Схема для измерения сигнала

Иллюстрации

Показать все

Схема предназначена для измерения сигнала датчика физической величины и может быть использована в устройствах обнаружения вторжения. Схема имеет сигнальный вход, микропроцессор и генератор импульсного сигнала. Частота генератора является функцией амплитуды сигнала на сигнальном входе схемы. Генератор подключен к входу синхронизации микропроцессора. Микропроцессор измеряет частоту импульсного сигнала на своем входе синхронизации путем сравнения импульсного сигнала с временным сигналом, тем самым обеспечивая индикацию амплитуды входного сигнала. Схема позволяет создавать на ее основе детекторы с небольшим количеством компонентов, высокой точностью измерения сигнала, минимальным усилением или отсутствием его, минимальным искажением сигнала, лучшей устойчивостью к радиочастотным помехам и электромагнитному излучению, которые требуют только широко распространенных на рынке микропроцессоров. 6 н. и 40 з.п. ф-лы, 32 ил.

Реферат

Область изобретения

Настоящее изобретение, в целом, имеет отношение к схеме измерений частотной области сигнала, в частности к схемам, входящим в состав систем обнаружения нарушителя, энергосберегающим системам и другим.

Предпосылки изобретения

Существует много видов детекторов, цель которых - обеспечение безопасности и защита от незаконного вторжения, энергетический контроль и другие, включающих пассивные инфракрасные детекторы (PIR), микроволновые детекторы, ультразвуковые детекторы, инфразвуковые детекторы, ударные детекторы и другие. Во всех этих детекторах обычно используются высокочувствительные датчики, которые, как правило, генерируют очень низкий сигнал, требующий усиления для обеспечения возможности его обработки.

Как известно, одной из основных проблем в области охранных систем являются помехи и связанный с ними высокий уровень ложных сигналов тревоги. В настоящее время для снижения числа ложных сигналов тревоги существуют схемы сложной обработки сигнала, иногда использующие микропроцессоры, что позволяет при помощи усложненных алгоритмов и аналого-цифровых (A/D) схем лучше отличить действительный сигнал тревоги от ложного. Такие схемы относительно дороги, а рынок чутко реагирует на цены.

Еще одним недостатком схем сложной обработки сигнала является многочисленность входящих в нее компонентов. Каждый дополнительный компонент приводит к соответствующему снижению надежности и увеличению чувствительности системы к внешним радиочастотным (RF) помехам, что вызывает дополнительные ложные срабатывания. Надежность приборов и предотвращение или, по крайней мере, снижение числа ложных сигналов тревоги - очень важные задачи в области охранных систем.

Пассивные инфракрасные детекторы (PIR)

В настоящее время в области охранных сигнализаций и систем энергетического контроля широко распространены пассивные инфракрасные детекторы. Эти детекторы используют пироэлектрические датчики (описанные в патенте 5,077,549 кол. 1/13-48 и патенте 5,414,263 кол. 1/12-54).

Пироэлектрические датчики соединены в полосовой фильтр/усилитель с очень высоким, в несколько тысяч, коэффициентом усиления (обычно 5000). Описание подобных схем приведено в патентах US 4,570,157, 4,468,658, 5,309,147, 4,364,030, 4,318,089, 4,612,442, 4,604,524. В схемах, приведенных в данных патентах, сигнал усиливается и подается в двухпороговый компаратор или другой компаратор напряжения и, когда напряжение сигнала превышает пороговое значение, активируется сигнал тревоги.

В последние годы с появлением микропроцессоров приняты методы очень сложной обработки сигналов. В патенте US 5,077,549 описывается сигнал тревоги, основанный на принципах интеграции сигнала (эквивалентно измерению энергии). В этом патенте для преобразования сигнала в полезную информацию важно измерить точную форму сигнала. В данном патенте также решение достигается за счет использования сходного полосового фильтра/усилителя с высоким коэффициентом усиления.

В дополнение стоит отметить патент Visonic US 5,693,943, в котором для принятия решения, поступил действительный или ложный сигнал тревоги, используется точный анализ формы сигнала. В данном патенте решение также достигается за счет использования усилителя с высоким коэффициентом усиления. Вновь для принятия правильного решения очень важно отслеживать точную форму сигнала. Сходные проблемы описаны в патенте US 5,870,022.

