Листовой материал с плавающим комбинированным изображением
Иллюстрации
Показать всеЛистовой материал может использоваться для защиты от подделки изображений, в рекламе, для идентификационных графических аппликаций, включает по крайней мере один слой микролинз и расположенный рядом с первой стороной слоя микролинз слой материала, в котором сформированы путем передачи падающего под разными углами излучения на микролинзы отдельные изображения как множественные точки, в которых изображение контрастирует с материалом; и обеспечиваемое отдельными изображениями комбинированное изображение, которое для невооруженного глаза кажется плавающим над материалом или под ним, или же и над ним и под ним одновременно. Материал является радиационно-чувствительным материалом. Комбинированное изображение может быть как плоским, так и стереоскопическим. Обеспечивается создание листового материала с изображением, которое не может использоваться для копирования. 2 н. и 41 з.п.ф-лы, 16 ил., 2 табл.
Реферат
Настоящее изобретение относится к листовым материалам с одним или несколькими комбинированными изображениями, зрительно воспринимаемыми как бы подвешенными в пространстве относительно листового материала и в которых перспектива комбинированного изображения меняется в зависимости от угла зрения.
Известно широкое использование листовых материалов с графическими изображениями или иными метками, в частности, для изготовления ярлыков, удостоверяющих подлинность изделия или документа. Например, листовые материалы, подобные описываемым в патентах США №3154872; 3801183; 4082426 и 4099838, применяются для изготовления наклеек для номерных знаков автомобилей, а также используются в качестве защитной пленки для водительских прав, правительственных документов, магнитофонных кассет, игральных карт, при изготовлении тары для напитков и т.д. Другие примеры использования включают, например, графические аппликации (наклейки) для целей идентификации, такие, например, как на полицейских, пожарных и иных аварийных машинах, рекламные материалы и характерные ярлыки, подтверждающие принадлежность к торговой марке.
Еще один вид листового материала, несущего изображение, приводится в патенте США №4200875 (Galanos). Galanos описывает использование особого «ретроотражающего листового материала типа экспонированной линзы с особо высоким коэффициентом усиления», в котором изображения формируются путем лазерного облучения листового материала через маску или шаблон. Указанный листовой материал включает в себя множество прозрачных стеклянных микросфер, частично скрытых в связующем слое и частично открыто выступающих над ним, с металлическим отражающим слоем, нанесенным на скрытую поверхность каждой из множества микросфер. Связующий слой содержит газовую сажу, которая, по мнению специалистов, минимизирует любой рассеянный свет, падающий на лист во время его облучения. Энергия лазерного луча затем концентрируется с помощью фокусирующего эффекта микролинз, скрытых в связывающем слое.
Изображения, формируемые в ретроотражающем покрытии, предлагаемом Galanos, можно наблюдать при условии и только при условии, если лист наблюдается под тем же углом, под которым лазерное излучение было направлено на лист. Иначе говоря, это означает, что изображение можно наблюдать только в пределах очень ограниченного угла зрения. Вследствие этого, а также в силу других причин возникло желание улучшить некоторые свойства такого листового материала.
Еще в 1908 году Gabriel Lippman (Г. Липпман) изобрел способ создания истинного стереоскопического изображения объекта в линзообразной среде с одним или несколькими светочувствительными слоями. Этот процесс, известный как интегральная фотография, также описан De Montebello (Де Монтебелло) в работе Processing and display of three-dimensional data II (обработка и отображение трехмерных данных II), напечатанной в сборнике Proceedings of SPIE (протоколы Международного общества технической оптики), San Diego, 1984. В соответствии с методом Липпмана фотографическая пластинка экспонируется через массив или растр, состоящий из линз (или микролинз), таким образом, что каждая микролинза массива передает микроизображение репродуцируемого объекта на светочувствительные слои фотопластинки таким, каким он видится в перспективе точки на листе, занимаемой микролинзой. После проявления фотографической пластинки наблюдатель, который смотрит на комбинированное изображение на пластинке через растр или массив микролинз, видит стереоскопическое изображение фотографируемого объекта. Изображение может быть черно-белым или цветным, в зависимости от используемого фоточувствительного материала.
