Смачиваемые полиолефиновые волокна и ткани

Иллюстрации

Показать все

Изобретение относится к технологии получения полиолефиновых волокон, используемых для тканых и нетканых материалов, в частности к приданию им смачиваемости, и может быть использовано в производстве средств гигиены, фильтров, сепараторов аккумуляторных батарей и т.п. Элементарные нити, двухкомпонентные волокна представляют собой приготовленную в расплаве смесь (а) полиолефина и (б), по меньшей мере, одного соединения формулы R1 - гидрофильный олигомер (I), где R1 - прямоцепочечный или разветвленный алкил, содержащий от 22 до 40 углеродных атомов, а гидрофильный олигомер это гомо- или соолигомер, включающий 2-10 мономерных звеньев, дериватизированных из мономеров, выбранных из группы, включающей этиленоксид, пропиленоксид, этиленгликоль, пропиленгликоль, эпихлоргидрин, акриловую кислоту, метакриловую кислоту, этиленимин, капролактон, виниловый спирт и винилацетат, проявляющих превосходную длительную смачиваемость. 7 н. и 8 з.п. ф-лы, 4 табл.

Реферат

Настоящее изобретение относится к новым олефиновым полимерным волокнам для тканых или нетканых материалов, которые проявляют долговременную смачиваемость. Эти волокна особенно эффективны при их применении в гигиенических изделиях, таких как полотенца, гигиенические изделия для женщин и средства ухода при недержании.

Полиолефины, в особенности полипропилен, в больших количествах используют для изготовления тканых и нетканых текстильных материалов. В гигиенических изделиях, таких как пеленки одноразового использования, гигиенические изделия для женщин и средства ухода при недержании, в качестве компонентов предпочитают использовать полиолефиновые нетканые текстильные материалы, такие как прочесы, спанбонд, материал из нити, полученной прядением из расплава со струей воздуха (волокно из расплава с раздувкой) и их композиты. Общепризнанные достоинства текстильных материалов на основе полиолефинов, преимущественно полипропилена, включают относительно низкую стоимость сырья, простоту изготовления, необходимое отношение прочности к поверхностной плотности и мягкость на ощупь.

Гигиенические изделия обычно включают абсорбентный сердцевинный компонент из материалов, способных абсорбировать жидкости в количестве, в несколько раз превышающем их массу. Обычно такое изделие включает на одной стороне сердцевины по меньшей мере одну внешнюю оболочку или подкладку, которая контактирует с кожей потребителя, и на другой стороне сердцевины наружный слой, контактирующий с окружающей средой. От текстильных материалов, используемых для внутренних подкладок, требуются мягкость и проницаемость для жидкости. Проницаемость для жидкости должна принимать такую форму, при которой жидкость имеет возможность проходить через текстильный материал и поступать в находящуюся внутри абсорбентную сердцевину, хотя в действительности в этом процессе абсорбция жидкостей отсутствует. Дополнительная целевая особенность состоит в том, чтобы внутренняя подкладка, т.е. слой, покрывающий абсорбентную сердцевину, оставалась проницаемой для жидкостей даже после длительной носки и повторных проникновений жидкости, в частности как это обычно происходит с детскими пеленками in situ. Другая настоятельно необходимая, но трудно достижимая особенность текстильных материалов для внутренней подкладки заключается в том, чтобы они препятствовали обратному просачиванию жидкости, накопившейся в абсорбентной сердцевине, и ее вхождению в контакт с кожей потребителя под воздействием давления, в частности когда ребенок сидит, находясь в мокрой пеленке.

Нетканые текстильные материалы и композиты, изготовленные из целлюлозных материалов, пропускают и абсорбируют жидкости даже после повторных ее проникновений, но обычно они не препятствуют обратному истечению удерживаемых жидкостей под воздействием давления. Термопластичные волокна, такие как из сложных полиэфиров и полиолефинов, уже описаны как предпочтительные для применения с этими целями по экономическим, эстетическим причинам и благодаря прочности. Однако полипропилен по своей природе гидрофобен. После прядения волокон или элементарных нитей, которые используют при изготовлении текстильного материала, полученный текстильный материал также является гидрофобным или несмачиваемым. Таким образом, текстильный материал необходимо подвергнуть специальной обработке или некоторым изменениям для того, чтобы сделать такой текстильный материал смачиваемым, т.е. способным пропускать или переносить жидкости, если этот текстильный материал оказывается приемлемым для применения в качестве материала для внутренней подкладки гигиенического изделия.

С целью пояснения необходимо отметить, что абсорбция указывает на то, что в действительности материал от добавляемой воды набухает. В противоположность этому смачиваемость, как она определена в настоящем описании, означает изменение поверхностного натяжения, что позволяет на поверхности твердого материала, такого как материал волокна, образовываться слою воды, упрощающему движение потока жидкости после смачиваемого материала или через него.

