Способ приготовления неорганического материала для радиационной защиты
Изобретение относится к области приготовления защитных материалов. Сущность изобретения: способ приготовления неорганического материала для радиационной защиты включает загрузку связующего, наполнителя и пластификатора в смеситель принудительного действия и перемешивание компонентов. При этом в качестве связующего используют портландцемент, а в качестве наполнителя - тонкодисперсный железосодержащий магнетитовый концентрат с размером частиц 20-40 мкм, молотый хризотиловый асбест, строительную известь, вводят чугунную дробь и воду. Затем осуществляют перемешивание смеси до однородного состояния, производят укладку в формы для твердения, термовлажностную обработку в пропарочной камере в течение 7-8 часов. Далее осуществляют сушку в сушильной камере при температуре 100-110°С в течение 3-5 часов. Для приготовления материала используют следующее соотношение компонентов, мас.%: портландцемент 13-17; магнетитовый концентрат 10-14; хризотиловый асбест 0,55-0,75; известь 0,5-0,7; пластификатор 0,2-0,3; чугунная дробь 65-73; вода 2,3-2,7. Преимущество изобретения заключается в повышении радиационной защиты. 2 табл.
Реферат
Изобретение относится к материалам для защиты от ионизирующих излучений в атомной, радиохимической промышленности, военно-морском флоте обслуживающего персонала и окружающей среды.
Известен способ приготовления тяжелого бетона, заключающийся в смешении цемента, обычного песка, гематита и воды (см. Бродер Д.Л. и др. Бетон в защите ядерных установок. М.: Атомиздат, 1973, с.21).
Недостатком известного способа является большая разность объемных масс компонентов бетона, особенно тяжелого заполнителя и цемента, что приводит к неоднородности материала, и как следствие, пониженным радиационно-защитным характеристикам. Кроме того, материал не обладает оптимальным зерновым составом, от которого зависят удобоукладываемость и защитные свойства материала.
Наиболее близким, принятым за прототип, является способ приготовления композиционного материала для защиты от радиации, изложенный в патенте RU 2193247, опубл. 20.11.2002, Бюл. №32, кл. G 21 F 1/01. В известном способе в барабан бетономешалки последовательно загружают расчетное количество жезезосодержащего гематитового концентрата, портландцемента, воды с пластификатором и стальные фибры. Общее время перемешивания 20 мин.
Недостатком известного способа является то, что получаемый продукт не обладает высокими защитными характеристиками по отношению к нейтронному излучению.
Техническим результатом заявленного изобретения является повышение радиационной защиты от нейтронного и гамма-излучения.
Указанный технический результат достигается за счет того, что заявленный способ приготовления неорганического материала для радиационной защиты включает загрузку связующего, наполнителя и пластификатора в смеситель принудительного действия и перемешивание компонентов, при этом в качестве связующего используют портландцемент, а в качестве наполнителя - тонкодисперсный железосодержащий магнетитовый концентрат с размером частиц 20-40 мкм, молотый хризотиловый асбест и строительную известь. Затем вводят чугунную дробь и воду, осуществляют перемешивание смеси до однородного состояния, производят укладку в формы для твердения, термовлажностную обработку в пропарочной камере в течение 7-8 часов, сушку в сушильной камере при температуре 100-110°С в течение 3-5 часов при следующем соотношении компонентов, мас.%:
Портландцемент | 13-17 |
Магнетитовый концентрат | 10-14 |
Хризотиловый асбест | 0,55-0,75 |
Известь | 0,5-0,7 |
Пластификатор | 0,2-0,3 |
Чугунная дробь | 65-73 |
Вода | 2,3-2,7 |
Связующим компонентом неорганического материала является портландцемент марки 500-ПЦ 500-ДО (ГОСТ 10178-85).
В качестве железосодержащего сырья используют высокодисперсный магнетитовый концентрат Лебединского ГОКа с насыпной плотностью 3000 кг/м3 фракции 20-40 мкм (ТУ 14-9-288-84).
Использование данного железосодержащего концентрата в качестве наполнителя при производстве неорганического материала для радиационной защиты обусловлено высоким содержанием железа (70-72%).
Использование в качестве связующего хризотилового асбеста и извести обусловлено содержанием в них молекул связанной воды, что играет определяющую роль в защите от нейтронного излучения. Кроме того, известь обладает пластифицирующими, а хризотиловый асбест - армирующими свойствами, что повышает прочность получаемого композиционного материала.
Использование чугунной дроби (ГОСТ 11964-81) позволяет получать материал высокой плотности (4000-4200 кг/м3), обладающий высокими физико-механическими и радиационно-защитными характеристиками.
Количественное содержание компонентов в предлагаемом и известном материале приведены в табл.1.