Из всех примеров, приведенных выше, и из многих других видно, что электронные схемы содержат большое количество компонентов различных видов, которые увеличивают стоимость продукта и уменьшают его надежность. Дополнительной проблемой благодаря слабому сигналу, генерируемому пироэлектрическим датчиком, становится традиционное использование усилителей с большим коэффициентом усиления (от 1,000 до 10,000) и относительно узкой (0,2-8 Гц) полосой пропускания для подавления помех, вносимых окружающей средой. В этих низкочастотных усилителях решение часто достигается за счет использования конденсаторов большой емкости с низким рассеянием. Это делает продукты более дорогостоящими и, в частности, становится причиной значительного снижения надежности, что может быть ответственным за появление определенных видов ложных сигналов тревог.

Сочетание очень высокого коэффициента усиления и очень узкой полосы пропускания при низкой частоте, использование связи по переменному току между каскадами усиления возможно приводят к искажению формы сигнала усилителем. Известные проблемы, такие как смещение постоянной составляющей (DC Offset), отклонение от установленного значения и другие, могут стать причиной того, что сигнал на выходе усилителя значительно отличается от начального сигнала, поступающего от пироэлектрического датчика. Это, в свою очередь, вызывает различные проблемы обработки сигнала в детекторах, использующих компараторы, и, в частности, в более сложных детекторах, анализирующих форму сигнала (смотри патенты US 5,084,696 и US 5,870,022).

Для снижения коэффициента усиления усилителя и улучшения процесса обработки сигнала предприняты попытки использования высокоразрешающих аналого-цифровых схем, например, смотри патенты US 4,546,334 и 5,693,943.

Используя такие техники, возможно снизить некоторые из коэффициентов усиления в цепях с двухпороговым компаратором. Однако с применением аналого-цифрового преобразования стоимость схем возрастает, при этом не обязательно улучшается качество. За последние годы с появлением микропроцессоров, содержащих внутренние цепи аналого-цифрового преобразования, их применение расширилось, смотри патенты US 5,629,676 и 5,237,330. Использование подобных схем может уменьшить требуемое усиление и позволит усилить сигнал всего лишь за один каскад. Однако такие процессоры более дорогостоящи по сравнению с обычными процессорами без аналого-цифрового преобразования.

Устойчивость пассивных инфракрасных (PIR) детекторов к радиочастотным помехам (RFI) и электромагнитному излучению (EMI) является дополнительной проблемой и главным фактором при разработке конструкции охранных систем, использующих пассивные инфракрасные (PIR) и другие детекторы. Это - результат низкого уровня сигналов и использования усилителей с высоким коэффициентом усиления и высоким импедансом.

Также стоит отметить, что, как правило, пассивные инфракрасные (PIR) детекторы компенсируют температурную разницу между телом нарушителя и комнатной температурой. Это можно реализовать, изменяя усиление непосредственно в аналоговой цепи усилителя, смотри патенты US 4,195,234 и 4,943,712, или это может быть сделано с большей точностью, используя программное обеспечение и микропроцессор - смотри патенты US 4,546,344 и 5,629,676.

На рынке существуют различные виды пассивных инфракрасных (PIR) детекторов, использующих два или более пироэлектрических датчика и сложный процесс обработки сигнала. Эти детекторы иногда называют четырехканальными (QUAD) детекторами. Например, смотри патенты: ЕР 0198.551, GB 2170952, 4,614938, 4,618,854, 4,704,533, 4,697,081, 4,746,910, 4,912,748, 4,943,800.

В вышеупомянутых патентах каждый датчик имеет отдельную усиливающую цепь, так что в действительности обсуждаемые выше проблемы преувеличены.

Еще одним видом детектора является комбинация пассивного инфракрасного (PIR) детектора и детектора, основанного на иной технологии, например микроволновой (MW) или ультразвуковой. Общее название таких детекторов - дуальные (DUAL) детекторы.

В следующих патентах: ЕР 0147,925, US 4,660,024, US 4,772,875, US 4,833,450, US 4,882,567, US 5,077,548, US 5,216,410, US 5,276,427, US 5,331,308 описаны пассивные инфракрасные (PIR) детекторы, объединенные, в основном, с микроволновыми детекторами таким способом, что сигнал тревоги активируется только при активации обоих индивидуальных детекторов. Все вышеупомянутые патенты описывают пассивные инфракрасные (PIR) детекторы, страдающие вышеупомянутыми проблемами.