В данной отрасли промышленности известно, что некоторые поверхностно-активные вещества, такие как TRITON Х-100 фирмы Rohm и Haas, в виде водного раствора или суспензии можно наносить на поверхность гидрофобных волокон, элементарных нитей или нетканых текстильных материалов с достижением эффекта придания волокнам, элементарным нитям или текстильным материалам смачиваемости, но не абсорбционной способности. Такую местную обработку можно проводить с помощью любого метода, знакомого специалисту в данной области техники, в частности разбрызгиванием с пенообразованием, окунанием и отжатием или с помощью валика для глубокой печати. Почти в каждом случае для удаления остаточной воды или растворителя, используемого для приготовления раствора или суспензии поверхностно-активного вещества, необходимо осуществлять определенного типа стадию тепловой обработки. Эта стадия значительно увеличивает технологические затраты и сложность. Далее, термопластичные материалы под действием тепла изменяются, и для гарантированного устранения отрицательного влияния на свойства текстильного материала требуется тщательный контроль за процессом нагревания. Кроме того, поскольку поверхностно-активные вещества не вступают в прочную химическую связь с поверхностью волокна или элементарной нити, результаты таких местных обработок оказываются недолговечными. Они проявляют склонность к удалению смыванием во время повторных проникновений жидкости или стираются во время использования.

В попытке устранить этот недостаток проводят обработку коронным разрядом с целью изменить электрохимический потенциал поверхностей волокон или элементарных нитей. Следствием является придание поверхностям большей реакционной способности, в результате чего гидрофобные поверхности становятся более смачиваемыми. Однако эффект от этих изменений электрического потенциала также оказывается недолговечным, являясь, в частности, подверженным воздействию факторов окружающей среды, например при хранении во влажной среде.

Еще одним прогрессивным шагом является проведение поверхностных химических обработок, в которых поверхностно-активные вещества ковалентно связывают с полимером.

Другой технический прием состоит во введении химических агентов в термопластичный полимер до его экструзии с прядением волокон или элементарных нитей для последующего изготовления нетканых текстильных материалов. С этой целью были предложены такие агенты, как силоксаны. При этом задачей является придание долговечного изменения смачиваемости волокон или элементарных нитей. Осуществление такой теоретической модели говорит о том, что расплавленные добавки становятся диспергированными в расплавленном полимере и, когда полимер охлаждается во время резкого остывания волокна или элементарной нити, связываются в матрице. С течением времени благодаря эффектам при последующей переработке добавки перемещаются к поверхности волокон или элементарных нитей (это явление называют миграцией), сообщая долговременную смачиваемость.

Bergbreiter и Srinivas в Macromolecules 25 (1992), 636-643, описывают попытку модифицировать поверхность полиэтилена высокой плотности "функционализацией улавливанием". Готовят блок-соолигомеры полиэтилена и полиэтиленгликоля и гомогенно смешивают со свежеполученным полиэтиленом. Анализ полимерных пленок, полученных из этой смеси, показал, что полиэтиленгликолевые звенья оканчивались главным образом в самых внешних слоях пленки.

В US № 5464691 описано применение триблочной амфифильной смолы с целью модификации поверхностной энергии полиолефиновой пленки. Амфифильные смолы состоят из двух углеводородных секций и полярной секции. Углеводородные секции дериватизируют, например, из длинноцепочечных алифатических карбоновых кислот, алифатических спиртов и т.п., а полярную секцию дериватизируют из телехелатного диола, например из полиэтиленгликоля.

В US № 5240985, 5272196, 5281438 и 5328951 описано применение амфифила с целью увеличить поверхностную энергии полиолефинов. Такой амфифил состоит из центрального гидрофильного компонента и двух олеофильных компонентов. Гидрофильный компонент дериватизируют, например, из полигликолей, а олеофильные компоненты дериватизируют, например, из жирных кислот или алифатических спиртов.

В US № 5262233 описаны пленки сельскохозяйственного назначения, которые могут содержать введенную в них добавку против помутнения, которой может служить полиэтиленоксид длинноцепочечного спирта.

В US № 3048266 описаны полиолефиновые пленки со стойкостью против помутнения, которые содержат введенные в них сложные эфиры или простые эфиры продуктов присоединения этиленоксида.

В US № 5001015 описаны полиолефиновые пленки с антистатическими свойствами, которые в качестве возможных антистатиков включают продукты взаимодействия полиалкоксилатов с жирными спиртами.

В US № 4304234 описан способ повышения смачиваемости полиолефиновых элементарных нитей обработкой полярными соединениями, такими как продукты присоединения пропиленоксида и/или этиленоксида.

В US № 5804625 описано получение гидрофильных термопластичных волокон, которые включают введенное в них одно или несколько содержащих фторалифатические группы неионогенных поверхностно-активных веществ и одно или несколько неионогенных нефторированных содержащих полиоксиэтиленовые группы поверхностно-активных веществ.

В US № 6239047 описаны смачиваемые полиолефиновые волокна, которые содержат введенную в них полиэтиленгликольолеилэфирную добавку.

