Гибридные трехмерные сополимеры серы, включающие проводящие и непроводящие полимерные блоки и их композиции с серой, применяемые в качестве катодных материалов

Иллюстрации

Показать все

Изобретение относится к катодной композиции для литиевых аккумуляторов. Композиция содержит гибридный трехмерный сополимер серы, включающий полианилиновую трехмерную цепь, с которой связана часть полимерной серы, включающая окисленные атомы серы и элементную серу. Изобретение позволяет обеспечить большее количество циклов разряда-заряда, чем у известных материалов, а также увеличить восстанавливающую способность вторичной ячейки со значениями емкости выше 900 А·ч/кг. 3 з.п. ф-лы.

Реферат

В настоящем изобретении рассматриваются гибридные трехмерные привитые сополимеры серы, содержащие проводящие и непроводящие полимерные звенья, а также их композиции с серой, предназначенные для использования в качестве активных катодных материалов химических источников тока.

Известны композиции, состоящие из одномерного электронопроводящего полимера и серы, в которых часть серы связана с токопроводящими участками полимера, или, по крайней мере, хотя бы один атом серы привит к полимеру. Применение этих композиций в качестве положительных активных материалов электрохимических генераторов с литиевым электродом позволяет достичь электроемкости 900 А·ч/кг при среднем напряжении 2.06 В или 1850 Ватт·ч/кг, однако это возможно только для первичных элементов, т.е. не перезаряжаемых (A. Perichaud, A. Le Mehaute, EU Patent Appl. 0176877, 1986, US Pat. 4664991, 1987). Действительно, в указанных патентах не приводится сведений о количестве циклов заряда-разряда (циклируемости) генератора, хотя данная характеристика является важнейшей для перезаряжаемых батарей.

Указывается, что упомянутые материалы обладают низкой стабильностью вследствие необратимой миграции полисульфидов лития (образующихся при разряде), обусловленной слабой связью звеньев серы с полимером и слабой прививкой звеньев серы к полимерному каркасу.

Другие материалы на основе композиции полиацетилен - сера (Р. Degott. Carbon-Sulfur Polymers and Electrochemical Properties. Dissertation; National Polytechnic Institute, Grenoble, 1986), хотя и проявляют хорошие эксплуатационные свойства, но обладают такими серьезными недостатками, как резкий спад напряжения с 2.77 В до 1.0 В, сопровождающийся 100%-ной потерей емкости (расщепление связей C-S происходит при потенциалах ниже 1.5 В относительно Li/Li+).

Сообщалось, что при формировании дитиоловых структур возможно присоединение до 30% серы к углероду одномерного полиацетилена (L. Kavan, P. Novak, F.P. Dousek, Electrochim. Acta, 1988, 33, 1605). Вольтамметрические тесты показали, что ячейки с электролитом на основе 1 М раствора LiClO4 в пропиленкарбонате циклируются с разрядной емкостью 175 А·ч/кг на первом цикле, которая уменьшается до 100 А·ч/кг при втором разряде, что соответствует одноэлектронному восстановлению 25% присутствующей серы.

Подобные сера-модифицированные полиацетиленовые материалы были запатентованы как материалы, способные обеспечить устойчивость к внешним воздействиям, способность к перезарядке и циклируемости низкосиловых установок.

Данные материалы (полимеры) обеспечивают высокую удельную энергию вторичных ячеек на уровне 300 А·ч/кг (К. -Р. Stiehl, H. Viola, R. Wiesener, DD Patent 262735, 1988); (К. -Р. Stiehl, A. M. Richter, E. Fanghanel, R. Wiesener, DD Patent 274709, 1989).

Полисульфидные соли полианилиновых полимеров, предназначенные для аналогичного применения, были получены путем внедрения в одномерные полианилиновые полимеры неорганических полисульфидов, сульфидов или серы (E. Genies. EP 250518, 1988).

Были получены полисульфиды общей формулы [R(Sx)]n , где R - алифатический или ароматический радикал, х - целое число больше 1, n - целое число больше 2. Эти полисульфиды были запатентованы в качестве катодных материалов для литиевых батарей. В полимерах имелись чередующиеся слои проводящего полимера, такого как полианилин, полипиррол, политиофен и др. с полисульфидной цепью. Полимеры были получены путем электрохимической полимеризации (JP 08115724, 1996). Однако эти композиции не содержали элементной серы.