Поскольку в изображении, формируемом микролинзами при экспонировании пластинки, каждое микроизображение прошло лишь одно инвертирование (обращение), то создаваемое стереоскопическое изображение является псевдоскопическим. То есть, воспринимаемая глубина изображения является перевернутой таким образом, что объект кажется вывернутым наизнанку. Это является крупным недостатком, поскольку для исправления изображения требуются два оптических инвертирования. Данные методы являются сложными, поскольку требуют неоднократного экспонирования с помощью одной или нескольких камер или использования многолинзовых камер для съемки множества видов одного и того же объекта и требуют очень точной фиксации нескольких изображений для получения одного стереоскопического (трехмерного) изображения. Кроме того, любой метод, который основан на использовании обычной камеры, требует присутствия перед камерой реального объекта. Это в свою очередь делает этот метод плохо приспособленным для получения стереоскопических изображений виртуального объекта (т.е. объекта, который существует практически, но не в реальности). Другой недостаток интегральной фотографии заключается в том, что комбинированное изображение требуется подсвечивать со стороны наблюдателя, чтобы можно было получить реальное, воспринимаемое визуально изображение.
Краткое изложение существа изобретения
Настоящее изобретение описывает микролинзовый листовой материал, несущий комбинированное изображение, которое как бы подвешено под листовым материалом или над ним. Для удобства изложения, данные комбинированные изображения называются плавающими и могут наблюдаться под или над листовым материалом (как плоские, так и стереоскопические) или могут быть стереоскопическими и наблюдаться над листовым материалом, в одной плоскости с ним или под ним. Изображения могут быть черно-белыми или цветными и как бы двигаться вместе с наблюдателем. В отличие от некоторых голографических листовых материалов, экспонированные листы, описываемые в настоящем изобретении, не могут использоваться для реплицирования. Кроме того, плавающие изображения могут наблюдаться невооруженным глазом.
Представленный в изобретении листовой материал, имеющий описываемое комбинированное изображение, может использоваться в различных целях, таких, например, как защита от подделки изображений в паспортах, на личных жетонах, в разовых пропусках, кредитных карточках, форматы для установления подлинности товара и рекламные материалы, используемые для проверки и контроля, изображения, подтверждающие принадлежность к торговой марке, где изображение плавает или опускается, или то плавает, то опускается, идентификационные и презентационные изображения в графических аппликациях, наподобие эмблем для полицейских, пожарных или иных аварийных машин, а также информационные и презентационные изображения в графических аппликациях на киосках, ночных указателях и приборных щитках автомобилей, а также подтверждение новизны продукта путем использования комбинированных изображений на таких предметах, как визитные карточки, висячие бирки, кустарные изделия, обувь и стеклянная тара.
Кроме того, настоящее изобретение предоставляет новые возможности для создания листового материала, содержащего описываемые комбинированные изображения. В одном из примеров осуществления данного изобретения формируется одно комбинированное изображение. Есть примеры с формированием двух и более комбинированных изображений, а также примеры комбинированных изображений, которые как бы находятся над и под листовым материалом. В других примерах осуществления данного изобретения могут быть сочетания обычных печатных изображений с комбинированными изображениями, формируемыми в соответствии с данным изобретением.