В WO-A 00/28143 описан способ гидрофильной обработки полиолефиновых или полиэфирных волокон, в котором используют соединение класса алкилоксиэтилатов.

В каждом из ЕР-А 0888786, ЕР-А 0800833 и WO-A 00/22061 обсуждаются клеевые композиции в нетканых изделиях с улучшенной впитывающей способностью, которые содержат поверхностно-активные вещества, такие как оксиэтилированные одноатомные спирты.

В WO-A 01/14621 описан биоразлагаемый нетканый материал, включающий алифатические полиэфирные, полиолефиновые микроволокна и агент, улучшающий совместимость.

Все еще сохраняется потребность в текстильных материалах с улучшенной смачиваемостью для применения в гигиенических изделиях, детских пеленках и т.п. В частности, сохраняется потребность в улучшенной смачиваемости гидрофобных полиолефиновых текстильных материалов, изготовленных из волокон для тканых или нетканых материалов, обладающих требуемой мягкостью. Конкретные полиолефиновые композиции по настоящему изобретению обладают превосходными свойствами смачиваемости.

Объектом настоящего изобретения является смачиваемое полиолефиновое волокно или элементарная нить, представляющая собой приготовленную в расплаве смесь, которая включает

(а) полиолефин и

(б) по меньшей мере одно соединение формулы (I)

в которой R1 обозначает прямоцепочечный или разветвленный алкил, содержащий от 22 до 40 углеродных атомов, а гидрофильный олигомер представляет собой гомо- или соолигомер, включающий в пределах 2 и 10 мономерных звеньев, дериватизированных из мономеров, выбранных из группы, включающей этиленоксид, пропиленоксид, этиленгликоль, пропиленгликоль, эпихлоргидрин, акриловую кислоту, метакриловую кислоту, этиленимин, капролактон, виниловый спирт и винилацетат.

Гидрофильный олигомер состоит, например, из 2, 3, 4, 5, 6, 7, 8, 9 или 10 мономерных звеньев.

В соединениях формулы (I) в соответствии с настоящим изобретением R1 обозначает, например, прямоцепочечный или разветвленный алкил, содержащий 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 или 40 углеродных атомов.

Соединение формулы (I) может представлять собой, например, соединение, у которого гидрофильный олигомер дериватизируют из этиленоксида, примером чего служит соединение, проиллюстрированное формулой (Ia):

где х обозначает число от 2 до 10, a R1 обозначает прямоцепочечный или разветвленный алкил, содержащий от 22 до 40 углеродных атомов. Литера "х" обозначает, например, 2, 3, 4, 5, 6, 7, 8, 9 или 10.

Соединение формулы (I) может быть описано как диблочный АБ амфифильный соолигомер. Длина цепи алкила R1 и число мономерных звеньев гидрофильного олигомера могут быть выражены отдельными значениями. По другому варианту у предлагаемых соединений формулы (I) как длина цепи алкила R1, так и число мономерных звеньев гидрофильного олигомера могут быть выражены средними значениями.

Конкретным примером соединения формулы (Ia) является соединение, которое представляет собой оксиэтилированный алифатический спирт формулы (Ib), где R1 обозначает прямоцепочечный алкил со средним числом углеродных атомов 30, а среднее значение "х" составляет 2,5:

Композиции по настоящему изобретению могут также включать добавку из смеси двух или большего числа соединений формулы (I). Предлагаемые композиции могут также включать другие известные амфифильные добавки. В частности, такими дополнительными добавками могут быть оксиэтилированные алифатические спирты, такие как Atmer® 502, 2-мольный оксиэтилированный стеариловый спирт, C18H37(OCH2CH2)2OH, С.А. регистрационный № 9005-00-9. Atmer® является товарным знаком фирмы Uniqema. Atmer® 502 служит примером оксиэтилированного алифатического спирта, который не отвечает приведенной формуле (I).

Соединение (Ib) доступно на фирме Baker Petrolite в виде продукта Unithox® 420, CAS #97953-22-5.

Предлагаемые смеси готовят по методам экструзии расплава с получением волокон или элементарных нитей. В соответствии с известной технологией, такой как непрерывное прядение элементарной нити для пряжи или штапельного волокна и методы изготовления нетканых текстильных материалов, такие как технология спанбонда и технология волокна из расплава с раздувкой, волокна или элементарные нити формуют экструзией расплавленного полимера через небольшие отверстия фильеры. Затем обычно формованные таким образом волокна или элементарные нити вытягивают или растягивают с целью индуцировать ориентацию молекул и добиться кристалличности, в результате чего уменьшается диаметр и улучшаются физические свойства. В процессах изготовления нетканых материалов, в таких как по технологии спанбонда и с использованием волокна из расплава с раздувкой, волокна или элементарные нити наносят непосредственно на перфорированную поверхность, такую как поверхность движущегося плоского конвейера, и по меньшей мере частично скрепляют с помощью любого из множества средств, включая, хотя ими их список не ограничен, термические, механические и химические методы соединения. Специалистам в данной области техники известно комбинирование методов или текстильных материалов, изготовленных осуществлением разных методов, с получением композитных текстильных материалов, которые обладают некоторыми необходимыми характеристиками. Примером этого является сочетание спанбонда и материала из волокна из расплава с раздувкой с получением слоистого текстильного материала, который больше всего известен как материал СРС, а это значит, что он включает два внешних слоя из спанбонда и внутренний слой текстильного материала из волокна из расплава с раздувкой. Кроме того, любой или оба эти метода можно объединять в любой компоновке с процессом кардочесания штапельного волокна или неткаными текстильными материалами, изготовляемыми в процессе кардочесания штапельного волокна. В таких описанных слоистых текстильных материалах слои обычно по меньшей мере частично скрепляют с помощью одного из вышеперечисленных средств.