Другие виды детекторов

Как объяснялось ранее касательно дуальных детекторов, состоящих как из пассивных инфракрасных, так и из микроволновых детекторов, существуют различные виды детекторов для формирования сигнала тревоги и других целей и существуют также комбинации таких детекторов. Например, в патенте US 3,801,978 описана комбинация микроволнового и ультразвукового детекторов.

В патенте US 4,401,976 приведена комбинация ультразвукового, инфракрасного (IR) и микроволнового (MW) детекторов. В патенте US 3,573,817 представлена комбинация нескольких датчиков, выполненных в различных технологиях, например аудио, сейсмический, электромагнитный и дистанционный датчики.

В патентах US 4,991,145, 4,928,085 и 4,920,332 описано использование акустических детекторов (микрофон) для обнаружения инфразвуковых частот (изменения в атмосферном давлении в результате открывания и закрывания дверей вором).

В патенте US 4,621,258 описан детектор, принцип действия которого основан на использовании изменения емкости антенны, а в патентах US 5,196,826, 4,9770,517 и 4,697,187 представлены детекторы проникновения, которые работают на принципах передачи микроволнового сигнала и анализа на наличие эффекта Допплера в отраженных сигналах.

Патент US 4,949,075, 4,942,385, 4,016,529 описывает фотоэлектрические детекторы, обнаруживающие изменения в световых пучках (в основном, инфракрасных), появляющихся после того, как пучки были посланы от источника света. Изменения считываются фотоэлектрическими датчиками, такими как Cds, инфракрасные диоды и другие.

В патентах US 5,047,749, 3,946,224 и 3,803,572 представлены фотоэлектрические детекторы, содержащие световые датчики, обнаруживающие изменения освещенности, вызванные движением взломщика вблизи датчика.

В пожарных сигнализациях традиционно используются различные виды температурных датчиков, обычно термисторов, которые контролируют температуру и ее изменения. Здесь также датчики объединены в различные цепи усиления и цепи обработки сигнала.

Патенты US 5,341,122, 5,323,141, 5,192,931, 5,164,703, 4,837,558 и 4,668,941 представляют акустические детекторы, которые обнаруживают разбивание стекла (аудиодискриминаторы), использующие микрофон или пьезоэлектрический датчик. Сигнал обрабатывается различными способами и усиливается. Также существуют ударные детекторы, обычно действующие посредством микрофона или пьезоэлектрических датчиков, целью которых является обнаружение попыток проникновения, включающих разрушение стены, окна, двери и других. Эти детекторы сходны с вышеупомянутыми, но процесс обработки сигнала отличается.

Эти детекторы также широко используют различные схемы усиления, проблемы которых подобны проблемам, описанным выше в отношении пассивных инфракрасных (PIR) детекторов.

В дополнение к вышеупомянутым патентам существуют многочисленные патенты, описывающие детекторные продукты вообще и, в частности, пассивные инфракрасные (PIR) детекторы, которые используют полосовые усилитель/фильтры с очень высоким коэффициентом усиления, целью которых, как объяснялось выше, является обеспечение возможности обработки сигнала с приемлемой точностью.

Предпринято всего лишь несколько попыток избежать необходимости использования описанных выше видов схем усиления.

Патент US 4,523,095 описывает системы, которые пытаются избежать большого коэффициента усиления. Объект, проходя вблизи обычного пассивного инфракрасного (PIR) детектора, вызовет в результате применения в таких детекторах единой конструкции систем множественных собирающих линз относительно высокочастотную серию импульсов, причем каждый импульс имеет маленькую амплитуду. Изменяя поле зрения каждого детектора, небольшие по амплитуде высокочастотные импульсы интегрируются в большой результирующий импульс, который можно измерить. Затем этот большой результирующий импульс может быть проанализирован сравнительно простой схемой для индикации вторжения.

В патенте US 4,418,335 приведен другой пример, в котором вместо более традиционного усилителя напряжения используется электрометрический усилитель. Устройство позволяет проанализировать непосредственно сигнал, вырабатываемый пироэлектрическим элементом, без обычной буферизации. Это сделано с целью достижения высокой устойчивости к радиочастотным помехам (RFI) и уменьшения интерференции без усложнения датчика и/или усилителя.

Упомянутый выше патент использует электрометрический усилитель с очень низким входным импедансом, что значительно снижает интерференцию, но создает другие проблемы, такие как ток утечки, который может заряжать интегрированный конденсатор. Для разряда конденсатора требуется специальная разрядная цепь.