Краткое описание чертежей
В нижеследующем описании изобретения будут делаться ссылки на прилагаемые чертежи, где:
Фиг.1 представляет собой увеличенный поперечный разрез микролинзового листового материала с «открытыми линзами»;
Фиг.2 представляет собой увеличенный поперечный разрез микролинзового листового материала со «скрытыми линзами»;
Фиг.3 представляет собой увеличенный поперечный разрез микролинзового листового материала, включающего плосковыпуклый базовый лист;
Фиг.4 дает графическое представление расходящейся энергии, падающей на микролинзовый листовой материал, построенный из микросфер;
Фиг.5 представляет собой вид в плане участка микролинзового листового материала с образцами изображений, зафиксированных в материальном слое, прилегающем к отдельным микросферам, и показывает, что зафиксированные изображения включают как полные, так и частичные копии комбинированного изображения;
Фиг.6 является оптическим микроснимком микролинзового листового материала с радиационно-чувствительным слоем (т. е. слоем, чувствительным к излучению), изготовленным из алюминиевой пленки, на которой было сформировано комбинированное изображение, которое как бы плавает над листовым материалом в соответствии с настоящим изобретением;
Фиг.7 является оптическим микроснимком микролинзового листового материала с радиационно-чувствительным слоем, изготовленным из алюминиевой пленки, на которой было сформировано комбинированное изображение, которое как бы плавает под листовым материалом в соответствии с настоящим изобретением;
Фиг.8 дает геометрическое оптическое представление формирования комбинированного изображения, которое как бы плавает над микролинзовым листовым материалом;
Фиг.9 дает схематическое представление листового материала с комбинированным изображением, которое как бы плавает над изобретенным листовым материалом при наблюдении листового материала в отраженном свете;
Фиг.10 дает схематическое представление листового материала с комбинированным изображением, которое как бы плавает над изобретенным листовым материалом при наблюдении листового материала в проходящем свете;
Фиг.11 дает геометрическое оптическое представление формирования комбинированного изображения, которое как бы плавает под микролинзовым листовым материалом;
Фиг.12 дает схематическое представление листового материала с комбинированным изображением, которое как бы плавает под листовым материалом изобретения при наблюдении листового материала в отраженном свете;
Фиг.13 дает схематическое представление листового материала с комбинированным изображением, которое как бы плавает под изобретенным листовым материалом при наблюдении листового материала в проходящем свете;
Фиг.14 изображает оптическую систему для создания расходящейся энергии, используемой для формирования комбинированных изображений в соответствии с настоящим изобретением;
Фиг.15 изображает вторую оптическую систему для создания расходящейся энергии, используемой для формирования комбинированных изображений в соответствии с настоящим изобретением; и
Фиг.16 изображает третью оптическую систему для создания расходящейся энергии, используемой для формирования комбинированных изображений в соответствии с настоящим изобретением.
Подробное описание изобретения
Микролинзовый листовой материал, описываемый в настоящем изобретении, обеспечивает комбинированное изображение, составленное из отдельных изображений, получаемых от нескольких микролинз, которое кажется подвешенным или плавающим над листовым материалом, в одной плоскости с ним или/и под ним.
Для полного описания изобретения ниже в Части I дается описание микролинзовых листовых материалов, затем следуют описания слоев указанного материала (предпочтительно, радиационно-чувствительных) в Части II, источников излучения в Части III и процесса формирования изображения в Части IV. Несколько примеров также приводятся в целях дальнейшего пояснения различных примеров воплощения данного изобретения,
I. Микролинзовый листовой материал
Микролинзовый листовой материал, в котором изображения могут формироваться согласно настоящему изобретению, состоит из одного или нескольких дискретных слоев микролинз со слоем материала или, как будет ясно из нижеследующего описания (предпочтительно радиационно-чувствительного листового материала), расположенного рядом с одной стороной микролинзового слоя или слоев. Например, на Фиг.1 представлен микролинзовый листовой материал 10 типа «открытой линзы», который включает в себя монослой прозрачных микросфер 12, которые частично скрыты в связывающем слое 14, обычно представляющим собой полимерный материал. Микросферы являются прозрачными как для волн излучения, которое может применяться для формирования изображения на слое материала, так и для волн света, при котором комбинированное изображение будет наблюдаться. Слой материала 16 расположен на задней поверхности каждой микросферы и в приводимом примере осуществления изобретения обычно находится в контакте лишь с частью поверхности каждой из микросфер 12. Данный тип листового материала подробно описан в патенте США №2326634 и в настоящее время поставляется компанией 3М под названием «отражающая ткань серии Scotchlite 8910».