Были описаны органические электродные материалы для литиевых батарей, включающие более 2-х, но менее 6-ти последовательных связей S-S (JP 09139213, 09153362, 1997). Эти материалы также не относятся к сополимерам элементной серы.

Известны сульфидно-литиевые вторичные батареи с положительным электродом, содержащим дисульфиды или полисульфиды; это - сильно-основные полимеры, имеющие трехмерную основную цепочку общей формулы -[CH2CHX]n-, где Х может представлять собой амино- или органиламино группы; либо это - полиацетилены общей формулы -[СН=СХ]n-, где Х может быть одной из указанных групп (JP 0982327, 0982328). Эти полимерные материалы также не являются сополимерами серы.

Основным недостатком вышеупомянутых полисульфидных соединений является их высокая растворимость в жидких электролитах, особенно в восстановленной форме, что приводит к уменьшению активного материала на поверхности катода. Несмотря на то, что некоторое количество катодного материала оседает вновь на катоде во время окисления, часть его, тем не менее, растворяется безвозвратно.

Из предыдущих публикаций известны трехмерные сополимеры серы (так называемая "пластифицированная сера"), содержащие такие диены, как дициклопентадиен; сшитые полисульфиды общей формулы -[R-Sx]n-, где R является алкиленовым радикалом; или политиолами, например, 1,2,3-тримеркаптопропаном; в состав этих полимеров также входят элементный мышьяк или фосфор. Однако эти сополимеры предназначены для использования в качестве конструкционных материалов, покрытий, связующих материалов и пенообразователей, и никогда не заявлялись в качестве активных компонентов катодных композиций (New Uses of Sulfur. Advances in Chemistry Series. N 140. J.R. West Ed., American Chemical Society. 1975).

Целью настоящего изобретения является получение сополимеров серы и композиций на их основе, содержащих элементную серу, обладающих эффективной матрицей для удерживания продуктов разряда и их обратимого окисления во время заряда, и, таким образом, обеспечивающих большее количество циклов разряда-заряда, чем у известных материалов, и обладающих теоретической удельной энергией более 1000 Ватт·ч/кг. При их использовании в качестве активного катодного компонента литиевых батарей эти материалы должны обеспечивать стабильную и надежную работу ячейки с высоким значением зарядно-разрядной емкости при длительном циклировании.

Другой целью изобретения является разработка средств увеличения восстанавливающей способности вторичной ячейки со значениями емкости выше 900 А·ч/кг. Средства увеличения восстанавливающей способности подразумевают разработку гибридной жесткой (проводящий полимер) и гибкой (непроводящий полимер) полимерной сетки химически связанной с полимерной серой, тем самым обеспечивая связывание полисульфида лития с указанной сеткой, а значит, и с катодом.

Согласно предложенному изобретению сополимеры серы путем окислительно-восстановительной сополимеризации серы по меньшей мере с двумя видами мономеров. Из первого типа мономера образуется разветвленная или сшитая полимерная сетка, и в ней задействован, как минимум, один мономер, способный образовывать проводящий полимер, в результате чего образуется проводящая полимерная цепочка. А один или несколько мономеров обеспечивают разветвление или сшивание цепочки проводящего полимера (это могут быть анилин и о-, м-, или n-фенилендиамин, ацетиленовые и диацетиленовые соединения, пиррол и олигопиррол).

Получение катодной композиции осуществляется путем смешивания элементной серы (S8), с указанными мономерами или макромономерами в присутствии окислителя и кислоты в воде, водно-органической или органической среде под действием облучения или без него.

Известно (С. Оаэ, Химия органических соединений серы. М., Химия, 1975, с.36, 47), что элементная сера (S8), легко реагируя с аммиаком или первичными или вторичными аминами, раскрывает свое восьмичленное кольцо, что приводит к образованию ионных и неионных частиц (растворы серы в указанных реактивах обладают хорошей электропроводностью):

(P.D.Bartlett, E. Cox, R.E. Davies, J. Am. Chem. Soc. 83, 103, 1961)

(R.E.Davis, H.F.Nakshbendi, J. Am. Chem. Soc. 84, 2085, 1962)

Реакция первичных или вторичных аминов с серой приводит к образованию N,N'-политиобисаминов и сероводорода (T.G. Levi, Gazz. khim ital., 60, 275, 1930; 61, 286, 1931):

Таким образом, в условиях, описанных в настоящем изобретении, в случае применения непосредственно анилина, а также его производных, имеют место вышеуказанные виды взаимодействия серы с амином (анилином), что в свою очередь приводит к сшиванию полимерной серы с полианилиновой одномерной полимерной цепочкой. В результате образуется трехмерная сетка.

