Основа с обладающей низким светорассеянием ультрафобной поверхностью и способ получения такой основы

Применение: для получения самоочищающихся ультрафобных поверхностей. Техническая задача изобретения - получение прозрачных ультрафобных основ, прозрачность которых не ухудшается в результате помутнения, и непрозрачных основ с высоким блеском поверхности. Описаны основа с обладающей низким светорассеянием ультрафобной поверхностью, способ получения такой основы и ее применение. Основа с обладающей низким светорассеянием ультрафобной поверхностью характеризуется общими потерями света на рассеяние ≤7%, предпочтительно ≤3%, наиболее предпочтительно ≤1%, и краевым углом смачивания воды ≥140°, предпочтительно ≥150°. 5 н. и 28 з.п. ф-лы, 2 табл.

Реферат

Настоящее изобретение относится к основе с обладающей низким светорассеянием ультрафобной поверхностью, к способу изготовления такой основы и к ее применению. Изобретение относится также к способу выбора параметров и условий для получения таких основ. Основа с обладающей низким светорассеянием ультрафобной поверхностью характеризуется общими потерями на рассеяние света ≤7%, предпочтительно ≤3%, наиболее предпочтительно ≤1%, краевым углом смачивания воды по меньшей мере 140°, предпочтительно по меньшей мере 150°, и углом скатывания ≤20°.

Отличительная особенность ультрафобных поверхностей состоит в том, что краевой угол смачивания капли жидкости, обычно воды, находящейся на такой поверхности, значительно превышает 90°, а угол скатывания не превышает 20°. Ультрафобные поверхности с краевым углом ≥140° и углом скатывания ≤20° имеют исключительно важное техническое значение, поскольку они не смачиваются, например, водой, равно как и маслом, частицы грязи обладают лишь самой малой адгезией к этим поверхностям, и эти поверхности являются самоочищающимися. Под "самоочищением" понимается при этом такое свойство поверхности, при котором прилипшие к такой поверхности частицы грязи или пыли могут легко смываться с нее потоком жидкости.

Под понятием "угол скатывания" в контексте настоящего описания подразумевается тот угол наклона в основном плоской и вместе с тем профилированной (структурированной) поверхности относительно горизонтали, при котором неподвижная капля воды объемом 10 мкл при наклоне этой поверхности начинает скатываться с нее под действием собственной силы тяжести.

Гидрофобный материал представляет собой согласно изобретению материал, который характеризуется краевым углом смачивания воды на ровной непрофилированной поверхности, превышающим 90°.

Олеофобный материал представляет собой согласно изобретению материал, который характеризуется краевым углом смачивания длинноцепными н-алканами, такими как н-декан, на ровной непрофилированной поверхности, превышающим 90°.

Под "обладающей низким светорассеянием поверхностью" в контексте настоящего изобретения подразумевается поверхность, на которой обусловленные ее шероховатостью потери света на рассеяние, определяемые в соответствии с методикой измерений согласно стандарту ISO/DIS 13696, составляют ≤7%, предпочтительно ≤3%, наиболее предпочтительно ≤1%. Такие измерения проводят при длине волны 514 нм и определяют общие потери на рассеяние в прямом и в обратном направлениях. Более подробно подобный метод измерений описан в работе A.Duparré и S.Gliech, Proc. SPIE 3141, 57 (1997), которая включена в настоящее описание в качестве ссылки и тем самым является его частью.

Помимо этого обладающая низким светорассеянием ультрафобная поверхность предпочтительно характеризуется высокой износостойкостью и стойкостью к царапанью. После испытаний на абразивный износ на испытательном приборе Taber согласно стандарту ISO 3537 при 500 циклах с использованием фрикционных дисков типа CS10F массой 500 г каждый увеличение степени мутности составляет ≤10%, предпочтительно ≤5%. После испытаний на стойкость к царапанью в тесте со свободным падением песка на исследуемый объект согласно стандарту DIN 52348 увеличение степени мутности составляет ≤15%, предпочтительно ≤10%, наиболее предпочтительно ≤5%. Увеличение степени мутности определяют в соответствии со стандартом ASTM D 1003. При измерении увеличения степени мутности основу с исследуемой поверхностью просвечивают видимым светом, определяя при этом ту долю, которая приходится на рассеянное излучение, которое и придает поверхности мутность.