На Фиг.2 представлен еще один подходящий тип микролинзового листового материала. Данный микролинзовый листовой материал 20 типа «скрытой линзы», в котором линзы 22 микросфер скрыты в прозрачном защитном покрытии 24, которое обычно представляет собой полимерный материал. Слой материала 26 расположен позади микросфер на обратной поверхности прозрачного разделительного слоя 28, который обычно представляет собой полимерный материал. Указанный тип листового материала подробно описан в патенте США №3801183 и в настоящее время поставляется компанией ЗМ под названием ретроотражающий листовой материал Scotchlite 3290 series Engineer grade. Другой подходящий тип микролинзового листового материала называется листовой материал с капсулированными линзами, пример которого дается в патенте США №5064272 и в настоящее время поставляется компанией ЗМ под названием «ретроотражающий листовой материал Scotchlite 3870 series High Intensity grade».
На Фиг.3 представлен еще один подходящий тип микролинзового листового материала. Данный материал включает прозрачный плосковыпуклый или асферический базовый лист 20, имеющий первую и вторую широкие лицевые стороны, причем вторая лицевая сторона 32 значительно более плоская, а первая лицевая сторона снабжена матрицей в основном полусферических или полуасферических микролинз 34. Форма микролинз и толщина базового листа выбираются таким образом, чтобы направленный свет, падающий на матрицу, фокусировался приблизительно на второй лицевой стороне. На второй лицевой стороне находится слой материала 36. Листовой материал подобного рода описан, например, в патенте США №5254390 и в настоящее время поставляется компанией 3М под названием «2600 series 3M Secure Card receptor».
Микролинзы листового материала предпочтительно имеют преломляющую поверхность, формирующую изображение, для того чтобы изображение было сформировано; обычно это обеспечивается криволинейной поверхностью микролинз. Для криволинейных поверхностей микролинзы будут предпочтительно иметь равномерный показатель преломления. Другие полезные материалы, которые обеспечивают переменный показатель преломления (ППП), не обязательно должны иметь криволинейную поверхность для преломления света. Поверхности микролинз предпочтительно сферические по характеру, но приемлемы и асферические поверхности. Микролинзы могут обладать любой симметрией, например цилиндрической или сферической, при условии, что реальные изображения формируются на преломляющих поверхностях. Сами микролинзы могут иметь дискретную форму, например круглые плосковогнутые микролинзы, круглые двояковогнутые микролинзы, стержни, микросферы, бусинки или цилиндрические микролинзы. Материалы, из которых микролинзы могут быть сформированы, включают стекло, полимеры, минералы, кристаллы, полупроводники и сочетания этих и других материалов. Могут применяться и недискретные микролинзовые элементы. Таким образом, микролинзы, сформированные в результате процесса репликации или тиснения (когда форма поверхности листового материала меняется таким образом, что получается повторяющийся профиль с характеристиками, влияющими на формирование изображений), могут также применяться.
Наиболее эффективны микролинзы с постоянным показателем преломления от 1,5 до 3,0 для видимых и инфракрасных волн. У подходящих микролинзовых материалов будет минимальное поглощение видимого света, и в примерах осуществления изобретения, в которых источник энергии используется для формирования изображения на радиационно-чувствительном слое, материалы также должны обладать минимальным поглощением энергии источника. Преломляющая сила микролинз, будь они дискретными или реплицированными, и независимо от материала, из которого микролинзы изготовлены, предпочтительно такова, что свет, падающий на преломляющую поверхность, будет преломляться и фокусироваться на противоположной стороне микролинзы. Точнее говоря, свет будет фокусироваться или на обратной стороне микролинзы или на материале, прилегающем к микролинзе. В примерах воплощения изобретения, где слой материала является радиационно-чувствительным, микролинзы предпочтительно формируют уменьшенное реальное изображение в соответствующем месте этого слоя. Уменьшение изображения приблизительно в 100-800 раз особенно эффективно для формирования изображений с хорошим разрешением. Структура микролинзового листового материала для обеспечения таких необходимых условий для фокусировки, когда энергия, падающая на переднюю поверхность микролинзового листового материала, фокусируется на слое материала, который предпочтительно является радиационно-чувствительным, описана в патентах США, на которые были сделаны ссылки выше по тексту данного раздела.