Также известно, что при одновременном действии нуклеофильных реагентов и окислителей (в т.ч. кислорода) или под влиянием облучения, сера трансформируется в полимерную форму:

Последняя быстро реагирует как с нуклеофильными реагентами, так и со свободными радикалами (С. Оаэ. Химия органических соединений серы. М., Химия, 1975, с.33).

n-Фенилендиамин реагирует с сероводородом в присутствии кислоты настолько легко, что данная реакция используется для количественного определения как самого n-фенилендиамина, так и H2S (P. Karrer, Lehrbuch der Organischen Chemie. 13 Neubearbeitete und erwiterte Auflage. Georg Thieme Veriag. Stuttgartrt, 1959, p.762):

В наших экспериментах при реакции гидрохлорида анилина с серой в водном растворе при комнатной температуре наблюдалось выделение сероводорода. Отсюда следует, что: а) сера легко реагирует с анилином и б) образующийся сероводород должен легко реагировать с n-фенилендиамином (выступающим в качестве одного из сшивающих агентов в настоящем изобретении), как показано на схеме (6).

Таким образом, полученные материалы, синтезированные из анилина и пиррола in situ, в отличие от известных, полученных из полианилина и серы, содержат структуры нового типа со связями S-N (схемы 1-4) и C-S+, а также диаминотиазиновые фрагменты, которые создают дополнительные возможности для сшивания и фиксирования как катионов лития, так и анионов полисульфидов, и, тем самым, являются новыми, ранее неизвестными, видами проводящих полимеров.

Известно (A. Pron, F. Genoud, С. Menardo, M. Nechtschen, Synthetic Metals, 24, 193 1988), что полианилин, имеющий конечные карбонильные группы, образуется при окислительной полимеризацией анилина в присутствии Н2О2 благодаря гидролизу иминовых N-C связей, которые в результате могут привести либо к разрыву цепи:

=(С6Н4)=N-+Н2О→=(С6Н4)=O+H2N-

либо к элиминированию аммиака в случае участия в реакции конечной группы:

=(С6Н4)=NH→=(С6Н4)=O+NH3

Эти хиноноидоподобные структуры будут иметь повышенную реакционную способность в смешанных окислительно-восстановительных процессах при совместном окислении анилина, серы и специального сшивающего агента, особенно в присутствии перекиси водорода, что соответствует идее настоящего изобретения и создает возможность получения так называемых гибридных трехмерных сополимеров серы.

Сера может вводиться в реакционную смесь в виде обычного порошка, в коллоидной форме или в виде раствора.

Вместо серы (или совместно с ней) могут применяться пре-сополимеры серы с вышеуказанными мономерами, образующие непроводящую сетчатую структуру.

Коллоидная активированная сера может быть получена in situ из полисульфидов щелочных металлов или аммония M2Sx (M=NH4, Li, Na, К, х≥2) или тиосульфатов, M2S2O3, в присутствии окислителя и кислоты. Известно, что в случае тиосульфатов образуется особый вид особенно активной серы (S6), которая более быстро реагирует с другими реагентами или способствует образованию очень активной полимерной серы (S6)n (n>2) (Р.D. Bartlett, G. Lohaus, С.D. Weis, J. Am. Chem. Soc., 80, 5064, 1958). Как указано в литературе, такая гексаатомная сера остается стабильной в течение длительного периода времени при температуре 65°С.

В соответствии с настоящим изобретением сера может быть также предварительно активирована (до сополимеризации) путем предварительной обработки с помощью окисляющей системы, кислотами, основаниями или при помощи облучения.

Сополимеризация может осуществляться как каталитически, так и некаталитически.

Весовое соотношение серы и комбинации мономеров, S8: [суммарная масса мономеров], равно: 5-9:5-1, более предпочтительным является: 7-9:3-1, и наиболее предпочтительным - 8-9:2-1.

В качестве окислителя рекомендуется использовать перекись водорода, аммиак или пероксидисульфаты щелочных металлов, K2Cr2O7 и т.д., а также кислород в присутствии катализатора.

Облучение видимьм светом, УФ или электронными лучами упрощает образование сополимеров (С. Оаэ. Химия органических соединений серы. М., Химия, 1975, с.33; Р.D. Bartlett, R.E. Davis, J. Am. Chem. Soc., 80, 2513, 1958).

