой планетарное движение шарика преобразуется в качающееся движение шайбы или наоборот. Наклон дорожек качения друг к другу будет обеспечивать автоматическую регулировку нажатия на шарик, т.к. при увеличении нагрузки или износе шарика и дорожек качения шарик сместится по азимуту в область меньшего расстояния между дорожками качения.

Для расширения диапазона передаточных отношений профили поперечного сечения дорожек качения целесообразно выполнить такой формы, чтобы зоны контакта тела качения с дорожками находились на разном расстоянии от оси вращения тела качения.

Передающий узел с качающейся шайбой по изобретению можно выполнить в двух конструктивных модификациях: дисковой и коаксиальной. В первой модификации тела вращения выполнены в виде дисков, один из которых качается относительно другого. Кольцевые замкнутые дорожки выполнены на обращенных друг к другу плоских поверхностях дисков и находятся в контакте с одним телом качения, расположенным между дорожками качения. Для выполнения условия наклона дорожек качения друг к другу под углом, меньшим угла самозаклинивания тел качения, угол наклона качающейся шайбы к оси передающего узла должен лежать в пределах 0,2-15 градусов. Тело качения в этом узле само устанавливается в том месте окружности дорожек качения, где расстояние между ними соответствует размеру тела качения.

Для тела качения - шарика боковые стенки дорожки качения любого из дисков целесообразно выполнить упруго подвижными относительно друг друга. При этом радиус кривизны поперечного сечения дорожки качения становится изменяемым, и при изменении нагрузки точка контакта шарика с дорожкой качения будет смещаться от оси вращения шарика. Т.е. получим передающий узел с автоматически изменяющимся передаточным отношением в зависимости от нагрузки.

В коаксиальной модификации передающего узла тела вращения выполнены в виде охватывающих друг друга обоймы и качающейся шайбы, с боковыми обращенными друг к другу поверхностями в виде сферического пояса с центром сферы в центре прецессии качающейся шайбы. В общем случае каждая из дорожек качения на качающейся шайбе и обойме выполнена в виде системы параллельных друг другу замкнутых кольцевых канавок, лежащих в плоскостях, перпендикулярных оси вращения соответствующей детали. Телами качения служат шарики, расположенные в местах пересечения канавок качающейся шайбы с канавками обоймы.

В частных случаях система канавок качающейся шайбы может быть представлена одной канавкой, выполненной по экваториальной линии качающейся шайбы и пересекающейся с одной или несколькими канавками на обойме. Одна канавка на обойме смещена от линии большого круга сферы на расстояние, равное половине размаха качающейся шайбы и зацепляется с канавкой качающейся шайбы одним шариком.

Для получения уравновешенной относительно оси обоймы системы шариков на обойме выполнены две кольцевые канавки, расположенные по разные стороны от большого круга сферы на расстоянии от него, равном половине размаха качающейся шайбы. Кольцевые канавки обоймы зацепляются с канавкой на качающейся шайбе двумя диаметрально расположенными шариками. Такая же уравновешенная система шариков получится, если на обойме выполнить одну канавку по линии большого круга сферы, и в двух диаметрально противоположных точках пересечения этой канавки с канавкой качающейся шайбы разместить два шарика.

Возможно объединение двух вышеописанных вариантов в одной конструкции. На обойме тогда будет три канавки, одна - по линии большого круга сферы и две по разные стороны от нее на расстоянии половины размаха качающейся шайбы. В зацеплении будут находиться четыре попарно диаметральных шарика, расположенных на перпендикулярных друг к другу диаметрах.

Возможно сочетание одной канавки в экваториальной плоскости обоймы с двумя канавками на качающейся шайбе, разнесенными от экваториальной линии шайбы на расстояние, равное половине размаха качающейся шайбы.

Канавки на обойме могут быть выполнены на отдельных и независимо вращающихся кольцевых элементах обоймы.

Не следует забывать, что все вышеописанные шариковые фрикционно-планетарные узлы работают только при выполнении условия, накладываемого на угол наклона дорожек друг к другу. Невыполнение этого условия приведет к проскальзыванию шариков, т.е. к нарушению их фрикционной связи с дорожками качения, и нарушению передачи момента.