Микросферы с диаметрами в диапазоне от 15 микрометров до 275 микрометров предпочтительны, хотя могут использоваться микросферы и других размеров. Хорошее разрешение комбинированного изображения для тех комбинированных изображений, которые должны казаться сдвинутыми относительно микросферного слоя на относительно короткое расстояние, можно получить путем использования микросфер с диаметрами, близкими к меньшему пределу вышеуказанного диапазона, а то же самое для комбинированных изображений, которые должны казаться сдвинутыми от микросферного слоя на большее расстояние, можно получить с помощью микросфер большего размера. Можно ожидать, что другие микролинзы, такие как плосковогнутые, цилиндрические, сферические или асферические микролинзы, имеющие размеры, сравнимые с теми, которые указаны для микросфер, дадут аналогичные оптические результаты.
II. Слой материала
Как было указано выше, рядом с микролинзами находится слой материала. Отдельные изображения, формируемые в материале, связанном с множеством микролинз, при наблюдении их в отраженном или проходящем свете дают комбинированное изображение, которое кажется подвешенным или плавающим над листовым материалом, в одной плоскости с ним или под ним. Хотя могут применяться и другие методы, все же предпочтительным методом получения подобных изображений является использование радиационно-чувствительного материала в качестве слоя материала и применение излучения для изменения этого материала желательным образом с целью получения изображения. Таким образом, хотя изобретение и не сводится только к этому, дальнейшее обсуждение слоя материала, прилегающего к микролинзам, будет проходить главным образом на примере радиационно-чувствительного слоя.
Радиационно-чувствительные материалы, применяемые в данном изобретении, включают покрытия и пленки металлических, полимерных и полупроводниковых материалов, а также их смесей. Как указывается в ссылке на настоящее изобретение, материал считается «радиационно-чувствительным», если при воздействии на него определенным уровнем видимого или иного излучения внешний вид данного экспонированного материала меняется и контрастирует с материалом, который не подвергался воздействию излучения. Изображение, полученное таким способом, может быть результатом комбинированного изменения, удаления или абляции материала, изменения фазы или полимеризации радиационно-чувствительного покрытия. Примеры радиационно-чувствительных материалов в виде металлических пленок включают алюминий, серебро, медь, титан, цинк, олово, хром, ванадий, тантал и их сплавы. Данные металлы обычно обеспечивают контраст из-за разницы между природным цветом металла и измененным цветом металла после его облучения. Как указывалось выше, изображение может быть также получено в результате абляции или радиационного нагрева материала до момента, пока оптическая модификация материала не выльется в изображение. Например, в патенте США №4743526 описывается нагрев металлического сплава до изменения цвета.
Кроме металлических сплавов, металлические окиси и недокиси могут использоваться в качестве радиационно-чувствительной среды. Материалы данного класса включают окисные соединения, формируемые из алюминия, железа, меди, олова и хрома. Неметаллические материалы, такие как сульфид цинка, селенид цинка, двуокись кремния, индий, окись олова, окись цинка, фтористый магний и кремний, могут также обеспечить цвет или контраст, которые используются в настоящем изобретении.
Несколько слоев тонкопленочных материалов могут также применяться в качестве уникальных радиационно-чувствительных материалов. Данные многослойные материалы могут конфигурироваться с целью получения контрастных изменений внешнего вида методом добавления или удаления цвета или контрастирующего вещества. Примерные структуры включают оптические пакеты или настраиваемые резонаторы, предназначенные для формирования на них изображения (например, путем изменения цвета) с помощью облучения их в особом диапазоне волн. Один характерный пример описан в патенте США №3801183, в котором приводится методика использования сульфида криолита/цинка (Na3AlF6/ZnS) в качестве диэлектрического зеркала. В другом примере описывается оптический пакет, включающий хром/полимер (наподобие бутадиена, полимеризированного в плазме)/диоксид кремния/алюминий, в котором толщина слоев лежит в пределах 4 нм для хрома, от 20 нм до 60 нм для полимера, от 20 нм до 60 нм для диоксида кремния и от 80 нм до 100 нм для алюминия, и где толщина отдельных слоев выбирается с целью обеспечения конкретной цветовой отражательной способности в видимом спектре. Тонкопленочные настраиваемые резонаторы могли бы использоваться с любой из вышеописываемых однослойных тонких пленок. Например, настраиваемый резонатор со слоем хрома толщиной около 4 нм и слоем диоксида кремния толщиной приблизительно от 100 нм до 300 нм, причем толщина слоя диоксида кремния корректируется для обеспечения цветного изображения с помощью облучения в особом диапазоне волн.