Изобретение применимо также к экструдируемым в расплаве двухкомпонентным волокнам, где один из компонентов представляет собой полиолефин в соответствии с настоящим изобретением.

Нетканые текстильные материалы из полиолефина могут обладать структурой волокна кардного прочеса или представлять собой мат, в котором волокна или элементарные нити распределены неупорядоченно. Ткань может быть изготовлена по одному любому из многочисленных известных методов, включая технологию гидроспутывания или штапельного плетения, или наслаивание с помощью воздуха, или изготовление элементарных нитей из расплава со струей воздуха, вытяжка в процессе чесания, скрепление прошивкой и т.д., в зависимости от цели применения изделия, которое должно быть изготовлено из такого текстильного материала.

Весовые номера спанбондовых элементарных нитей, наиболее приемлемых для изготовления смачиваемых текстильных материалов обсуждаемого типа, составляют от примерно 1,0 до примерно 3,2 денье. Диаметр волокна из расплава с раздувкой, как правило, составляет меньше 15 мкм, а наиболее типичные для обсуждаемых целей применения волокна характеризуются диаметром меньше 5 мкм и доходящим до диапазона субмикрометрического уровня. Ткани в композитной структуре можно обрабатывать при широком разнообразии их поверхностных плотностей.

Как сказано выше, термопластичным полипропиленовым волокнам, которые, как правило, формуют экструзией при температурах в интервале от примерно 210 до примерно 240°С, присуща гидрофобность потому, что они являются по существу непористыми и состоят из непрерывных молекулярных цепей, неспособных притягивать или связываться с молекулами воды. В результате необработанные полипропиленовые текстильные материалы, даже обладающие открытой пористой структурой, склонны препятствовать истечению жидкостей, таких как вода и моча, через текстильный материал или от одной его поверхности к другой.

В соответствии с настоящим изобретением особый оксиэтилированный амфифил формулы (I) в расплаве вводят в термопластичный полиолефин, такой как полипропилен, экструдируют с полиолефином с формованием волокон и элементарных нитей, которые затем резко охлаждают, утончают и изготавливают из них текстильные материалы либо на последующей, либо на сопутствующей технологической стадии.

Соединение формулы (I) можно совмещать с полимерными гранулами, которые предназначены для экструзии в расплаве. Для улучшения переработки это соединение может быть введено в предварительно приготовленную смесь или совмещено с введением в полипропилен с низким СВР (соотношение вязкостей расплава), который может также содержать небольшое количество неорганического порошка, такого как тальк и другие традиционные стабилизаторы.

Подмешивание соединения формулы (I) в полиолефин осуществляют его введением путем смешения в расплавленный полимер согласно обычно используемой технологии, такой как вальцевание, смешение в смесителе типа смесителя Бенбери или смешением в цилиндре экструдера и т.п. Тепловую предысторию (время, в течение которого выдерживают при повышенной температуре) можно сократить смешением соединения формулы (I) с ненагретыми полимерными частицами таким образом, чтобы достигалось по существу равномерное распределение этого агента в массе полимера, уменьшая тем самым количество времени, необходимое для интенсивного перемешивания при температуре расплава.

В подходящем варианте соединение формулы (I) можно также добавлять по существу одновременно или последовательно с любыми другими добавками, которые в некоторых случаях могут оказаться необходимыми. Соединение формулы (I) можно также предварительно смешивать с другими добавками и затем добавлять эту смесь в полимер. Предполагается, что в некоторых случаях применение соединения формулы (I) может приносить дополнительную пользу, содействуя более простому или равномерному диспергированию или растворению других добавок в полиолефине. С целью упростить регулирование качества при переходе от одной партии к другой может оказаться предпочтительным применение концентрированных маточных смесей полимера/добавок, которые в дальнейшем подмешивают в виде порций в дополнительные количества полимера для получения конечной целевой композиции. Такую маточную смесь или чистые добавки можно инжектировать в свежеполученный полимер, когда этот полимер все еще находится в расплавленном состоянии и после того как он покидает полимеризационный сосуд или их ряд, и смешивать с расплавленным полимером до его охлаждения с переходом в твердое состояние или направления на последующую переработку.