При разряде (восстановлении) в электрохимической ячейке гибридные сополимеры серы восстанавливаются до сульфида или полисульфидов лития Li2Sm (m≥1) и полимерных тиолатов лития, которые играют роль точек прикрепления, где будет происходить последующее восстановление сополимеров из вышеупомянутых тиолатов, сульфида и полисульфидов лития на стадии заряда. Роль полимерных матриц не ограничивается только ролью места реактора, где происходит восстановление исходных сополимеров и схожих структур. В действительности, эти и исходные матрицы выполняют несколько функций:

- они препятствуют уходу частиц Li2Sm от катода, благодаря образованию комплексов с центрами -SLi (выраженная тенденция различных соединений лития к агрегации и комплексообразованию хорошо известна: например, Т.В.Талалаева, К.А.Кочешков, Методы элементоорганической электромагнитной химии. Литий, натрий, калий, рубидий, цезий. Т.1. М.: Наука, 1971, с.22, 59; R. Huisgen, H. Konig, N. Blecker, Ber., 92, 424, 1959), в результате уменьшается саморазряд и улучшается циклирование;

- они удерживают частицы Li2Sm в катодной области, благодаря взаимодействию с переносом заряда анионов S-2m - с полисопряженньми цепочками проводящих полимеров;

- они удерживают частицы Li2Sm в катодной области, также благодаря ионному взаимодействию анионов S-2m - с активированными участками указанных полисопряженных полимерных цепочек (реактивация);

- в случае основных несопряженных полимерных цепочек, содержащих дополнительные гетероатомы, такие как N, О, миграция частиц Li2Sm от катода еще более затрудняется из-за создания комплексов ионов Li+ с вышеуказанными основными несопряженными полимерными цепочками;

- благодаря своим несвязанным структурам, образующимся вследствие разрушения полимерных цепочек серы -Sx- в ходе разряда, они обеспечивают быструю кинетику для следующего заряда без подзарядки и применения дополнительного напряжения;

- исходные матрицы, имея разветвленные трехмерные структуры, содержащие как жесткие одномерные ветви сопряженных полимеров, так и несвязанные нежесткие цепочки несопряженных полимеров и полимерной серы обеспечивают быструю диффузию ионов Li+, образующихся в электролите, к катоду.

Эти и другие аспекты настоящего изобретения наиболее ярко могут быть продемонстрированы при помощи следующих структур и реакций:

(Р. Karrer, Lehrbuch der Organischen Chemie. 13 Neubearbeitete und erwiterte Auflage. Georg Thieme Verlag. Stuttgartrt, 1959, p.713).

Катодная композиция включает указанные сополимеры в качестве главного ингредиента, обеспечивающего технический эффект (повышение емкости катода и улучшение его циклируемости), активный углеродный материал (ингредиент, улучшающий электропроводность) и полиэтиленоксид (связующее) в весовом соотношении 50:35:15, соответственно.

Приготавливается композиция смешением ингредиентов в электролите, например, 1 М растворе LiSO3CF3 в 1,2-диметоксиэтане.

Следующие неограничивающие примеры иллюстрируют изобретение.

Пример 1.

Измельченную серу (6.40 г., 200 ммоль) добавляли порциями в раствор 0.82 г (2.8 ммоль) К2Cr2O7 в 24.5 мл 2N HCl. Смесь непрерывно перемешивали при комнатной температуре 3 ч до образования устойчивой взбитой кремообразной суспензии со слабым, но отчетливым запахом элементного хлора, что указывало, что в процессе окисления участвуют как анион серы, так и хлора. К этой окисленной суспензии добавляли порциями смесь 0.50 г (5.4 ммоль) анилина и 0.06 г м-фенилендиамина. Желтый цвет реакционной смеси становился черным, а температура поднималась до 48°С. Смесь перемешивали при комнатной температуре 3 ч и оставляли на ночь. Полученный сополимер отфильтровывали, промывали водой до рН˜6 и отрицательной реакции на ион Cl-, затем высушивали в вакууме при температуре 20-25°С в течение 6 ч. В результате получали 6.96 г (98%) гибридного трехмерного сополимера: сера - анилин - м-фенилендиамин, т.пл. 116-170°С. Найдено, %: С 3.48; Н 0.15; N 1.06; S 94.11; Cl 2.77; Cr - отсутствовал.