Еще одна попытка приведена в патенте US 4,929,833. Конденсатор заряжается до заданного напряжения и разряжается, пропуская ток через пироэлектрический датчик. Измеряется время от начала разряда конденсатора до достижения предварительно установленного нижнего порогового значения. Оно сравнивается с номинальным временем разряда, при котором ничего не обнаруживается. Если разница достигает заданного значения, включается сигнализация. В соответствии с патентом контрольные измерения выполняются с частотой 8 Гц.

Описанная в патенте система имеет много недостатков (касательно способа функционирования и связанных с ним проблем смотри патент US 5,414,263 кол. 1/55-2/18). В дополнение к описанным там проблемам низкая частота 8 Гц затрудняет обнаружение сигнала в желаемом, а именно 0,2-15 Гц, диапазоне. Например, сигнал частотой 8 Гц может быть не обнаружен совсем, если верхняя полуволна сигнала будет компенсирована нижней полуволной сигнала, создавая нулевое результирующее значение. Иными словами, чувствительность детектора во многом зависит от частоты сигнала и детекторы могут быть неэффективны при определенных скоростях движения нарушителя/цели.

К тому же, эти ограничения не допускают проведение сложного анализа сигнала, как того требуют современные системы обнаружения нарушителя. Лучше использовать такие детекторы в системах, активируемых светом, или в системах контроля освещенности, например в системах энергохозяйства, даже с вышеописанными ограничениями.

Дополнительные, более прогрессивные, попытки приведены в патенте US 5,414,263. Как и в предыдущем примере, этот патент, в основном, разработан для систем энергетического контроля и контроля освещенности. В принципе, этот патент также имеет дело с измерением изменений во времени разряда конденсатора, которое пропорционально выходному току пироэлектрического датчика.

Однако системы, описанные в вышеперечисленных патентах, еще не достигли уровня точности, предъявляемого к измерениям сигнала (амплитуды, времени и формы), устойчивости измерений к интерференции, предотвращению появления ложных сигналов тревоги и возможности отличать людей от домашних животных и т.д., что требуется от современных детекторов.

В патенте US 4,929,823 и в вышеупомянутом патенте 5,414,263 раскрываются системы, использующие конденсатор, соединенный через усилительную цепь, содержащую транзистор, с пироэлектрическим датчиком, и который разряжается до известного уровня. Изменения тока пироэлектрического датчика усиливаются транзистором и являются причиной отклонений, положительных или отрицательных (зависит от направления тока), во времени разряда конденсатора.

Конденсатор заряжается с помощью цепи обработки сигнала, например, микропроцессора, который посредством соответствующих алгоритмов заряжает конденсатор и затем измеряет время его разряда до заранее установленного нижнего порогового значения. Схема обработки сигнала проверяет, существует ли какое-либо изменение в измеряемом времени разряда по сравнению со временем разряда в состоянии "не обнаружено" или существует ли любое большое изменение в среднем времени разряда. В дальнейшем принимается решение, изменения вызваны действительным движением или нет (смотри там же, кол. 2/40-58).

Цепь обработки сигнала, описанная в патенте 5,414,263, учитывая влияние помех, например дождя и ветра, постоянно проверяет и рассчитывает среднее время разряда конденсатора в течение длительного периода. С помощью этих вычислений при обработке сигнала автоматически настраивается пороговое значение.

Также схема обработки сигнала автоматически вносит поправки для компенсации отличий в эксплуатационных спецификациях и допусках пироэлектрических датчиков и различных других компонентов схемы (смотри там же, кол. 2/58-68).

В системе, описанной в патенте 5,414,263, необходимо использовать усилитель тока для усиления сигнала, вырабатываемого пироэлектрическим датчиком, потому что его величины недостаточно для воздействия на время разряда конденсатора способом, эффективным для обработки сигнала (смотри кол. 4/27-30 и кол. 4/36-39).

В дополнение, сигналы пироэлектрического датчика используются для проверки, является ли обнаруженное движение действительным или нет, с целью подтвердить включение сигнализации (кол. 4/33-36).

Схема обработки сигнала заряжает конденсатор и измеряет время, необходимое для его разряда через транзистор, пока выравнивается напряжение. Ток пироэлектрического датчика может увеличивать или уменьшать время разряда конденсатора (кол. 4/39-45).