Второй вариант изобретения реализован на передающих узлах с качающейся шайбой с периодическими дорожками качения. Для достижения указанного технического результата такой передающий узел, как и прототип, содержит охватывающие друг друга обойму и качающуюся шайбу. Их боковые сопрягаемые поверхности выполнены в форме сферического пояса с центром сферы в центре прецессии качающейся шайбы. В экваториальной области сферического пояса на обращенных друг к другу поверхностях обоймы и качающейся шайбы выполнены периодические по азимуту дорожки качения, по меньшей мере, одна из которых выполнена замкнутой и волнообразно изогнутой в осевом направлении. Дорожки зацепляются друг с другом посредством цепочки шариков, расположенных в местах пересечения дорожек качения. В отличие от прототипа, дорожки в месте контакта с шариками имеют друг к другу наклон, меньший или равный углу самозаклинивания шариков. Это условие выполняется, если угол α наклона фронта периодической дорожки качения к экватору на качающейся шайбе и соответствующий угол β на обойме связаны с углом γ наклона качающейся шайбы соотношениями:

Углы α и β зависят от числа периодов и амплитуды дорожек качения. Амплитуды, в свою очередь, связаны с углом наклона качающейся шайбы. В любом случае, варьируя этими величинами, можно добиться выполнения условий (1) и (2).

По сравнению с прототипом в нашем случае изменяется и условие выбора чисел периодов дорожек качения. Число шариков n может быть любым. Однако при небольшом количестве шариков (в пределах одного - двух десятков) для получения уравновешенной системы шариков желательно, чтобы число шариков было четным. Число периодов дорожек качения N1 и N2 на качающейся шайбе и обойме связаны с числом шариков n соотношениями: N1=kn±1; N2=qn±1, где k и q - целые числа или числа вида 1/m, где m - число, на которое число шариков делится без остатка. Расширение диапазона возможных чисел N1 и N2, не только обеспечивает расширение диапазона передаточных отношений для одного узла с определенным числом шариков, но и увеличивает число комбинаций периодов дорожек качения, при которых выполняется условие самозаклинивания шариков. Здесь уместно заметить, что описанный выше фрикционно-планетарный передающий узел коаксиальной конфигурации является, по сути, частным случаем с числом периодов дорожки качения на качающейся шайбе N1=0 и с числом периодов на обойме N2=1.

Периодические дорожки качения на обеих деталях могут быть замкнутыми волнообразно изогнутыми. Дорожку качения на одной из деталей можно выполнить незамкнутой, в виде системы разнесенных по окружности канавок, вытянутых по меридианам сферы.

Для увеличения функциональных возможностей передающего узла обойма разрезана по средней линии изогнутой дорожки качения, образуя два независимо вращающихся элемента обоймы. Дорожка качения на каждом из элементов представляет собой систему полуволн, выполненных с разным числом периодов.

Дифференциальный преобразователь скорости на основе описанных передающих узлов содержит три вала. Качающаяся шайба передающего узла связана с одним из валов механизмом для независимого преобразования ее качающегося движения во вращение вала и наоборот, со вторым из валов механизмом передачи ее вращения относительно наклонной оси независимо от ее качающегося движения. С третьим валом непосредственно связано второе тело вращения передающего узла.

Для шариковых фрикционно-планетарных передающих узлов в дисковой конфигурации механизм для преобразования качающегося движения шайбы во вращение вала и наоборот выполнен в виде торцового кулачка, взаимодействующего с качающимся диском через подшипник, а второй вал является корпусом передачи и связан с качающейся шайбой устройством предотвращения ее вращения.

Для передающих узлов коаксиального исполнения целесообразно все валы выполнить соосными и полыми, образуя коаксиальную конструкцию из обойм в виде подшипникового узла.

Преобразователь с передающим узлом, у которого обойма состоит из независимо вращающихся элементов, снабжен дополнительными валами, которые непосредственно связаны с этими элементами.