ИК спектр сополимера (KBr, см-1): 1585 с, 1500 с (С=С в полианилиновых цепях); 1374 ср (C=CSS); 1303 с, 1246 ср (C=S, O=S=O); 1143 с (C-S, O=S, O=S=O); 828 cp (=C-H); 647 о.сл, 584 сл, 509 сл (=C-S, C-S); 465 сл (S-S в полисерных цепях).

Удельную емкость Q (мА·ч/г) сополимера для первых трех циклов измеряли в 2-х электродных элементах пуговичного типа (катодная композиция: сополимер/активированный уголь/полиэтиленоксид, в весовом соотношении 50/35/15, соответственно, на карбонизированнорй алюминиевой фольге Al/С; анод: Li; электролит: 1М LiSO3CF3 в 1,2-диметоксиэтане; скорость развертки потенциала: 1 мВ/с). Композицию получали тщательным перемешиванием ингредиентов в электролите.

Номер циклаКатодный процессАнодный процесс
123123
Удельная емкость, мА·ч/г682540536696649649

В аналогичных условиях элементная сера показывает значение емкости Q=630 мА·ч/г для первого катодного цикла. В соответствии с этими данными, емкость гибридного трехмерного сополимера серы составляет почти 110% от емкости чистой серы, измеренной в аналогичных условиях, при более стабильном циклировании (незначительное снижение емкости на 3-м цикле по сравнению с емкостью 2-го цикла).

Для удаления полимерной серы сополимер (1.00 г) взбалтывали с 2 мл CS2 при температуре 25°С и оставляли на ночь. Остаток фильтровали, промывали на фильтре 6 мл CS2, получили 0.11 г (11%) сополимера с содержанием серы 4.89%.

ИК спектр остатка (KBr, см-1): 3442 ш. сл (N-H полианилина), 1585 сл, 1501 сл (в полианилиновых цепях С=С); 1374 сл (C=CSS); 1304 сл, 1251 ср (C=S, OS=O); 1145 cp, 1014 о.сл (O=S, O=S=O); 825 ш.ср (=С-Н); 702 о.сл (=C-S); 595 ш.ср, 510 уш.сл (C-S).

Продукт (0.08 г) и 2 мл CS2 оставляли на ночь при температуре 25°С. Остаток отфильтровывали и промывали водой на фильтре 6 мл CS2, в результате чего получили 0.07 г продукта (88%) с содержанием серы 4.62%. ИК-спектр остатка (KBr, см-1): 1584 с, 1499 с (в полианилиновых цепях С=С); 1342 ср (C=CSS); 1304 ср (C=S, O=S=O); 1147 ср, 1021 о.сл (O=S, O=S=O); 877 о.сл, 823 ш.ср (=С-Н); 700 сл (=C-S); 584 о.сл, 510 ср (С-S).

Таким образом, как данные элементного анализа, так и полосы поглощения в ИК спектре подтверждают присутствие разнообразных связей S-C в нерастворимом остатке сополимера, что также подтверждает сшитую структуру материала в целом. Кроме того, после второй экстракции анализ на содержание серы и ИК-спектр остатка оставались практически такими же. Таким образом, вся экстрагируемая сера была удалена.

Пример 2.

Раствор 4.00 г (0.125 моль) серы, 0.5 г (5.25 ммоль) анилина и 0.025 мл пиррола в 10 мл CS2 добавляли при энергичном перемешивании в течение 1 ч к раствору, состоящему из 5.00 г (NH4)2S2O8, 8.7 мл 2N H2SO4, 5.8 мл воды, 0.2 мл 2,4,7,9-тетраметил-5-децин-4,7-диола и 0.1 г тетраэтилбензиламмонийхлорида (ТЭБАХ). После испарения непрореагировавшего дисульфида углерода на водяной бане, мелкий черный порошок сополимера отфильтровывали, последовательно промывали водой, этанолом и диэтиловым эфиром до тех пор, пока промывная жидкость не становилась бесцветной, остаток высушили в вакууме до постоянного веса, получали 3.90 г (82.98%) гибридного трехмерного сополимера: сера - полианилин - полипиррол - полиацетиленовый диол - дисульфид углерода. Найдено, %: С 5.07; Н 0.18; S 72.02.

Удельную емкость Q (мА·ч/г) сополимера для первых трех циклов измеряли в элементах пуговичного типа аналогично методике, описанной в примере 1:

Номер циклаКатодный процессАнодный процесс
123123
Удельная емкость, мА·ч/г573400394467454448

Согласно этим данным емкость гибридного трехмерного сополимера серы составляет около 90% от емкости чистой серы, измеренной в аналогичных условиях (см. пример 1), при более стабильном циклировании (незначительное снижение емкости на 3-м цикле по сравнению с емкостью 2-го цикла).