Радиационно-чувствительные материалы, используемые в настоящем изобретении, также включают термохромные материалы. «Термохромным» считается материал, который изменяет цвет с изменением температуры. Примеры термохромных материалов, используемые в настоящем изобретении, описаны в патенте США №4424990 и включают карбонат меди, нитрат меди с тиомочевиной и карбонат меди с серой с содержанием таких соединений, как тиоловые кислоты, эфиры тиоловой кислоты, сульфоксиды и сульфоны. Примеры других подходящих термохромных соединений описаны в патенте США №4121011, и они включают гидратные сульфаты и нитриды бора, алюминия и висмута, а также оксиды и гидроксиды бора, железа и фосфора.
Естественно, если слой материала не подлежит экспонированию с целью получения изображения с использованием источника излучения, то такой слой материала может, хотя не обязательно должен, быть радиационно-чувствительным. Тем не менее, радиационно-чувствительные материалы более предпочтительны из-за легкости их изготовления, а поэтому и предпочтительнее использовать подходящий источник излучения.
III Источники излучения
Как указывалось выше, предпочтительным способом получения структуры изображения на слое материала, прилегающего к микролинзам, является использование источника излучения для формирования изображения на радиационно-чувствительном материале. Любой источник энергии, обеспечивающий излучение желаемой интенсивности и длины волны, может использоваться для реализации метода, описываемого в настоящем изобретении. Наиболее предпочтительными считаются устройства, способные обеспечить излучение в диапазоне длин волн от 200 нм до 11 микрометров. Примерами источников излучения высокой пиковой мощности для использования в настоящем изобретении могут быть эксимерные лампы-вспышки, микрочиповые лазеры с пассивной добротной модуляцией, лазеры с модуляцией добротности, использующие легированные ниодимом алюмо-иттриевый гранат (Nd:YAG) и фторид иттрия-лития (Nd:YLF), и легированный титаном сапфир (Ti-сапфир). Данные высокопиковые источники мощности более всего подходят для использования с радиационно-чувствительными материалами, на которых изображение формируется путем абляции - удаления материала или путем многофотонного поглощения. Другие примеры используемых источников излучения включают устройства, которые дают низкую пиковую мощность, например полупроводниковые лазеры, ионные лазеры, твердотельные лазеры без модуляции добротности, паросветные лазеры, газовые лазеры, дуговые лампы и лампы накаливания высокой мощности. Указанные источники особенно подходят для формирования изображения на радиационно-чувствительном материале неабляционным способом.
Во всех случаях применения источников излучения энергия этих источников направляется на микролинзовый листовой материал и регулируется до формирования значительно расходящегося пучка энергии. Для источников энергии, находящихся в ультрафиолетовом, видимом и инфракрасном участках электромагнитного спектра, свет регулируется соответствующими оптическими элементами, примеры которых приведены в Фиг.14, 15 и 16 и подробно анализируются ниже. В одном из примеров воплощения данного изобретения от указанного пакета оптических элементов, который обычно называется оптической системой, требуется, чтобы оптическая система направляла свет на листовой материал с необходимым расхождением или рассеиванием, чтобы микролинзы и, соответственно, материальный слой были облучены под нужным углом. Комбинированные изображения в соответствии с настоящим изобретением предпочтительно получаются с помощью светорассеивающего устройства с числовыми апертурами (определяемыми как синус половины угла максимально расходящихся лучей), превышающими или равными 0,3. Светорассеивающие устройства с числовыми апертурами большего размера дают комбинированные изображения с большим углом зрения и больший диапазон кажущегося движения изображения.