Механизмом для независимого преобразования качающегося движения шайбы во вращательное движение первого вала, и наоборот, может служить косой кривошипный вал, на который качающаяся шайба посажена через подшипник. Механизмом преобразования качающегося движения во вращательное может служить и любой из фрикционно-планетарных шариковых передающих узлов коаксиального исполнения, реализованный на той же качающейся шайбе со стороны, противоположной основному передающему узлу. Тогда первым валом преобразователя будет являться обойма фрикционно-планетарного узла.

Механизм независимой передачи вращения качающейся шайбы ко второму валу может быть выполнен в виде крестовины, системы гибких тяг или шарниров, в виде универсального шарнира или конической зубчатой передачи.

Передающие узлы коаксиального исполнения позволяют без значительного увеличения габаритов создавать двухступенчатые преобразователи скорости. Ступени могут быть расположены последовательно вдоль одной оси или охватывая друг друга (коаксиальное исполнение двухступенчатого преобразователя). Двухступенчатый преобразователь коаксиального исполнения, в свою очередь, может быть выполнен в двух вариантах.

По первому варианту передающие узлы обеих ступеней используют одну и ту же качающуюся шайбу. Для этого на качающейся шайбе первого передающего узла со стороны, противоположной этому узлу, компонуется передающий узел второй ступени, т.е. образуется система из последовательно охватывающих друг друга трех элементов: обоймы, качающейся шайбы и обоймы. Второй передающий узел в этом случае одновременно выполняет функцию механизма передачи вращательного движения качающейся шайбы к валу преобразователя, связанному непосредственно с обоймой передающего узла второй ступени. В качестве механизма преобразования качающегося движения шайбы во вращательное и наоборот могут использоваться не все вышеописанные средства, так как некоторые из них используют вторую боковую поверхность качающейся шайбы, которая в данном случае занята вторым передающим узлом. Для этого преобразователя разработан специальный механизм, представляющий собой два полых вала, введенных на подшипниках между внутренней и наружной обоймами преобразователя с противоположных торцов. Каждый из валов выполнен с одинаковым косым кривошипом. Качающаяся шайба посажена на оба кривошипных вала с помощью подшипников. Полые валы могут быть выполнены и с торцовыми кулачками, взаимодействующими с торцами качающейся шайбы через упорные подшипники.

По второму варианту двухступенчатый преобразователь компонуется из двух охватывающих друг друга отдельных передающих узлов. Качающиеся шайбы обоих узлов обращены друг к другу. Механизм преобразования качающегося движения каждой из шайб во вращательное представляет собой полый вал, введенный между качающимися шайбами обеих ступеней и имеющий на боковых поверхностях, обращенных к качающимся шайбам, элементы, вызывающие прецессию шайб. Такими элементами могут служить косые кривошипы с одинаковым или противоположным наклоном, на которые через подшипники посажены качающиеся шайбы. При одинаковом наклоне косых кривошипов шайбы качаются синхронно, при противоположном - в противофазе. Элементы, вызывающие прецессию шайб, можно выполнить и по-другому. На обращенных друг к другу боковых поверхностях в каждой паре полый вал - качающаяся шайба, выполнены кольцевая канавка и кольцевой выступ, сопрягающиеся друг с другом посредством двух диаметрально противоположных шариков. Шарики расположены между стенками канавки и выступом с противоположных сторон от последнего. Шайбы обеих ступеней связаны друг с другом узлом передачи вращения, так что передающий узел второй ступени одновременно выполняет функцию механизма передачи вращательного движения качающейся шайбы к валу, непосредственно связанному с обоймой передающего узла второй ступени.