Пример 3.

Раствор 4.00 г (0.125 моль) серы, 0.5 г (5.25 ммоль) анилина в 10 мл CS2 добавляли при интенсивном перемешивании к раствору, состоящему из 5.00 т (NH4)2S2O8, 8.7 мл 2N H2SO4, 5.8 мл воды, 0.2 мл 2,4,7,9-тетраметил-5-децин-4,7-диола, 0.025 г полипиррола и 0.1 г тетраэтилбензиламмонийхлорида (ТЭБАХ), в течение 1 ч. После удаления непрореагировавшего дисульфида углерода на водяной бане и обработки, описанной в примере 2, получали 3.98 г. (84.68%) гибридного трехмерного сополимера: сера - полианилин - полипиррол - полиацетиленовый диол - дисульфид углерода. Найдено, %: С 2.37; Н 0.71; S 78.88.

Удельную емкость Q (мА·ч/г) сополимера для первых трех циклов измеряли в элементах пуговичного типа аналогично методике, описанной в примере 1:

Номер циклаКатодный процессАнодный процесс
123123
Удельная емкость, мА·ч/г714538506713628601

Согласно полученным данным емкость гибридного трехмерного сополимера серы составляет около 110% от емкости чистой серы, измеренной в аналогичных условиях (см. пример 1), при более стабильном циклировании при более стабильном циклировании (незначительное снижение емкости на 3-м цикле по сравнению с емкостью 2-го цикла). Пример 4.

К 6.40 г (200 ммоль) измельченной серы порциями добавляли 0.36 г (3.4 ммоль) 33%-ный водный раствор H2O2 в 10 мл 2N HCl в течение 30 мин. Смесь перемешивали еще 20 мин при комнатной температуре, затем постепенно добавляли порциями 0.62 г (6.7 ммоль) анилина. Желтый цвет реакционной смеси становился черным, а температура поднималась до 30°С. Смесь перемешивали при комнатной температуре 9 ч и оставляли на ночь. Полученный сополимер отфильтровывали, промывали водой до рН˜6 и отрицательной реакции на ион Cl-, затем сушили в вакууме при температуре 20-25°С в течение 6 ч. В результате получали 6.68 г (95%) сополимера, т.пл. 122-126°С. Для хлорированного образца: С8Н5ClNO6S54. Вычислено, %: С 4.86; Н 0.25; N 0.71; S 87.53; Cl 1.79. Найдено, %: С 4.86; Н 0.25; N 0.69; S 86.96; Cl 2.51.

ИК спектр сополимера (пленка расплава, см-1): 3550 с, 3460 с, 3232 ср (N-H, O-Н); 2962 сл, 2927 сл, 2858 сл (С-Н); 1653 о.сл, 1582 ср, 1502 ср (в полианилиновых цепях С=С); 1293 ср, 1194 с (C=S, O=S=O); 1141 с, 1038 ср (C=S, O=S, O=S=O, C-O); 618 о. сл (C-S); 465 о. сл (в полисерных цепях S-S).

Удельную емкость Q (мА·ч/г) сополимера для первых трех циклов измеряли в элементах пуговичного типа аналогично методике, описанной в примере 1:

Номер циклаКатодный процессАнодный процесс
123123
Удельная емкость, мА·ч/г692550503656580567

В соответствии с этими данными емкость гибридного трехмерного сополимера серы составляет около 110% от емкости чистой серы, измеренной в аналогичных условиях (см. пример 1), при более стабильном циклировании (незначительное снижение емкости на 3-м цикле по сравнению с емкостью 2-го цикла).

Пример 5.

10.00 г (310 ммоль) измельченной серы порциями добавляли к раствору, состоящему из 5.00 г (22 ммоль) (NH4)2S2O8 в 12.5 мл IN HCl, в течение 10 мин. Смесь перемешивали дополнительно 40 мин при комнатной температуре, затем порциями добавляли 4.10 г (44 ммоль) анилина. Желтый цвет реакционной смеси становился черным, а температура поднималась до 45°С. Смесь перемешивали при комнатной температуре 2.5 ч, разбавляли 10 мл воды и оставляли на ночь. Полученный сополимер отфильтровывали, промывали водой до рН˜6 и отрицательной реакции на ион Cl-, затем высушивали в вакууме при температуре 20-25°С в течение 12 ч. Получали 11.5 г (82%) сополимера, т.пл. 116-118°С. Найдено, %: S 85.97.