Соединения компонента (б) содержатся в композициях по настоящему изобретению в общей сложности в количестве от 0,1 до 15% в пересчете на массу полиолефина компонента (а). Для многих целей применения типичное количество соединения формулы (I) составляет от 1 до 7% в пересчете на массу компонента (а).

Введение соединения формулы (I) в полиолефиновое волокно или элементарную нить в соответствии с настоящим изобретением приводит к наблюдаемой улучшенной смачиваемости этих гидрофобных по своей природе материалов. Эта модификация является также долговечной, благодаря чему при старении или манипулировании с ними волокна или элементарные нити и изготовленные из них текстильные материалы свою смачиваемость не утрачивают. Такая улучшенная смачиваемость оказывается устойчивой к повторным проникновениям жидкостей, не теряющей эксплуатационных свойств даже в течение длительных периодов времени.

Настоящее изобретение предназначено для тканых и нетканых текстильных материалов, например для полипропиленовых текстильных материалов. Оно предназначено также для нитей и пряж, используемых в ткачестве или вязании в обычных процессах изготовления текстильной продукции.

Добавки по настоящему изобретению эффективны независимо от других факторов, которые влияют на свойства нетканых текстильных материалов, например поверхностная плотность, диаметр волокна, степень и тип склейки волокон, а также синергические эффекты и влияние композитных структур, таких как уже описанные структуры СРС.

Объем настоящего изобретения не ограничен однокомпонентными волокнами. Демонстрацию таких же практических преимуществ, как и те, которыми обладают однокомпонентные волокна любого типа, следует, по-видимому, предполагать и у полиолефиновых двухкомпонентных волокон, в частности волокон из полипропилена и полиэтилена с параллельными компонентами или типа оболочка/сердцевина. Особенно эффективным было бы введение расплавленной добавки только в полиэтиленовый компонент, так как от этого более мягкого полимера можно было бы ожидать содействия более эффективной миграции предлагаемых добавок формулы (I) к поверхности такого компонента волокна или элементарной нити.

Смачиваемые текстильные материалы, изготовленные из волокон или элементарных нитей по настоящему изобретению, особенно эффективны, например, в качестве контактирующего с кожей внутреннего подкладочного текстильного материала гигиенических изделий, особенно пеленок одноразового использования, training pants, гигиенических изделий для женщин или средств ухода при недержании. Такие текстильные материалы находят также применение во влажных и сухих обтирочных материалах, повязках на рану, хирургических колпаках, среднего слоя фильтра, сепараторов аккумуляторных батарей и т.п.

Структура пеленки описана, например, в патентах US № 5961504, 6031147 и 6110849, которые все включены в настоящее описание в качестве ссылок.

Кроме того, часто необходимо придать смачиваемость экструдированным из расплава полиолефиновым пленкам. Такие пленки в перфорированной форме находят широкое применение в качестве оберточных листовых материалов для гигиенических изделий.

Применение двух или большего числа слоев склеенных между собой текстильных материалов позволяет улучшить wetback свойства coverstock для гигиенических изделий. Примеры включают два спанбондовых слоя или СПС текстильный материал, в котором слой волокна из расплава с раздувкой свободен от добавки формулы (I).

Текстильные материалы по настоящему изобретению можно стерилизовать обработкой гамма-лучами интенсивностью от примерно 0,5 до примерно 10 Мрад. Стерилизацию гамма-излучением применяют для обработки больничной одежды и т.п.

Полиолефиновые волокна и тканые и нетканые текстильные материалы, полученные в соответствии с настоящим изобретением, проявляют также пригодность для печатания. Благодаря присущей им гидрофобной природе полиолефиновые волокна и текстильные материалы могут создавать проблемы, обусловленные их пригодностью для печатания с применением стандартной технологии печати. Композиции по настоящему изобретению позволяют также разрешить и эти проблемы.

Примерами полиолефинов компонента (а) служат следующие материалы.

1. Полимеры моноолефинов и диолефинов, например полипропилен, полиизобутилен, полибут-1-ен, поли-4-метилпент-1-ен, полиизопрен или полибутадиен, а также полимеры циклоолефинов, например циклопентена или норборнена, полиэтилен (который может быть, но необязательно, структурированным), например полиэтилен высокой плотности (ПЭВП), полиэтилен высокой плотности с высокой молекулярной массой (ПЭВП-ВММ), полиэтилен высокой плотности со сверхвысокой молекулярной массой (ПЭВП-СВММ), полиэтилен средней плотности (ПЭСП), полиэтилен низкой плотности (ПЭНП), линейный полиэтилен низкой плотности (ЛПЭНП), (ПЭОНП) и (ПЭСНП).

Полиолефины, т.е. полимеры моноолефинов, примеры которых приведены в предыдущем абзаце, в частности полиэтилен и полипропилен, могут быть получены по разным, а преимущественно по следующим методам.

I) Радикальная полимеризация (обычно под высоким давлением и при повышенной температуре).