Ранее уже предпринимались попытки создать поверхности с ультрафобными свойствами. Так, в частности, в заявке ЕР 476510 А1 описывается способ получения гидрофобной поверхности, согласно которому на стеклянную поверхность наносят пленку из оксида металла с перфторированным силаном. Однако недостаток полученных по этому способу поверхностей заключается в том, что краевой угол смачивания находящейся на такой поверхности капли составляет менее 115°.

Из заявки WO 96/04123 также известны способы получения ультрафобных поверхностей. Согласно предлагаемому в этой заявке техническому решению предусматривается, в частности, искусственно структурировать (профилировать) поверхности за счет создания на них неровностей в виде выступов и впадин, при этом расстояние между выступами составляет от 5 до 200 мкм, а их высота составляет от 5 до 100 мкм. Однако недостаток поверхностей с приданной им таким путем шероховатостью состоит в том, что указанные структуры в виде неровностей являются из-за их размеров причиной слишком высокого рассеяния света, в результате чего имеющие подобную поверхность объекты визуально воспринимаются на просвет как исключительно мутные, а в отраженном свете визуально воспринимаются как исключительно матовые. По этой причине такие изделия не пригодны для применения в тех областях, где требуется наличие прозрачности, например для остекления автотранспортных средств или остекления зданий.

В патенте US 5693236 также описаны несколько способов получения ультрафобных поверхностей, согласно которым на поверхность с помощью соответствующего связующего наносят игольчатые микрокристаллы оксида цинка, после чего их различным образом (например, плазменной обработкой) частично оголяют. Затем на поверхность с приданной ей таким путем шероховатостью наносят покрытие из водоотталкивающего средства. Структурированные (профилированные) подобным способом поверхности характеризуются краевым углом смачивания, не превышающим 150°. Однако и в этом случае поверхность обладает из-за размера имеющихся на ней неровностей высоким светорассеянием.

В работе К.Ogawa, M.Soga, Y.Takada и I.Nakayama, Jpn. J. Appl. Phys. 32 (1993), сс.614-615, описывается метод получения прозрачной ультрафобной поверхности, согласно которому стеклопанели придают шероховатость путем ее обработки высокочастотной плазмой, после чего ее покрывают слоем фторсодержащего силана. Согласно указанной работе подобную стеклопанель предлагается использовать в качестве оконного стекла. Такая стеклопанель характеризуется краевым углом смачивания воды, составляющим 155°. Однако недостаток описанного в этой работе метода состоит в том, что прозрачность изготовленного таким методом стекла составляет только 92%, а само это стекло в результате потерь света на рассеяние, обусловленных размерами полученных на его поверхности структур, визуально воспринимается как мутное. Помимо этого угол скатывания капли воды объемом 10 мкл составляет у такого стекла лишь около 35°.

Исходя из вышеизложенного, в основу настоящего изобретения была положена задача получить прозрачные основы, прозрачность которых не ухудшалась бы в результате помутнения, и непрозрачные основы с высоким блеском поверхности, при этом такие основы должны обладать ультрафобными свойствами.

Поверхность подобных основ, чтобы их можно было применять, например, в качестве стекол в автомобилях или в окнах зданий, предпочтительно должна одновременно обладать высокой стойкостью к царапанью и высокой износостойкостью (стойкостью к абразивному износу). После испытаний на абразивный износ на испытательном приборе Taber согласно стандарту ISO 3537 (500 циклов, фрикционные диски типа CS10F массой 500 г каждый) увеличение степени мутности должно составлять ≤10%, предпочтительно ≤5%. После испытаний на стойкость к царапанью в тесте со свободным падением песка на исследуемый объект согласно стандарту DIN 52348 увеличение степени мутности должно составлять ≤15%, предпочтительно ≤10%, наиболее предпочтительно ≤5%. Увеличение степени мутности в обоих методах испытания определяют в соответствии со стандартом ASTM D 1003.

Особая проблема состоит в том, что для получения поверхностей, которые должны обладать низким светорассеянием и одновременно ультрафобными свойствами, могут использоваться, как это следует из приведенных выше примеров, самые разнообразные материалы, поверхности которых обладают абсолютно различной топографией. Помимо этого для получения основ, поверхности которых обладают низким светорассеянием и являются ультрафобными, могут также использоваться абсолютно разнотипные процессы нанесения покрытий. И, наконец, особые трудности связаны с тем, что при проведении таких процессов нанесения покрытий необходимо соблюдать определенные, точно заданные технологические параметры.