Затем сополимер (1,0.00 г) последовательно промывали ацетоном и диэтиловым эфиром и получали 9.70 г продукта, т.пл. 108-120°С. Найдено, %: С 4.74; Н 0.22; N 1.12; S 89.22; Cl 1.46.

ИК спектр сополимера (пленка расплава, см-1): 3235 (N-H, O-Н); 2962, 2920, 2850 (С-Н); 1571, 1501 (С=С в полианилиновых цепях); 1445, 1383 (C=CSS); 1338, 1290, 1238, 1146 (C=S, O=S=O, C-O); 1075, 1040, 1020 (C=S, O=S, O=S=O, C-O); 822 (=C-H): 758, 743, 725, 693 (=C-S); 504 (C-S); 465 (S-S в полисерных цепях).

Удельную емкость Q (мА·ч/г) сополимера для первых трех циклов измеряли в элементах пуговичного типа аналогично методике, описанной в примере 1:

Номер циклаКатодный процессАнодный процесс
1231012310
Удельная емкость, мА·ч/г639462453411580515516523

Согласно полученным данным емкость гибридного трехмерного сополимера серы составляет около 100% от емкости чистой серы, измеренной в аналогичных условиях (см. пример 1), при более стабильном циклировании (снижение емкости на 2-10 циклах составляет 11%).

Пример 6.

А. Получение сильно разветвленного политиола (частично восстановленный полисульфидный дендример на основе 1,2,3-трихлоропропана) для применения в качестве сшивающего вещества.

Синтез полисульфидного дендримера (S 82.58%) был осуществлен следующим образом: раствор Na2S5 в ДМСО был получен при перемешивании 120 г (0.5 моль) Na2S·9H2O и 64.13 г (2.00 моль) элементной серы в 350 мл ДМСО при 60-65°С в течение 55 мин. К полученному раствору Na2S5 прибавляли раствор 1,2,3-трихлорпропана (36.88 г, 0.25 моль) в 250 мл ДМСО в течение 15 мин при 49-52°С. После прибавления последней порции раствора 1,2,3-трихлорпропана через 10 мин температура смеси повысилась до 70°С, а затем понизилась до 60-62°С и смесь перемешивали при этой температуре 30 мин. Далее реакционную смесь нагревали: 1 - до 80°С в течение 20 мин и затем выдерживали при этой температуре дополнительно 30 мин; 2 - до 100°С в течение 1 ч и затем выдерживали при этой температуре дополнительно 30 мин; 3 - до 120°С в течение 1 ч и затем выдерживали дополнительно при этой температуре 3 ч.

После завершения синтеза смесь оставляли на ночь, затем разбавляли 1600 мл воды, полимер отфильтровывали, промывали водой (до отрицательной реакции на Cl-), ацетоном, этанолом и диэтиловым эфиром. После семи часовой эстракции горячим бензолом в аппарате Сокслета и высушивания в вакууме получали 67.30 г дендримероподобного полимера, содержащего по данным элементного анализа S 82.58%, Cl 0.76%.

В. 0.1 г Полисульфидного дендримера (S%=82.58), синтезированного из 1,2,3-трихлоропропана и Na2S5 в ДМСО, добавляли к раствору 0.09 г Na в 20 мл жидкого аммиака. Голубой раствор становился бесцветным, аммиак удаляли, и к осадку добавляли 1 мл воды.

Синтез гибридных трехмерных сополимеров серы и анилина сшитых сильно разветвленным дендримероподобным политиолом.

К раствору 0.52 г (1.8 ммоль) К2Cr2O7 в 43 мл 2N HCl добавляли порциями в течение 15 мин 3.20 г (100 ммоль) измельченной серы. Смесь непрерывно перемешивали при комнатной температуре 3.5 ч до образования устойчивой взбитой кремообразной суспензии со слабым, но отчетливым запахом элементного хлора, что указывало, что в процессе окисления участвуют как анион серы, так и хлора. К полученной суспензии добавляли порциями смесь 0,32 г (3.4 ммоль) анилина и водного раствора разветвленного дендримероподобного политиола (полученного в соответствии с методом "А" данного примера). Цвет реакционной смеси изменялся от желтого к черному, а температура поднималась до 30°С. Смесь перемешивали при комнатной температуре 3.5 ч и оставляли на ночь. Полученный сополимер отфильтровывали, промывали водой до рН˜6 и отрицательной реакции на ион Cl-, затем сушили в вакууме при температуре 20-25°С в течение 6 ч. Получали 3.31 г (˜94%) гибридного трехмерного сополимера: сера - анилин -1,2,3-тритиопропан, т.пл. 122-126°С. Найдено, %: С 2.69; Н следы; N 0.12; S 91.00; Cl 0.40;