II) Каталитическая полимеризация с использованием катализатора, который обычно включает один или больше одного атома металла группы IVb, Vb, VIb или VIII Периодической таблицы элементов. У этих металлов обычно содержится один или больше одного лиганда, как правило оксиды, галогениды, алкоголяты, сложные эфиры, простые эфиры, амины, алкилы, алкенилы и/или арилы, которые могут быть либо π-, либо σ-координированными. Эти металлсодержащие комплексы могут находиться в свободной форме или быть зафиксированными на носителях, как правило на активированном хлориде магния, хлориде титана(III), оксиде алюминия или диоксиде кремния. Такие катализаторы могут быть растворимыми или нерастворимыми в полимеризационной среде. В процессе полимеризации катализаторы могут быть использованы самостоятельно или дополнительно могут быть использованы активаторы, как правило металлалкилы, металлгидриды, металлалкилгалогениды, металлалкилоксиды или металлалкилоксаны, причем эти металлы являются элементами групп Ia, IIa и/или IIIa Периодической таблицы. Активаторы могут быть модифицированными, целесообразно дополнительными сложноэфирными, простыми эфирными, аминовыми или силилэфирными группами. Эти каталитические системы обычно называют системами фирм Phillips, Standard Oil Indiana, катализаторами Циглера-Натта, TNZ (фирма DuPont), металлоценами или катализаторами с единственным участком (КЕУ).

2. Смеси полимеров, упомянутых в разделе 1), в частности смеси полипропилена с полиизобутиленом, полипропилена с полиэтиленом (например, ПП/ПЭВП, ПП/ПЭНП) и смеси полиэтиленов различных типов (например, ПЭНП/ПЭВП).

3. Сополимеры моноолефинов и диолефинов между собой и с другими виниловыми мономерами, например этилен-пропиленовые сополимеры, линейный полиэтилен низкой плотности (ЛПЭНП) и их смеси с полиэтиленом низкой плотности (ПЭНП), пропилен/бут-1-еновые сополимеры, пропилен-изобутиленовые сополимеры, этилен/бут-1-еновые сополимеры, этилен-гексеновые сополимеры, этилен-метилпентеновые сополимеры, этилен-гептеновые сополимеры, этилен-октеновые сополимеры, пропилен-бутадиеновые сополимеры, изобутилен-изопреновые сополимеры, этилен-алкилакрилатные сополимеры, этилен-алкилметакрилатные сополимеры, этилен-винилацетатные сополимеры и их сополимеры с монооксидом углерода или сополимеры этилена/акриловой кислоты и ее солей (иономеры), а также тройные сополимеры этилена с пропиленом и диеном, таким как гексадиен, дициклопентадиен и этилиденнорборнен; равно как и смеси таких сополимеров между собой и с полимерами, упомянутыми в вышеприведенном разделе 1), в частности полипропилен-этилен-пропиленовые сополимеры, ПЭНП/этилен-винилацетатные (ЭВА) сополимеры, сополимеры ПЭНП/этилена/акриловой кислоты (ЭАК), ЛПЭНП/ЭВА, ЛПЭНП/ЭАК и чередующиеся или статистические сополимеры полиалкилена/монооксида углерода, а также их смеси с другими полимерами, в частности с полиамидами.

Полиолефины по настоящему изобретению представляют собой, например, полипропиленовые гомо- и сополимеры и полиэтиленовые гомо- и сополимеры, например полипропилен, полиэтилен высокой плотности (ПЭВП), линейный полиэтилен низкой плотности (ЛПЭНП) и полипропиленовые статистические и ударопрочные сополимеры.

Объем настоящего изобретения охватывает применение смесей или сплавов олефиновых полимеров.

Предлагаемые полиолефиновые волокна, элементарные нити и текстильные материалы могут также содержать введенные в них или нанесенные на них соответствующие добавки, такие как поглотители ультрафиолетовых лучей, затрудненные аминовые светостабилизаторы, антиоксиданты, вещества для улучшения технологических свойств и другие добавки.

Так, например, композиции по изобретению могут также, что необязательно, содержать от примерно 0,01 до примерно 10 мас.%, предпочтительно от примерно 0,025 до примерно 5 мас.%, а преимущественно от примерно 0,1 до примерно 3 мас.% различных обычных стабилизирующих совместно используемых добавок, таких как перечисленные ниже материалы и их смеси.

1. Антиоксиданты

1.1 Алкилированные монофенолы, например 2,6-дитрет-бутил-4-метилфенол, 2-трет-бутил-4,6-диметилфенол, 2,6-дитрет-бутил-4-этилфенол, 2,6-дитрет-бутил-4-н-бутилфенол, 2,6-дитрет-бутил-4-изобутилфенол, 2,6-дициклопентил-4-метилфенол, 2-(α-метилциклогексил)-4,6-диметилфенол, 2,6-диоктадецил-4-метилфенол, 2,4,6-трициклогексилфенол, 2,6-дитрет-бутил-4-метоксиметилфенол, нонилфенолы, у которых могут быть линейные или разветвленные боковые цепи, например 2,6-динонил-4-метилфенол, 2,4-диметил-6-(1'-метилундец-1'-ил)фенол, 2,4-диметил-6-(1'-метилгептадец-1'-ил)фенол, 2,4-диметил-6-(1'-метилтридец-1'-ил)фенол и их смеси.