С учетом сказанного выше до настоящего времени не существовало также способа, который позволял бы эффективно выбирать материалы, процессы нанесения покрытий и их технологические параметры для получения основ с обладающей низким светорассеянием ультрафобной поверхностью.

Указанная выше задача решается согласно изобретению с помощью являющейся его объектом основы с обладающей низким светорассеянием ультрафобной поверхностью, которая характеризуется общими потерями света на рассеяние ≤7%, предпочтительно ≤3%, наиболее предпочтительно ≤1%, и краевым углом смачивания воды ≥140°, предпочтительно ≥150°. Основу с обладающей низким светорассеянием ультрафобной поверхностью можно получать, например, по описанному ниже способу, условия проведения которого в свою очередь можно быстро определить с помощью рассмотренного ниже способа, состоящего из стадий выбора пригодных для этой цели материалов, стадий вычисления параметров ультрафобной поверхности и технологических стадий.

Ультрафобная поверхность или ее основа выполнена предпочтительно из полимерного материала, стекла, керамического материала или углерода.

Предпочтительной является основа, износостойкость которой, определяемая по увеличению степени мутности в соответствии со стандартом ASTM D 1003 при испытании такой основы на стойкость к абразивному износу на испытательном приборе Taber согласно стандарту ISO 3537 при 500 циклах с использованием фрикционных дисков типа CS10F массой 500 г каждый, составляет ≤10%, предпочтительно ≤5%.

Предпочтительной является также основа, стойкость которой к царапанью, определяемая по увеличению степени мутности в соответствии со стандартом ASTM D 1003 при испытании такой основы на стойкость к царапанью в тесте со свободным падением песка на исследуемый объект согласно стандарту DIN 52348, составляет ≤15%, предпочтительно ≤10%, наиболее предпочтительно ≤5%.

Предпочтительна далее основа, которая отличается тем, что угол скатывания находящейся на ее поверхности капли воды объемом 10 мкл составляет ≤20°.

а) Полимеры

Наиболее пригодным для выполнения ультрафобной поверхности и/или ее основы полимерным материалом является дуропласт или термопласт.

Дуропласт целесообразно выбирать прежде всего из группы, включающей диаллилфталатную смолу, эпоксидную смолу, мочевино-формальдегидную смолу, меламино-формальдегидную смолу, меламино-феноло-формальдегидную смолу, феноло-формальдегидную смолу, полиимид, силиконовый каучук и ненасыщенную полиэфирную смолу.

Термопласт целесообразно выбирать прежде всего из группы, включающей термопластичный полиолефин, например полипропилен или полиэтилен, поликарбонат, полиэфиркарбонат, сложные полиэфиры (например, полибутилентерефталат (ПБТФ) либо полиэтилентерефталат (ПЭТФ)), полистирол, сополимер стирола, сополимер стирола и акрилонитрила, каучуксодержащий привитой сополимер стирола, например сополимер акрилонитрила, бутадиена и стирола (АБС-пластик), полиамид, полиуретан, полифениленсульфид, поливинилхлорид или любые возможные смеси указанных полимеров.

Для применения в качестве основы предлагаемой в изобретении поверхности пригодны прежде всего следующие термопластичные полимеры: полиолефины, такие как полиэтилен высокой и низкой плотности, т.е. с плотностью от 0,91 до 0,97 г/см3, которые можно получать по известным методам (см. Ullmann, 4-е изд., т.19, сс.167 и далее; Winnacker-Kückler, 4-е изд., т.6, сс.353-367; Elias и Vohwinkel, Neue Polymere Werkstoffe für die industrielle Anwendung, München, изд-во Hanser Verlag, 1983).

Помимо указанных пригодны также полипропилены с молекулярной массой от 10000 до 1000000 г/моль, которые можно получать по известным методам (см. Ullmann, 5-е изд., т. А10, сс.615 и далее; Houben-Weyl, т. Е20/2, сс.722 и далее; Ullmann, 4-е изд., т.19, сс.195 и далее; Kirk-Othmer, 3-е изд., т.16, сс.357 и далее).