IV. Процесс формирования изображения
Примерный процесс формирования изображения в соответствии с настоящим изобретением заключается в пропускании направленного света от лазера через линзу или объектив на микролинзовый листовой материал. Для получения листового материала, имеющего плавающее изображение, описание которого следует ниже, свет посылается через рассеивающие линзы с высокой числовой апертурой (ЧА) для получения конуса сильно расходящегося света. Линза с высокой ЧА - это линза с ЧА, равной или превышающей 0,3. Та сторона микросфер, на которой нанесено радиационно-чувствительное покрытие, устанавливается от линз на таком расстоянии, чтобы ось конуса света (оптическая ось) была направлена перпендикулярно плоскости линзового листового материала.
Так как каждая отдельная микролинза занимает уникальное положение относительно оптической оси, то луч света, падающий на каждую микролинзу, будет обладать уникальным углом падения относительно луча света, падающего на все другие микролинзы. Таким образом, свет будет передаваться каждой микролинзой в уникальное место слоя материала и создавать уникальное изображение. Точнее говоря, один световой импульс будет создавать только одну точку изображения на слое материала, поэтому, чтобы получить изображение рядом с каждой микролинзой, нужно большое количество световых импульсов, чтобы воспроизвести изображение из многих изображаемых точек. Для каждого импульса оптическая ось занимает новое положение относительно положения, которое оптическая ось занимала во время предыдущего импульса. Такие последовательные изменения положения оптической оси относительно микролинз приводят к соответствующему изменению угла падения луча света на каждую микролинзу и, соответственно, к изменению положения точки изображения, создаваемой на слое материала этим импульсом. В результате падающий свет, фокусирующийся на задней стороне микросферы, формирует определенный растр изображения на радиационно-чувствительном слое. Поскольку положение каждой микросферы является уникальным относительно каждой оптической оси, для каждой микросферы изображение, формируемое на радиационно-чувствительном слое, будет отличаться от изображения, связанного с каждой другой микросферой.
Другой способ формирования плавающих комбинированных изображений заключается в использовании массива линз для создания сильно расходящегося пучка света для формирования изображения на микролинзовом материале. Микролинзовый массив состоит из многих маленьких линз, которые все имеют высокие ЧА, расположенные планиметрически. Когда массив освещается источником света, то он создает многочисленные конусы сильно расходящегося света, причем каждый отдельный конус центрируется на соответствующей линзе массива. Физические размеры массива выбираются таким образом, чтобы вместить самый большой поперечный размер комбинированного изображения. Вследствие такого размера массива отдельные конусы энергии, формируемые маленькими линзами (микролинзами), будут воздействовать на микролинзовый материал таким образом, как если бы какая-либо отдельная линза располагалась последовательно во всех точках массива при приеме световых импульсов. Избирательность, с которой линзы получают падающий свет, создается с помощью отражательной маски. Эта маска будет иметь прозрачные области, соответствующие участкам комбинированного изображения, которые будут экспонироваться, и отражательные участки, которые не должны экспонироваться. Благодаря поперечному размеру линзового массива нет необходимости применять многократные световые импульсы для вычерчивания изображения.
Вследствие полного освещения маски падающей энергией, пропускающие энергию участки маски будут формировать много отдельных конусов сильно расходящегося света, очерчивая плавающее изображение таким образом, как если бы оно было прочерчено одной линзой. Как следствие, требуется только один световой импульс для формирования всего комбинированного изображения на микролинзовом листовом материале. В свою очередь, вместо отражательной маски может применяться система позиционирования луча, подобная гальванометрическому двухкоординатному (x-y) развертывающему устройству, для местного освещения линзового массива и вычерчивания комбинированного изображения на массиве. Поскольку с помощью данного способа энергия пространственно локализуется, освещаются только несколько микролинз в определенный момент времени. Те микролинзы, которые освещаются, будут создавать конусы сильно расходящегося света, который необходим для экспонирования микролинзового материала для формирования комбинированных изображений на листовом материале.