Схема обработки сигнала сравнивает время разряда конденсатора с "нормальным" временем разряда или со средним временем разряда, рассчитанным за относительно большой период, для определения, зарегистрировано ли действительное движение. Если измеренное время разряда не совпадает со средним временем разряда, считается, что зарегистрировано действительное движение. Если при этом сигнал удовлетворяет дополнительным условиям, запускается режим тревоги.

Дополнительные условия могут включать требования к минимальному количеству обнаруженных за цикл действительных движений, минимальному числу циклов или специфическому порядку событий (кол. 4/45-55).

Рассчитывая среднее время разряда за период, возможно в динамике автоматически корректировать пороговое значение обнаружения движения, например динамически отфильтровывать инфракрасные помехи, вносимые окружающей средой, и компенсировать отличия в параметрах компонентов (кол. 4/56-кол. 5/5).

В одном из воплощений микропроцессор заряжает конденсатор через вход ввода-вывода (I/O) до максимального напряжения и затем разрешает конденсатору разрядится. Процессор измеряет время разряда конденсатора от уровня напряжения заряда до нижнего уровня напряжения.

Временная разница между измеренным временем разряда и средним временем (за длительный период) служит для:

А. Обновления среднего времени разряда за длительный период.

В. Проверки, являются ли обнаруженные движения действительными (кол. 5/47-67).

Предпочтительным является измерение времени разряда конденсатора 60 раз в секунду и обновление среднего времени разряда 30 раз в секунду. Обновление осуществляется суммированием существующего среднего времени с долей последнего измеренного времени разряда. Предпочтительная пропорция - 15/16 старого среднего времени плюс 1/16 последнего измеренного времени. Таким образом, среднее время может измениться только при очень низкой частоте. Отсюда вытекает, что детектор отвечает только на частоты, которые выше, чем собственно частота, предписываемая скоростью обновления (30 раз в секунду в данной реализации) и долей в пропорции последнего измеренного времени разряда (1/16 в данной реализации). Расчет показывает, что в данной реализации самая низкая частота, на которую реагирует детектор, - это 0,4 Гц (кол. 5/68 - кол. 6/28).

Решение о том, обнаружено ли действительное движение, принимается на основании:

Определяется разница между измеренным временем разряда и средним временем разряда. Если разница меньше порогового значения чувствительности, соответствующей минимальной установленной чувствительности, принимается решение, что движения нет. Если разница больше порогового значения чувствительности, принимается решение, что движение произошло.

Чтобы принять решение о включении сигнализации, необходимо проверить, является ли обнаруженное движение значительным. Проверка осуществляется подсчетом количества непрерывно зафиксированных событий движения.

В данной реализации значительным считается четыре последовательно зафиксированных события, то есть при обнаружении трех или менее последовательных событий счетчик сбрасывается.

В предпочтительной реализации частота контрольных измерений равна 60 в секунду и счетчик установлен на 4 непрерывных события. Следовательно, для активации сигнализации требуется четыре цикла частотой 60 Гц. Отсюда вытекает, что частоты больше 7,5 Гц не будут обнаруживаться. В действительности это не так, как будет объяснено ниже.

При необходимости можно выбрать порог чувствительности и счетчик. Также можно выбрать частоту следования импульсов, другие значения времени и другие алгоритмы.

Возможно проводить контрольные измерения сигнала 100 раз в секунду и соединить частоту контрольных измерений (60 Гц) с напряжением сети.

Патент 5,414,263 известен тем, что поднимает следующие проблемы:

1. Пороговое значение чувствительности (кол. 6/36)

Его результаты более всего сходны с результатами, полученными стандартными детекторами, сравнивающими в двухпороговом компараторе напряжение усиленного сигнала с рядом пороговых значений напряжений, причем эти пороговые значения эквивалентны пороговому значению чувствительности измеренных временных разниц вышеуказанного патента.