Двухступенчатый преобразователь скорости может быть выполнен из двух передающих узлов коаксиальной конфигурации, расположенных последовательно друг за другом вдоль одной оси. В этом случае качающиеся шайбы обеих ступеней связаны узлом передачи вращения между параллельными валами, а механизмы преобразования качающегося движения шайб во вращение вала могут быть выполнены так же, как и для одноступенчатого преобразователя, и должны обеспечивать синхронную прецессию шайб. В результате, качающиеся шайбы во время прецессии параллельны друг другу. Такой преобразователь при внешней схожести с двухступенчатым преобразователем по патенту US №5443428, принципиально отличается от него тем, что периодические дорожки качения на обеих качающихся шайбах расположены в экваториальной области. То есть, цепочки шариков обеих ступеней участвуют в прецессии относительно точки, лежащей в плоскости цепочки шариков и в их движении отсутствует нутирующая компонента. Это значительно упрощает требования к форме и точности выполнения дорожек качения для полного устранения шума и вибраций.

Узел передачи вращения между параллельными валами может быть выполнен по любой из известных схем. Хорошо подходит для этих целей механизм с параллельными кривошипами. Наиболее предпочтительным с точки зрения уменьшения потерь на трение является механизм с параллельными кривошипами с шариковым зацеплением, как, например, в патентах US №4829851 или US №4643047. Этот же узел может быть выполнен и в виде вала, с которым каждая из качающихся шайб связана крестовиной. Для последнего преобразователя разработан оригинальный механизм для преобразования качающегося движения шайб во вращательное движение и наоборот. Он представляет собой обойму, расположенную по оси между ступенями преобразователя и снабженную наружным кольцевым выступом. Обойма выполнена с двумя косыми параллельными кривошипами, на которых с помощью подшипников посажены качающиеся шайбы. Кольцевой выступ выступает за пределы внешних обойм обоих передающих узлов преобразователя и его наружный венец выполнен как элемент червячной, конической зубчатой или фрикционной передачи. Такой механизм передает качающееся движение шайб к валу, ось которого перпендикулярна к общей оси передающих узлов. То есть преобразователь скорости предназначен для передачи вращения между скрещивающимися валами.

Двухступенчатый преобразователь скорости с последовательным расположением ступеней можно выполнить с шайбами, качающимися в противофазе. В этом случае качающиеся шайбы обеих ступеней связаны механизмом передачи вращения между наклонными валами, а механизм передачи качающегося движения обеспечивает противофазную прецессию шайб.

Следует отметить, что преобразователи скорости, выполненные по изобретению, эффективны только при небольших углах γ наклона качающейся шайбы. В противном случае, для передачи вращения между деталями, наклоненными друг к другу под большими углами, потребуется механизм, который значительно снизит эффект от отсутствия проскальзывания шариков в самом передающем узле. В то же время, для некоторых вариантов передающего узла угол γ для выполнения соотношений (1) и (2) может оказаться достаточно большим. Обойти это противоречие позволяет передающий узел с качающейся шайбой, в котором обе обоймы являются качающимися шайбами. В этом случае в соотношениях (1) и (2) под углом γ следует понимать угол наклона шайб друг к другу. В то же время каждая из шайб имеет наклон к оси передающего узла в два раза меньший. Соответственно уменьшается и угол в механизме передачи вращения.

Такой передающий узел может быть положен в основу множества различных схем дифференциальных преобразователей скорости с разными функциональными возможностями. В общем случае дифференциальный преобразователь скорости содержит по меньшей мере три соосных полых вала, образующих коаксиальную конструкцию из обойм в виде подшипникового узла, а также передающий узел с двумя качающимися шайбами. Качающиеся шайбы связаны с одним из валов механизмом независимого преобразования качающегося движения во вращательное и наоборот, а с другими двумя валами шайбы связаны узлами передачи вращения между наклонными валами.

Прецессию качающихся шайб можно возбуждать в противофазе. Преобразователь скорости в этом случае будет работать аналогично преобразователю с одной качающейся шайбой, только угол наклона между шайбами, определяющий угловые характеристики дорожек качения, будет равен сумме углов прецессии каждой из шайб. Такая модификация позволяет уменьшить угол прецессии каждой качающейся шайбы при сохранении прежнего угла наклона шайб друг к другу. Это упрощает требования к механизмам преобразования качающегося движения шайб во вращательного движение вала и улучшает условия их работы. В то же время, уменьшение угла прецессии, т.е. угла наклона каждой шайбы к оси преобразователя, упрощает требования к узлам передачи вращения между наклонными валами и позволяет им передавать более высокий момент при прочих равных условиях.