Возможно также применение сополимеров указанных олефинов или сополимеров с другими α-олефинами, таких, например, как сополимеры этилена с бутеном, гексеном и/или октеном, сополимер этилена и винилацетата, сополимер этилена и этилакрилата, сополимер этилена и бутилакрилата, сополимер акриловой кислоты и этилена, сополимер этилена и винилкарбазола, блоксополимер этилена и пропилена, сополимер этилена, пропилена и диена (СКЭПТ), полибутилен, полиметилпентен, полиизобутилен, сополимер акрилонитрила и бутадиена, полиизопрен, сополимер метила и бутилена, сополимер изопрена и изобутилена.

Способы получения таких полимеров описаны, в частности, в следующих публикациях: справочник Kunststoff-Handbuch, т.IV, München, изд-во Hanser Verlag; Ullmann, 4-е изд., т.19, сс.167 и далее; Winnacker-Kückler, 4-е изд., т.6, сс.353-367; Elias и Vohwinkel, Neue Polymere Werkstoffe, München, изд-во Hanser, 1983; Franck и Biederbick, Kunststoff Kompendium Würzburg, изд-во Vogel, 1984.

Согласно изобретению в качестве термопластов могут применяться также термопластичные ароматические поликарбонаты, прежде всего таковые на основе дифенолов формулы I

в которой

А обозначает простую связь, С15алкилен, С25алкилиден, С56циклоалкилиден, -S-, -SO2-, -О-, -СО- или С612ариленовый остаток, который необязательно может быть сконденсирован с другими содержащими гетероатомы ароматическими кольцами,

остатки В каждый независимо друг от друга обозначает С18алкил, С610арил, особенно предпочтительно фенил, С712аралкил, предпочтительно бензил, галоген, предпочтительно хлор, бром,

х имеет независимые друг от друга значения и обозначает соответственно 0, 1 или 2 и

р обозначает 1 или 0,

или замещенные алкилом дигидроксифенилциклоалканы формулы II

в которой

R1 и R2 независимо друг от друга обозначают водород, галоген, предпочтительно хлор или бром, С18алкил, С56циклоалкил, С610арил, предпочтительно фенил, и С712аралкил, предпочтительно фенил-С1С4алкил, прежде всего бензил,

m обозначает целое число от 4 до 7, предпочтительно 4 или 5,

R3 и R4, индивидуально выбираемые для каждого Z, независимо друг от друга обозначают водород или C16алкил, предпочтительно водород, метил или этил, и

Z обозначает углерод, при условии, что по меньшей мере у одного атома Z R3 и R4 одновременно представляют собой алкил.

Пригодными для использования в указанных целях дифенолами формулы (I) являются, например, гидрохинон, резорцин, 4,4'-дигидроксидифенил, 2,2-бис(4-гидроксифенил)пропан, 2,4-бис(4-гидроксифенил)-2-метилбутан, 1,1-бис(4-гидроксифенил)циклогексан, 2,2-бис(3-хлор-4-гидроксифенил)пропан, 2,2-бис(3,5-дибром-4-гидроксифенил)пропан. Предпочтительными дифенолами формулы (I) являются 2,2-бис(4-гидроксифенил)пропан, 2,2-бис(3,5-дихлор-4-гидроксифенил)пропан и 1,1-бис(4-гидроксифенил)циклогексан.

К предпочтительным дифенолам формулы (II) относятся дигидроксидифенилциклоалканы с 5 и 6 кольцевыми С-атомами в циклоалифатическом остатке [m равно 4 или 5 в формуле (II)], такие, например, как дифенолы формул

при этом 1,1-бис(4-гидроксифенил)-3,3,5-триметилциклогексин (формула IIc) является наиболее предпочтительным.

Пригодные для применения согласно изобретению поликарбонаты можно получать известным путем с разветвленной цепью, а именно, предпочтительно за счет встраивания содержащих три или более трех функциональных групп соединений, например содержащих три или более фенольных групп соединений, в количестве от 0,05 до 2,0 мол.% в пересчете на суммарное количество применяемых дифенолов, при этом к таким соединениям относятся, например, следующие:

фтороглюцин,

4,6-диметил-2,4,6-три(4-гидроксифенил)гептен-2,

4,6-диметил-2,4,6-три(4-гидроксифенил)гептан,

1,3,5-три(4-гидроксифенил)бензол,

1,1,1-три(4-гидроксифенил)этан,

три-(4-гидроксифенил)фенилметан,

2,2-бис(4,4-бис(4-гидроксифенил)циклогексил)пропан,

2,4-бис(4-гидроксифенил)изопропил)фенол,

2,6-бис(2-гидрокси-5'-метилбензил)-4-метилфенол,

2-(4-гидроксифенил)-2-(2,4-дигидроксифенил)пропан,

эфир гекса(4-(4-гидроксифенилизопропил)фенил)ортотерефталевой кислоты,

тетра(4-гидроксифенил)метан,

тетра(4-(4-гидроксифенилизопропил)фенокси)метан и

1,4-бис-((4',4"-дигидрокситрифенил)метил)бензол.

К числу других трифункциональных соединений относятся 2,4-дигидроксибензойная кислота, тримезиновая кислота, тримеллитовая кислота, цианурхлорид и 3,3-бис(3-метил-4-гидроксифенил)-2-оксо-2,3-дигидроиндол.

К предпочтительным поликарбонатам наряду с гомополикарбонатом бисфенола А относятся сополикарбонаты бисфенола А с 2,2-бис(3,5-дибром-4-гидроксифенил)пропаном, количество которого может достигать 15 мол.% в пересчете на мольное суммарное количество дифенолов.

Применяемые ароматические поликарбонаты могут быть частично заменены на ароматические полиэфиркарбонаты.

Ароматические поликарбонаты и/или ароматические полиэфиркарбонаты известны из литературы или их можно получать по известным из литературы методам (получение ароматических поликарбонатов описано, например, у Schnell в "Chemistry and Physics of Polycarbonates", изд-во Interscience Publishers, 1964, а также в DE-AS 1495626, DE-OS 2232877, DE-OS 2703376, DE-OS 2714544, DE-OS 3000610, DE-OS 3832396, а получение ароматических полиэфиркарбонатов описано, например, в DE-OS 3077934).

Ароматические поликарбонаты и/или ароматические полиэфиркарбонаты можно получать, например, взаимодействием дифенолов с галогенангидридами угольной кислоты, предпочтительно с фосгеном, и/или с галогенангидридами ароматических дикарбоновых кислот, предпочтительно с дигалогенангидридами бензолдикарбоновой кислоты, по методу проведения реакций на поверхности раздела фаз, при необходимости с использованием агентов обрыва цепи и при необходимости с использованием трифункциональных или более чем трифункциональных разветвителей цепи.

В качестве термопластов могут применяться, кроме того, стирольные сополимеры одного или по меньшей мере двух этиленово-ненасыщенных мономеров (виниловых мономеров), таких, например, как стирол, α-метилстирол, замещенные в ядре стиролы, акрилонитрил, метакрилонитрил, метилметакрилат, ангидрид малеиновой кислоты, N-замещенные малеинимиды и эфиры (мет)акриловой кислоты с 1-18 С-атомами в спиртовом компоненте. Эти сополимеры смолоподобны, термопластичны и не содержат каучук.

Предпочтительны сополимеры стирола, получаемые полимеризацией по меньшей мере одного мономера из группы, включающей стирол, α-метилстирол, и/или замещенный в ядре стирол, и по меньшей мере одного мономера из группы, включающей акрилонитрил, метакрилонитрил, метилметакрилат, ангидрид малеиновой кислоты и/или N-замещенный малеинимид.

Особенно предпочтительные массовые соотношения между стирольными мономерами и другими виниловыми мономерами в термопластичном сополимере составляют соответственно 60-95 мас.% и 40-5 мас.%.

К наиболее предпочтительным сополимерам относятся сополимеры стирола с акрилонитрилом и при необходимости с метилметакрилатом, α-метилстирола с акрилонитрилом и при необходимости с метилметакрилатом или сополимеры стирола и α-метилстирола с акрилонитрилом и при необходимости с метилметакрилатом.

Сополимеры стирола и акрилонитрила известны и их можно получать радикальной полимеризацией, прежде всего путем эмульсионной полимеризации, суспензионной полимеризации, полимеризации в растворе или полимеризации в массе. Молекулярная масса этих сополимеров (средневзвешенное значение, определяемое по светорассеянию или по седиментации) составляет предпочтительно от 15000 до 200000 г/моль.