1.2 Алкилтиометилфенолы, например 2,4-диоктилтиометил-6-трет-бутилфенол, 2,4-диоктилтиометил-6-метилфенол, 2,4-диоктилтиометил-6-этилфенол, 2,6-дидодецилтиометил-4-нонилфенол.

1.3 Гидрохиноны и алкилированные гидрохиноны, например 2,6-дитрет-бутил-4-метоксифенол, 2,5-дитрет-бутилгидрохинон, 2,5-дитрет-амилгидрохинон, 2,6-дифенил-4-октадецилоксифенол, 2,6-дитрет-бутилгидрохинон, 2,5-дитрет-бутил-4-гидроксианизол, 3,5-дитрет-бутил-4-гидроксианизол, 3,5-дитрет-бутил-4-гидроксифенилстеарат, бис(3,5-дитрет-бутил-4-гидроксифенил)адипат.

1.4 Токоферолы, например α-токоферол, β-токоферол, γ-токоферол, δ-токоферол и их смеси (витамин Е).

1.5 Гидроксилированные тиодифениловые простые эфиры, например 2,2'-тиобис(6-трет-бутил-4-метилфенол), 2,2'-тиобис(4-октилфенол), 4,4'-тиобис(6-трет-бутил-3-метилфенол), 4,4'-тиобис(6-трет-бутил-2-метилфенол), 4,4'-тиобис(3,6-дивтор-амилфенол). 4,4'-бис(2,6-диметил-4-гидроксифенил)дисульфид.

1.6. Алкилиденбисфенолы, например 2,2'-метиленбис(6-трет-бутил-4-метилфенол), 2,2'-метиленбис(6-трет-бутил-4-этилфенол), 2,2'-метиленбис[4-метил-6-(α-метилциклогексил)фенол], 2,2'-метиленбис(4-метил-6-циклогексилфенол), 2,2'-метиленбис(6-нонил-4-метилфенол), 2,2'-метиленбис(4,6-дитрет-бутилфенол), 2,2'-этилиденбис(4,6-дитрет-бутилфенол), 2,2'-этилиденбис(6-трет-бутил-4-изобутилфенол), 2,2'-метиленбис[6-(α-метилбензил)-4-нонилфенол], 2,2'-метиленбис[6-(α,α-диметилбензил)-4-нонилфенол], 4,4'-метиленбис(2,6-дитрет-бутилфенол), 4,4'-метиленбис(6-трет-бутил-2-метилфенол), 1,1-бис(5-трет-бутил-4-гидрокси-2-метилфенил)бутан, 2,6-бис(3-трет-бутил-5-метил-2-гидроксибензил)-4-метилфенол, 1,1,3-трис(5-трет-бутил-4-гидрокси-2-метилфенил)бутан, 1,1-бис(5-трет-бутил-4-гидрокси-2-метилфенил)-3-н-додецилмеркаптобутан, этиленгликольбис[3,3-бис(3'-трет-бутил-4'-гидроксифенил)бутират], бис(3-трет-бутил-4-гидрокси-5-метилфенил)дициклопентадиен, бис[2-(3'-трет-бутил-2'-гидрокси-5'-метилбензил)-6-трет-бутил-4-метилфенил]терефталат, 1,1-бис(3,5-диметил-2-гидроксифенил)бутан, 2,2-бис(3,5-дитрет-бутил-4-гидроксифенил)пропан, 2,2-бис(5-трет-бутил-4-гидрокси-2-метилфенил)-4-н-додецилмеркаптобутан, 1,1,5,5-тетра(5-трет-бутил-4-гидрокси-2-метилфенил)пентан.

1.7. О-, N- и S-бензиловые соединения, например 3,5,3',5'-тетра-трет-бутил-4,4'-дигидроксидибензиловый эфир, октадецил-4-гидрокси-3,5-диметилбензилмеркаптоацетат, тридецил-4-гидрокси-3,5-дитрет-бутилбензилмеркаптоацетат, трис(3,5-дитрет-бутил-4-гидроксибензил)амин, бис(4-трет-бутил-3-гидрокси-2,6-диметилбензил)дитиотерефталат, бис(3,5-дитрет-бутил-4-гидроксибензил)сульфид, изооктил-3,5-дитрет-бутил-4-гидроксибензилмеркаптоацетат.

1.8. Гидроксибензилированные малонаты, например диоктадецил-2,2-бис(3,5-дитрет-бутил-2-гидроксибензил)малонат, диоктадецил-2-(3-трет-бутил-4-гидрокси-5-метилбензил)малонат, дидодецилмеркаптоэтил-2,2-бис(3,5-дитрет-бутил-4-гидроксибензил)малонат, ди[4-(1,1,3,3-тетраметилбутил)фенил]-2,2-бис(3,5-дитрет-бутил-4-гидроксибензил)малонат.