Таблица 1 | ||||||
Компонент | Содержание, мас.% | |||||
Предлагаемый материал | Известный материал | |||||
Портландцемент | 13 | 14 | 15 | 16 | 17 | 22 |
Тонкодисперсный железосодержащий наполнитель | 10 | 11 | 12 | 13 | 14 | 56 |
Известь | 0,50 | 0,55 | 0,60 | 0,65 | 0,70 | нет |
Хризотиловый асбест | 0,55 | 0,6 | 0,65 | 0,7 | 0,75 | нет |
Пластификатор | 0,20 | 0,23 | 0,25 | 0,27 | 0,30 | 2,5 |
Чугунная дробь | 65 | 67 | 69 | 71 | 73 | нет |
Вода | 2,3 | 2,4 | 2,5 | 2,6 | 2,7 | 9,71 |
Пример. 515 г железосодержащего магнетитового концентрата дисперсностью 40 мкм тщательно перемешивают с 570 г портландцемента, 28 г извести, 28,5 г молотого хризотилового асбеста и 10 г пластификатора. Далее в полученную смесь порциями вводят 2850 г чугунной дроби и при постоянном перемешивании затворяют водой в объеме 100 мл. Перемешивание проводят в течение 20 минут в смесителе циклического режима принудительного действия. Полученную смесь закладывают в форму 10 см × 10 см × 10 см, уплотняют на стандартном вибростоле в течение 5 минут и оставляют для естественного твердения в течение 24 часов. Далее образец материала подвергают термовлажностной обработке в пропарочной камере ямного или камерного типа в течение 8 часов. Далее образец извлекается из формы и проходит стадию сушки в сушильной камере при температуре 110°С до постоянной массы в течение 3 часов. Готовый образец материала для радиационной защиты имеет следующие характеристики: объемную массу 4135 кг/см, прочность на сжатие 520 кг/см2, линейный коэффициент ослабления ионизирующего излучения (источник Со60 с энергией Е=1173 кэВ) 0,23, линейный коэффициент ослабления ионизирующего излучения (источник Cs137 с энергией Е=661 кэВ) 0,41, длина релаксации быстрых нейтронов (Е>2 МэВ) 8,8 см, длина релаксации мощности дозы нейтронов 10,0 см.
Для получения сравнительных данных параллельно проводились аналогичные эксперименты на других составах материала.
Результаты радиационно-защитных и физико-механических испытаний представлены в табл.2.
Таблица 2 | |||||
Компонент | Предлагаемый материал | ||||
1 | 2 | 3 | 4 | 5 | |
Плотность, кг/см3 | 3900 | 4000 | 4100 | 4150 | 4200 |
Предел прочности при сжатии, кг/см2 | 450 | 470 | 520 | 440 | 390 |
Линейный коэффициент ослабления (μ) гамма излучения, см-1: | |||||
Е=1173 кэВ | 0,18 | 0,20 | 0,23 | 0,21 | 0,19 |
Е=661 кэВ | 0,44 | 0,43 | 0,41 | 0,42 | 0,43 |
Длина релаксации быстрых нейтронов (Е>2 МэВ), см | 10,0 | 9,3 | 8,8 | 8,7 | 8,6 |
Длина релаксации мощности дозы нейтронов, см | 14 | 12 | 10 | 9,5 | 9,0 |
Марка по морозостойкости | 200 | 200 | 200 | 200 | 200 |
Теплостойкость, °С | 600 | 650 | 700 | 670 | 550 |
Радиационная стойкость, баллы | 2 | 2 | 2 | 2 | 2 |
Измерение радиационно-защитных свойств материалов по гамма-излучению осуществлено гамма-спектральным методом на базе многоканального анализатора с программным обеспечением "Прогресс" в аккредитованной в Госстандарте РФ лаборатории радиационного контроля "Спектр". Измерение радиационно-защитных свойств материалов по нейтронному излучению осуществлялось с помощью сцинтилляционного счетчика быстрых нейтронов на основе кристалла ZnS(Ag). Оценка физико-механических характеристик проводилась в государственном научном центре по сертификации строительных материалов и конструкций, аккредитованном в Госстандарте РФ "БГТУ-сертификация".
Анализируя данные, приведенные в табл.2, можно заключить, что предлагаемый неорганический материал является эффективным защитным экраном от гамма- и нейтронного излучения и позволяет повысить радиационно-защитные характеристики на 30-50% по сравнению с известным материалом.
Способ приготовления неорганического материала для радиационной защиты, включающий загрузку связующего, наполнителя и пластификатора в смеситель принудительного действия и перемешивание компонентов, отличающийся тем, что в качестве связующего используют портландцемент, а в качестве наполнителя - тонкодисперсный железосодержащий магнетитовый концентрат с размером частиц 20-40 мкм, молотый хризотиловый асбест, строительную известь, вводят чугунную дробь и воду, осуществляют перемешивание смеси до однородного состояния, производят укладку в формы для твердения, термовлажностную обработку в пропарочной камере в течение 7-8 ч, сушку в сушильной камере при температуре 100-110°С в течение 3-5 ч при следующем соотношении компонентов, мас.%: портландцемент 13-17; магнетитовый концентрат 10-14; хризотиловый асбест 0,55-0,75; известь 0,5-0,7; пластификатор 0,2-0,3; чугунная дробь 65-73; вода 2,3-2,7.