Особенно предпочтительными сополимерами являются также статистические сополимеры стирола и ангидрида малеиновой кислоты, которые можно получать из соответствующих мономеров предпочтительно непрерывной полимеризацией в массе или в растворе при неполном превращении мономеров. Доля обоих компонентов в применяемых согласно изобретению статистических сополимерах стирола и ангидрида малеиновой кислоты может варьироваться в широких пределах. Предпочтительное содержание ангидрида малеиновой кислоты составляет от 5 до 25 мас.%.

Вместо стирола полимеры могут содержать также замещенные в ядре стиролы, такие как n-метилстирол, 2,4-диметилстирол и иные замещенные стиролы, например α-метилстирол.

Молекулярная масса (среднечисленное значение ) сополимеров стирола и ангидрида малеиновой кислоты может варьироваться в широких пределах. Предпочтителен диапазон от 60000 до 200000 г/моль. Предпочтительная характеристическая вязкость указанных продуктов составляет от 0,3 до 0,9 (по результатам измерений в диметилформамиде при 25°С; см. Hoffmann, Krömer, Kuhn, Polymeranalytik I, Stuttgart (1977), cc.316 и далее).

Для использования в качестве термопластов пригодны также привитые сополимеры. К таким сополимерам относятся привитые сополимеры с каучукоподобными эластичными свойствами, которые можно получать в основном по меньшей мере из двух следующих мономеров, выбранных из группы, включающей хлоропрен, бутадиен-1,3, изопропен, стирол, акрилонитрил, этилен, пропилен, винилацетат и эфиры (мет)акриловой кислоты с 1-18 С-атомами в спиртовом компоненте, т.е. сополимеры, описанные, например, в "Methoden der Organischen Chemie (Houben-Weyl)", т.14/1, изд-во Georg Thieme Verlag, Stuttgart, 1961, cc.393-406, и у С.В.Bucknall, "Toughened Plastics", изд-во Appl. Science Publishers, London, 1977. Предпочтительные привитые сополимеры являются частично сшитыми с содержанием в них геля более 20 мас.%, предпочтительно более 40 мас.%, прежде всего более 60 мас.%.

К предпочтительным для применения в указанных выше целях привитым сополимерам относятся, например, сополимеры стирола и/или акрилонитрила и/или алкиловых эфиров (мет)акриловой кислоты, привитые на полибутадиенах, сополимерах бутадиена и стирола и акрилатных каучуках, т.е. сополимеры описанного в заявке DE-OS 1694173 (патент US 3564077) типа; привитые с алкиловыми эфирами акриловой либо метакриловой кислоты, винилацетатом, акрилонитрилом, стиролом и/или алкилстиролами полибутадиены, сополимеры бутадиена и стирола или бутадиена и акрилонитрила, полиизобутены или полиизопрены, описанные, например, в заявке DE-OS 2348377 (патент US 3919353).

Особенно предпочтительными полимерами являются, например АБС-пластики, описанные, в частности, в заявке DE-OS 2035390 (патент US 3644574) или в заявке DE-OS 2248242 (патент GB 1409275).

Привитые сополимеры можно получать по известным методам, например полимеризацией в массе, суспензионной полимеризацией, эмульсионной полимеризацией или суспензионной полимеризацией в массе.

В качестве термопластичных полиамидов можно применять полиамид 66 (полигексаметиленадипинамид) или полиамиды циклических лактамов с 6-12 С-атомами, предпочтительно лауринлактама и наиболее предпочтительно ε-капролактама, т.е. полиамида 6 (поликапролактама), или сополиамиды с основными компонентами 6 и 66 либо смеси, содержащие в качестве основного компонента указанные полиамиды. Предпочтителен получаемый активированной анионной полимеризацией полиамид 6 или получаемый активированной анионной полимеризацией сополиамид, основным компонентом которого является поликапролактам.

б) Стекло или керамические материалы

Наиболее пригодными для выполнения ультрафобной поверхности и/или ее основы являются оксиды, фториды, карбиды, нитриды, селениды, теллуриды, сульфиды прежде всего металлов, бора, кремния или германия или их смешанные соединения либо физические смеси этих соединений и прежде всего следующие соединения:

- оксиды циркония, титана, тантала, алюминия, гафния, кремния, индия, олова, иттрия или церия,

- фториды лантана, магния, кальция, лития, иттрия, бария, свинца, неодима или алюминия в виде криолита (гексафтороалюмината натрия, Na3AlF6),

- карбиды кремния или вольфрама,

- сульфиды цинка или кадмия,

- селениды и теллуриды германия или кремния,

- нитриды бора, титана или кремния.