Cr - отсутствует. Для хлорированного образца: C25ClNO41S330. Вычислено, %: С 2.59; Cl 0.31; N 0.12; S 91.32.

ИК-спектр сополимера (KBr, см-1): 3445 сл (N-H, O-Н); 1589 сл, 1503 сл (С=С в полианилиновых цепях); 1337 сл, 1306 сл, 1254 сл (C=S, O=S=O); 1153 о.сл, 1016 о.сл, 947 о.сл (C=S, O=S, O=S=O); 842 о.сл (=С-Н); 697 о.сл (=C-S, C-S); 469 сл (S-S в полисерных цепях).

Удельную емкость Q (мА·ч/г) сополимера для первых трех циклов измеряли в батарее пуговичного типа аналогично методике, описанной в примере 1:

Номер циклаКатодный процессАнодный процесс
123123
Удельная емкость, мА·ч/г645496486662611609

Согласно полученным данным емкость гибридного трехмерного сополимера серы составляет около 100% от емкости чистой серы, измеренной в аналогичных условиях (см. пример 1), при более стабильном циклировании (незначительное снижение емкости на 3-м цикле по сравнению с емкостью 2-го цикла).

Сополимер (1.00 г) суспензировали с 2 мл CS2 при температуре 25°С и оставляли на ночь. Остаток фильтровали, промывали на фильтре 6 мл CS2, получали 0.16 г сополимера (16 %) с содержанием серы 16.00%.

ИК-спектр остатка (KBr, см-1): 3414 сл (ν N-H), 1588 с, 1560 ср, 1530 о. сл, 1505-1498 s, 1440 о. сл (С=С в полианилиновых цепях); 1391 о. сл, 1340 сл, 1311 ср, 1246 ср, 1224 о.сл (C=S, O=S=O); 1149 с, 1124 сл, 1020 ср, 949 о. сл (C=S, O=S, OSO); 838 ср (=С-Н); 758 о.сл, 694 о.сл (=C-S, C-S); 594 ш.ср, 526 уш.ср (ν C-S).

Продукт (0.11 г) снова суспензировали с 2 мл CS2 при температуре 25°С и оставляли на ночь. Остаток фильтровали и промывали водой на фильтре 6 мл CS2, получали 0.09 г продукта (82%).

Таким образом, данные элементного анализа (содержание нерастворенной серы) и количество нерастворенного осадка сополимера подтверждают сшитую структуру материала.

ИК-спектр осадка (KBr, см-1: 3422 (ν N-H), 1591 с, 1560 сл, 1540 о.сл, 1505-1499 с, 1448 о.сл (С=С в полианилиновых цепях); 1385 о.сл, 1340 сл, 1310 ср, 1245 ср (C=S, O=S=O); 1170-1149 ш.сл, 1073 о.сл, 1021 ср (C=S, O=S, O=S=O); 834 ср (=С-Н); 756 о. сл, 694 о. сл (=C-S, C-S); 610 ш. ср, 556 ш.ср, 520 ш. ср (ν C-S).

1. Катодная композиция для литиевых аккумуляторов, содержащая гибридный трехмерный сополимер серы, включающий полианилиновую трехмерную цепь, с которой связана часть полимерной серы, включающая окисленные атомы серы и элементную серу.

2. Катодная композиция по п.1, в которой используется гибридный трехмерный сополимер серы, получаемый путем окислительной сополимеризацией элементной серы и анилина или его производных с о-, м- или n-фенилендиаминами.

3. Катодная композиция по п.1, в которой используется гибридный трехмерный сополимер серы, получаемый путем окислительной сополимеризацией элементной серы и анилина или его производных с пирролом или полипирролом или их производными, приводящей к разветвлению в положении 3 или 4 пиррольного кольца.

4. Катодная композиция по п.1, в которой используется гибридный трехмерный сополимер серы, получаемый путем окислительной сополимеризацией элементной серы и анилина или его производных с политиолами.