1.9. Ароматические гидроксибензиловые соединения, например 1,3,5-трис(3,5-дитрет-бутил-4-гидроксибензил)-2,4,6-триметилбензол, 1,4-бис(3,5-дитрет-бутил-4-гидроксибензил)-2,3,5,6-тетраметилбензол, 2,4,6-трис(3,5-дитрет-бутил-4-гидроксибензил)фенол.

1.10. Триазиновые соединения, например 2,4-бис(октилмеркапто)-6-(3,5-дитрет-бутил-4-гидроксианилино)-1,3,5-триазин, 2-октилмеркапто-4,6-бис(3,5-дитрет-бутил-4-гидроксианилино)-1,3,5-триазин, 2-октилмеркапто-4,6-бис(3,5-дитрет-бутил-4-гидроксифенокси)-1,3,5-триазин, 2,4,6-трис(3,5-дитрет-бутил-4-гидроксифенокси)-1,2,3-триазин, 1,3,5-трис(3,5-дитрет-бутил-4-гидроксибензил)изоцианурат, 1,3,5-трис(4-трет-бутил-3-гидрокси-2,6-диметилбензил)изоцианурат, 2,4,6-трис(3,5-дитрет-бутил-4-гидроксифенилэтил)-1,3,5-триазин, 1,3,5-трис(3,5-дитрет-бутил-4-гидроксифенилпропионил)гексагидро-1,3,5-триазин, 1,3,5-трис(3,5-дициклогексил-4-гидроксибензил)изоцианурат.

1.11. Бензилфосфонаты, например диметил-2,5-дитрет-бутил-4-гидроксибензилфосфонат, диэтил-3,5-дитрет-бутил-4-гидроксибензилфосфонат, диоктадецил-3,5-дитрет-бутил-4-гидроксибензилфосфонат, диоктадецил-5-трет-бутил-4-гидрокси-З-метилбензилфосфонат, кальциевая соль моноэтилового эфира 3,5-дитрет-бутил-4-гидроксибензилфосфоновой кислоты.

1.12. Ациламинофенолы, например анилид 4-гидроксилауриновой кислоты, анилид 4-гидроксистеариновой кислоты, октил-N-(3,5-дитрет-бутил-4-гидроксифенил)карбамат.

1.13. Эфиры β-(3,5-дитрет-бутил-4-гидроксифенил)пропионовой кислоты и одно- и многоатомных спиртов, например метанола, этанола, н-октанола, изооктанола, октадеканола, 1,6-гександиола, 1,9-нонандиола, этиленгликоля, 1,2-пропандиола, неопентилгликоля, тиодиэтиленгликоля, диэтиленгликоля, триэтиленгликоля, пентаэритрита, трис(гидроксиэтил)изоцианурата, N,N'-бис(гидроксиэтил)оксамида, 3-тиаундеканола, 3-тиапентадеканола, триметилгександиола, триметилолпропана, 4-гидроксиметил-1-фосфа-2,6,7-триоксабицикло[2.2.2]октана.

1.14. Эфиры β-(5-трет-бутил-4-гидрокси-3-метилфенил)пропионовой кислоты и одно- и многоатомных спиртов, например метанола, этанола, н-октанола, изооктанола, октадеканола, 1,6-гександиола, 1,9-нонандиола, этиленгликоля, 1,2-пропандиола, неопентилгликоля, тиодиэтиленгликоля, диэтиленгликоля, триэтиленгликоля, пентаэритрита, трис(гидроксиэтил)изоцианурата, N,N'-бис(гидроксиэтил)оксамида, 3-тиаундеканола, 3-тиапентадеканола, триметилгександиола, триметилолпропана, 4-гидроксиметил-1-фосфа-2,6,7-триоксабицикло[2.2.2]октана, 3,9-бис[2-{3-(3-трет-бутил-4-гидрокси-5-метилфенил)пропионилокси}-1,1-диметилэтил]-2,4,8,10-тетраоксаспиро[5.5]ундекана.

1.15. Эфиры β-(3,5-дициклогексил-4-гидроксифенил)пропионовой кислоты и одно- и многоатомных спиртов, например метанола, этанола, октанола, октадеканола, 1,6-гександиола, 1,9-нонандиола, этиленгликоля, 1,2-пропандиола, неопентилгликоля, тиодиэтиленгликоля, диэтиленгликоля, триэтиленгликоля, пентаэритрита, трис(гидроксиэтил)изоцианурата, N,N'-бис(гидроксиэтил)оксамида, 3-тиаундеканола, 3-тиапентадеканола, триметилгександиола, триметилолпропана, 4-гидроксиметил-1-фосфа-2,6,7-триоксабицикло[2.2.2]октана.

1.16. Эфиры 3,5-дитрет-бутил-4-гидроксифен