Другими словами, определяется, является ли измеренный сигнал больше или меньше порогового значения. В сущности, в патенте 5,414,263 осуществлено преобразование напряжения во время, используя данные, полученные традиционным способом. Само по себе преобразование напряжения во время, использующее основанную на конденсаторах схему, хорошо известно из литературы. Например, в документе DS00513A (1990), опубликованном Microchip Technology Inc. (США), описывается подобная трансформация. Для преобразования входного напряжения во время, которое легко может быть измерено микроконтроллером, обычно используется емкостная зарядная цепь. Опорное напряжение подается с помощью комплементарного металлооксидного полупроводникового (CMOS) четырехполюсного двустороннего переключателя, управляемого микроконтроллером. С помощью преобразователя тока схема вырабатывает линейно изменяемый ток как функцию от входного напряжения. Конденсатор заряжается до тех пор, пока не будет достигнуто пороговое значение на входе ввода-вывода (I/O) микроконтроллера. Это генерирует программное калибровочное значение, обычно используемое для настройки большинства ошибок схемы, включая погрешности сопротивления и конденсатора, изменения во входном пороговом значении напряжения и колебания температуры. После того как программное калибровочное значение измерено, конденсатор разряжается и входное напряжение подается на Vin. Измеряется, для входного напряжения, время достижения порогового значения и сравнивается с калибровочным значением с целью определения фактического значения входного напряжения.

В системах двухпорогового компаратора напряжения невозможно получить точные данные о величине сигнала. Более того, в вышеупомянутых патентах точное значение сигнала не измеряется. На практике невозможно определить, сигнал в 10 раз превышает пороговое значение или всего лишь на 2%. Более того, невозможно определить, сигнал равен 30% от порогового значения или 98% от него. Следовательно, невозможно измерить форму сигнала или осуществить обработку сигналов, как это требуется, например, в патенте Visonic US 5,693,943 и 5,870,002 или в патенте US 5,077,549.

2. Использование счетчика для создания фильтра в зоне высоких частот

Чтобы устранить интерференцию, важнее отфильтровать высокие частоты, чем те, которые равны или близки по значению к детектируемым. В частности, важно отсеять частоты, связанные с системой энергоснабжения. Во многих патентах данной отрасли это достигнуто за счет различных видов фильтров, в основном аналоговых, большинство из которых комбинируются с полосовым усилителем/фильтрами.

Однако вышеупомянутые фильтры функционируют неудовлетворительно, так как их чувствительность недостаточно высока, и поэтому они зависят от уровня напряжения сигнала помехи. В последние годы были предприняты попытки более сложной цифровой обработки сигнала, при которой проверяется, среди прочего, частота сигнала и полностью фильтры всех частот, не входящих в желаемый диапазон. При этом нет какой-либо зависимости от уровня напряжения. Например, все сигналы, частоты которых не входят в диапазон 0,2-15 Гц, будут полностью удалены независимо от их напряжения.

В патенте 5,414,263 сделана попытка создать иной вид фильтра, используя конкретную частоту контрольных измерений (60 Гц) и счетчик, подсчитывающий четыре последовательных события. Хотя и возможно достичь определенного уровня фильтрации (в данном случае установлена максимальная частота 7,5 Гц), но качество фильтра хуже, чем у традиционных аналоговых фильтров. Проблемы, связанные со схемой из патента 5,414,263, следующие:

А. Как и аналоговый фильтр, этот фильтр также зависит от значения напряжения. Если значение напряжения достаточно высоко по сравнению с пороговым значением, сигнал может пройти через фильтр, потому что нет синхронизации между сигналом помехи и частотой контрольных измерений.

В. Если помеха - результат действия частот, равных половине значения или значению частоты контрольных измерений или кратных им, контрольные измерения могут прийтись на высшую точку сигнала или близкую к ней и тогда сигналы, даже являясь долей порогового значения, смогут пройти через фильтр.

С. Поскольку фильтр работает, пропуская только сигналы больше порогового значения, может возникнуть следующая ситуация: существует установочный сигнал на главной частоте, уровень которого ниже порогового значения (что используется на практике), который, в сущности, не обнаруживается или фильтруется. Появляется реальный сигнал с относительно низким значением, который тоже обычно не выявляется, и создается ситуация, при которой эти два сигнала, налагаясь друг на друга, способны превысить пороговое значение и создать нежелательный сигнал тревоги.

D. Поскольку необходимо выявить несколько последовательных событий для фильтрации, в процессе детектирования может появиться помеха, наложение которой на детектируемый сигнал может разрушить измерение в конкретном контрольном измерении, что приводит к сбросу счетчика событий без обнаружения. Любая попытка изменить способ подсчета для преодоления влияния помехи может ухудшить работу фильтра.