Механизм преобразования качающегося движения шайб в этом случае может быть выполнен в виде двух коаксиальных связанных друг с другом полых валов, один из которых расположен снаружи внешней качающейся шайбы, а второй внутри внутренней качающейся шайбы. В каждой паре полый вал - качающаяся шайба на их обращенных друг к другу боковых поверхностях выполнены дорожка качения и кольцевой выступ, сопрягающиеся друг с другом посредством двух диаметрально противоположных шариков, расположенных между стенками канавки и выступом с противоположных сторон от последнего. Шарики в каждой паре расположены так, что шайбы имеют противоположный наклон.

Такого же результата можно добиться, если на обращенных к качающимся шайбам поверхностях связанных друг с другом полых валов выполнить косые кривошипы с противоположным наклоном, взаимодействующие с качающимися шайбами через подшипники.

Для расширения функциональных возможностей преобразователя механизм преобразования качающегося движения шайб во вращение вала целесообразно выполнить из двух отдельных, независимых друг от друга элементов, каждый из которых связан с отдельным валом преобразователя. Полученный преобразователь будет иметь дополнительный входной вал. При равенстве фаз и скоростей прецессии качающихся шайб (т.е. двух входных скоростей) на выходе механизма получим нулевую скорость. При противоположном направлении входных скоростей, либо при противоположной фазе прецессии механизм будет работать как преобразователь скорости с двумя входами и двумя выходами с разным соотношением скоростей на них.

Краткое описание фигур чертежей.

Изобретение иллюстрируется графическими материалами, где на фиг.1 схематически представлен шариковый фрикционно-планетарный передающий узел в дисковой модификации, а на фиг.2 - схема, иллюстрирующая в развертке взаимодействие дорожек качения и шариков для этого узла. Фиг.3, 4, 5 и 6 показывают различное выполнение профиля дорожек качения для расширения диапазона передаточных отношений. На фиг.7 дан в сечении общий вид преобразователя скорости с таким передающим узлом.

Фиг.8-19 иллюстрируют различные конструктивные варианты шарикового фрикционно-планетарного передающего узла в коаксиальном исполнении, причем на фиг.8, 10, 12, 14, 16, 18 дан общий вид вариантов передающего узла, а на фиг.9, 11, 13, 15, 17 и 19 представлены схемы взаимодействия их дорожек качения с шариками.

На фиг.20 изображено осевое сечение передающего узла с периодическими дорожками качения, а на фиг.21 - схема, иллюстрирующая связь угла наклона качающейся шайбы, углов наклона фронтов периодических дорожек качения и угла между дорожками качения в месте контакта с шариком. На фиг 22-27 в боковой развертке представлены схемы взаимодействия дорожек качения и шариков для разных вариантов передающего узла с периодическими дорожками качения. Схемы на фиг.22 и 23 иллюстрируют возможность выполнения углового условия выбором числа периодов дорожек качения при одинаковом угле наклона качающейся шайбы и одинаковых амплитудах дорожек качения. Схемы на фиг.24 и 25 показывают, что можно выполнить угловое условие, изменяя амплитуду дорожек качения при неизменности числа периодов. И, наконец, на схемах 26 и 27 показано, как можно добиться выполнения углового условия, изменяя угол наклона качающейся шайбы. На фиг.28 и 29 представлены соответственно осевое сечение и схема взаимодействия дорожек качения с шариками для передающего узла, в котором одна из периодических дорожек качения выполнена прерывистой, в виде разнесенных по окружности меридиональных канавок. На фиг.30 и 31 показано осевое сечение и схема взаимодействия звеньев передающего узла с обоймой из двух отдельных элементов.

На фиг.32, 33, 34, 35 в осевом сечении показаны дифференциальные преобразователи скорости с коаксиальным передающим узлом, отличающиеся друг от друга механизмами преобразования качающегося движения шайбы во вращение вала и узлами передачи вращения качающейся шайбы независимо от ее качающегося движения (узлами передачи вращения между наклонными валами).