Сам линзовый массив может быть изготовлен из дискретных микролинз или с помощью травления для получения монолитного линзового массива. Материалы, которые подходят для изготовления линз, должны быть такими, которые не поглощают свет на длине волны падающей энергии. Предпочтительно, чтобы отдельные линзы массива имели ЧА более 0,3 и диаметры более 30 микрометров, но менее 10 мм. Такие массивы могут иметь неотражающее покрытие для снижения влияния обратного отражения, которое может вызвать внутренние повреждения материала линзы. Кроме того, отдельные линзы с эффективным отрицательным фокальным расстоянием и размерами, эквивалентными линзовому массиву, также могут использоваться для увеличения расхождения (дивергенции) света, исходящего из массива. Формы отдельных линз в монолитном массиве выбираются с высокой ЧА и с возможностью обеспечения большого коэффициента заполнения, приблизительно превышающего 60%.
На Фиг.4 дается графическое схематическое представление расходящейся энергии, направленной на микролинзовый листовой материал. Часть слоя материала, на котором или в котором формируется изображение I, различна для каждой микролинзы, поскольку микролинза «видит» поступающую энергию в разной перспективе. Таким образом, уникальное изображение формируется в слое материала, связанном с каждой микролинзой.
После формирования изображения в зависимости от размера протяженного объекта полное или частичное изображение объекта будет присутствовать в радиационно-чувствительном материале за каждой микросферой. Степень репродуцирования реального объекта в качестве изображения за микросферой зависит от энергии, падающей на микросферу. Части протяженного объекта могут находиться достаточно далеко от района микролинз, вследствие чего энергия, падающая на эти микросферы, имеет плотность ниже уровня излучения, необходимого для модификации этого материала. Более того, если изображение является протяженным в пространстве, то при формировании изображения с помощью линзы с фиксированной ЧА не все части листового материала будут подвергаться облучению от всех деталей протяженного объекта. В результате те части объекта не будут модифицированы в радиационно-чувствительной среде, и только частичное изображение объекта появится позади микросфер. На Фиг.5 дается вид в перспективе части микролинзового листового материала, на котором представлены типовые изображения, сформированные в радиационно-чувствительном материале, прилегающем к отдельным микросферам, и показывается, что зафиксированные изображения включают как полные, так и частичные репликации комбинированных изображений. На Фиг.6 и 7 приводятся оптические микроснимки микролинзового листового материала с изображением, сформированным в соответствии с настоящим изобретением, в котором радиационно-чувствительным слоем является слой алюминия. Из них видно, что одни изображения полные, а другие частичные.
Комбинированные изображения можно также рассматривать как результат суммирования многих изображений, как полных, так и частичных, которые все имеют различные перспективы реального объекта. Многие уникальные изображения сформированы через матрицу миниатюрных линз, все из которых «видят» объект или изображение с различных точек зрения. За отдельными миниатюрными линзами в слое материала создается перспектива изображения, которая зависит от формы изображения и направления, с которого энергия источника, формирующего изображение, была получена. Однако не все, что видит линза, фиксируется на радиационно-чувствительном материале. Только та часть изображения или объекта, наблюдаемого линзой, которая обладает достаточной энергией для модификации радиационно-чувствительного материала, будет зафиксирована.
Объект, который должен быть воспроизведен в изображении, формируется с помощью источника интенсивного света путем вычерчивания контуров «объекта» или с помощью маски. Чтобы изображение, записываемое таким образом, имело комбинированный ракурс, свет от объекта должен излучаться в широком диапазоне углов. Когда свет, излучаемый объектом, приходит из одной точки объекта и излучается в широком диапазоне углов, все световые лучи несут информацию об объекте, но только из этой одной точки, хотя информация передается из перспективы угла светового луча. Теперь представим, что для того, чтобы получить относительно полную информацию об объекте, которую несут лучи, свет должен излучаться в широком диапазоне углов от совокупности точек, которые составляют объект. В соответствии с настоящим изобретением диапазон углов световых лучей, исходящих от объекта, регулируется оптическими элементами, расположенными между объектом и материалом микролинз. Указанные оптические элементы выбираются с таким расчетом, ч