Е. Несмотря на то, что вероятность обнаружения возрастает при использовании серии импульсов, или минимального количества событий или минимального числа циклов или особого последовательного рассеяния (кол. 4/51-55, кол. 6/667 - кол. 7/4), ясно, что любой такой критерий ухудшит или отменит работу фильтра в высокочастотной области и станет причиной возникновения ложных сигналов тревоги или проблем необнаружения.

3. Микропроцессор с аналого-цифровым преобразованием (A/D)

В вышеупомянутом патенте решение достигается при использовании микропроцессора, который как заряжает конденсатор, так и измеряет время разряда. Обычно микропроцессор имеет вход ввода-вывода (I/O) с аналого-цифровым (A/D) преобразованием для возможности измерения напряжения, до которого разряжается конденсатор. Такой микропроцессор более дорогостоящий, чем обычный микропроцессор без аналого-цифрового (A/D) преобразования. Возможно использование процессора без аналого-цифрового преобразования (A/D), но точность измерений может быть низкой и легко подвергаться воздействию электрических и других помех.

Сущность изобретения

Целью настоящего изобретения является создание пассивных инфракрасных (PIR) и других видов детекторов, включая комбинированные детекторы, с небольшим количеством компонентов, большей точностью измерения сигнала, минимальным усилением или отсутствием его, минимальным искажением сигнала, высокой надежностью и лучшей устойчивостью к радиочастотным помехам (RFI) и электромагнитному излучению (EMI) и которые требуют только широко распространенных на рынке микропроцессоров.

Еще одной целью настоящего изобретения является создание, при использовании обычного микропроцессора, схемы обработки сигнала для различных датчиков, не требующей усиливающих и других цепей, оптимально эксплуатирующей характеристики микропроцессора для значительного снижения цены продукта, улучшения его устойчивости к помехам, более точной обработки сигнала с минимальным искажением в результате усиления, улучшения продукта.

В соответствии с первым аспектом настоящего изобретения разработана схема измерения частотной области сигнала, включающая: сигнальный вход, микропроцессор и генератор, данный генератор предназначен для формирования импульсного сигнала, частота которого является функцией от амплитуды первого сигнала, полученного на сигнальном входе, и для подачи этого импульсного сигнала на микропроцессор, данный микропроцессор предназначен для измерения частоты упомянутого импульсного сигнала путем сравнения этого импульсного сигнала с временным сигналом, таким образом обеспечивая определение амплитуды упомянутого первого сигнала.

В воплощении временной сигнал имеет форму временного строба. Предпочтительно, импульсный сигнал состоит из импульсов, подсчитываемых счетчиком, причем данный счетчик соединен с микропроцессором для сообщения микропроцессору о подсчете количества поступивших импульсов. Опять таки, предпочтительно, подать импульсный сигнал непосредственно на микропроцессор. В этом случае импульсный сигнал лучше подать на вход синхронизации микропроцессора.

Устройство, кроме того, может содержать специально сконструированную временную цепь, на выходе которой формируется упомянутый временной сигнал. Выгодно подать импульсный сигнал на вход синхронизации микропроцессора, поскольку микропроцессору требуется независимый временной сигнал. Предпочтительно, микропроцессор подсчитывает импульсный сигнал в течение длительности упомянутого временного строба. Вход синхронизации может быть внешним входом микропроцессора.

В предпочтительной реализации генератор является внешним по отношению к микропроцессору. Генератор может использовать внутренние ресурсы микропроцессора или он может быть полностью внешним.

Сигнал датчика может быть аналоговым или цифровым, термин цифровой в данном определении подразумевает не только бинарный, но и другие дискретные уровни сигнала.

В соответствии со вторым аспектом настоящего изобретения разработана схема измерения частотной области сигнала, включающая:

сигнальный вход, микропроцессор и тактовый генератор, предназначенный для генерации сигнала синхронизации для упомянутого микропроцессора, причем частота импульсов сигнала синхронизации микропроцессора является переменной от функции амплитуды сигнала, поступившего на сигнальный вход,

причем упомянутый микропроцессор предназначен для обработки сигнала синхронизации и определения на выходе значения амплитуды сигнала, поступившего на сигнальный вход.

Цепь, предпочтительно, содержит таймер, предназначенный для задания длительности временного строба для подсчета количества импульсов синхронизации, кроме того, таймер используется микропроцессором при обработке данного сигнала. Предпочтительно, микропроцессор подсчитывает импульсы в течение упомянутого временного строба.

Таймер может содержать конденсаторную схему и дополнительно может быть подсоединен к входу ввода-вывода (I/O) микропроцессора с целью его использования. Тактовый генератор, предпочтительно, использует внутреннюю цепь синхронизации микропроцессора или же может быть полностью внешним от микропроцессора.

Сигнал, полученный на входе датчика, может быть аналоговым или цифровым, и, как упоминалось ранее, термин "цифровой" подразумевает не только бинарный, но также другие виды дискретных уровней сигнала.

Сигнал, полученный на сигнальном входе, предпочтительно поступает от одного или более различных видов датчиков, включая инфракрасные и пироэлектрические датчики, возможно, входящих в систему сигнализации.

Датчик может быть подсоединен к цепи тактового генератора через схему сопряжения, которая может быть предназначена для обеспечения буферизации или даже усиления.

В соответствии с третьим аспектом настоящего изобретения разработано устройство детектирования, включающее датчик, формирующий на выходе сигнал датчика, микропроцессор и тактовый генератор, генерирующий сигнал синхронизации для микропроцессора, причем частота сигнала синхронизации микропроцессора изменяется как функция амплитуды упомянутого сигнала датчика, микропроцессор обрабатывает сигнал синхронизации и обеспечивает индикацию обнаружения, если сигнал датчика удовлетворяет определенным критериям. Предпочтительно, такое устройство дополнительно содержит таймер, предназначенный для задания длительности временного строба для подсчета количества упомянутых импульсов синхронизации, причем упомянутый таймер используется микропроцессором в обработке сигнала.

Предпочтительно, микропроцессор подсчитывает количество импульсов за упомянутый временной строб. Таймер, предпочтительно, содержит конденсаторную схему и использует вход ввода-вывода (I/O) микропроцессора. Тактовый генератор может быть внешним по отношению к микропроцессору, но может использовать внутреннюю цепь синхронизации микропроцессора.

Сигнал датчика может быть аналоговым или цифровьм, как упоминалось ранее.

Вышеописанные схемы полезны, среди прочего, для предотвращения вторжения, краж, контроля освещенности, детектирования колебаний, ударов, перемещений.

Предпочтительно, датчик является любым из группы датчиков, включая инфракрасный, четырехканальный инфракрасный, акустический, инфразвуковой, ультразвуковой, фотоэлектрический, электромагнитный, температурный, дымовой датчики.

Воплощение снабжено вторым датчиком, который может быть любым из группы датчиков, включая инфракрасный, четырехканальный инфракрасный, акустический, инфразвуковой, ультразвуковой, фотоэлектрический, электромагнитный, температурный, дымовой. Микропроцессор может обрабатывать два сигнала, поступающих от двух датчиков, либо с помощью временного мультиплексирования (например, подсоединения к одному, затем к другому), либо различая их по характеристикам сигнала (например, частоте). Для специалистов несомненно, что множество датчиков может быть объединено в единое устройство.

В соответствии с четвертым аспектом настоящего изобретения разработан метод измерения сигнала, включающий:

передачу первого сигнала на генератор, предназначенный для формирования сигнала синхронизации для микропроцессора, причем частота этого сигнала синхронизации является переменной от функции амплитуды первого сигнала, и микропроцессор используется для обработки сигнала синхронизации и определения значения амплитуды первого сигнала.

Воплощение позволяет задать длительность временного строба подсчета импульсов для измерения первого сигнала.

Предпочтительно, аналоговый сигнал формирует импульсы синхронизации, подаваемые на вход синхронизации микропроцессора, и микропроцессор подсчитывает эти импульсы синхронизации в течение упомянутого временного строба. Или же аналоговый сигнал формирует импульсы синхронизации, поступающие на вход синхронизации микропроцессора, и микропроцессор подсчитывает в течение упомянутого временного строба импульсы, имеющие частоту, которая является функцией от частоты импульсов синхронизации.

Предпочтительно, этап измерения модуляции упомянутого сигнала включает подачу модулированного сигнала на внешний вход синхронизации микропроцессора для обеспечения импульсов синхронизации, подачу временного сигнала на микропроцессор для задания временного строба и подсчет числа импульсов синхронизации, приходящихся на упомянутый временной строб. Типичным источником слабого сигнала может являться датчик вторжения, например пироэлектрический датчик.

Воплощение метода включает дополнительные шаги по размещению источника калибрующего излучения в соответствии с используемым датчиком вто