Пригодным материалом для выполнения ультрафобной поверхности и/или ее основы в принципе является также стекло. При этом может использоваться стекло всех известных специалистам типов, которые описаны, например, у Н.Scholze в "Glas, Natur, Struktur, Eigenschaften", изд-во Springer Verlag, 1988, или в справочнике "Gestalten mit Glas", Interpane Glas Industrie AG, 5-е изд., 2000.

Предпочтительным стеклом для выполнения основы является щелочноземельно-щелочно-силикатное стекло на основе оксида кальция, оксида натрия, диоксида кремния и оксида алюминия или боросиликатное стекло на основе диоксида кремния, оксида алюминия, оксидов щелочноземельных металлов, оксида бора, оксида натрия и оксида калия.

Особо предпочтительным материалом для выполнения основы является щелочноземельно-щелочно-силикатное стекло, поверхность которого покрыта дополнительным слоем оксида циркония толщиной от 50 нм до 5 мкм.

Наиболее пригодными для предусмотренного согласно изобретению применения являются обычно используемые в качестве листового и оконного стекла щелочноземельно-щелочно-силикатные стекла, в состав которых входит, например, 15% оксида кальция, 13-14% оксида натрия, 70% диоксида кремния и 1-2% оксида алюминия. Другими пригодным для предусмотренного согласно изобретению применения являются боросиликатные стекла, которые используются, например, в качестве противопожарного стекла и в состав которых входит, например, 70-80% диоксида кремния, 7-13% оксида бора, 2-7% оксида алюминия, 4-8% оксида натрия и калия и 0-5% оксидов щелочноземельных металлов.

в) Другие материалы

Еще одним пригодным для применения в указанных выше целях материалом является также углерод, прежде всего в виде покрытия, известного специалистам как DLC-покрытие (от англ. "diamond-like carbon", "алмазоподобный углерод") и описанного в публикации "Dünnschichttechnologie", под ред. Н.Frey и G.Kienel, изд-во VDI, Düsseldorf, 1987. Подобное DLC-покрытие предпочтительно наносят на подложку, материал которой отличен от углерода.

Наиболее предпочтительной является основа с дополнительным покрытием из придающего гидрофобные или олеофобные свойства вспомогательного агента, называемого общим понятием "вспомогательный фобизатор".

г) Вспомогательные фобизаторы

Для применения в качестве придающего гидро- или олеофобные свойства вспомогательного фобизатора пригодны поверхностно-активные вещества с любой молярной массой. Эти соединения представляют собой предпочтительно катионогенные, анионогенные, амфотерные или неионогенные поверхностно-активные вещества, представленные, например, в справочнике "Surfactants Europa, A Dictionary of Surface Active Agents available in Europe", под ред. Gordon L. Hollis, изд-во Royal Society of Chemistry, Cambridge, 1995.

В качестве примера анионогенных вспомогательных фобизаторов можно назвать алкилсульфаты, этерифицированные сульфаты, этерифицированные карбоксилаты, эфиры фосфорных кислот, сульфосукцинаты, сульфосукцинатамиды, парафинсульфонаты, олефинсульфонаты, саркозинаты, изотионаты, таураты и лигниновые соединения.

В качестве примера катионогенных вспомогательных фобизаторов можно назвать четвертичные алкиламмониевые соединения и имидазолы.

Примерами амфотерных вспомогательных фобизаторов служат бетаины, глицинаты, пропионаты и имидазолы.

К числу неионогенных вспомогательных фобизаторов относятся, например, алкоксилаты, алкиламиды, сложные эфиры, аминоксиды, алкилполигликозиды. Помимо указанных можно также назвать продукты взаимодействия алкиленоксидов с алкилируемыми соединениями, такими, например, как жирные спирты, жирные амины, жирные кислоты, фенолы, алкилфенолы, аралкилфенолы, такие как продукты конденсации стирола с фенолом, амиды карбоновых кислот и смоляные кислоты.

Особенно предпочтительны вспомогательные фобизаторы, у которых от 1 до 100%, наиболее предпочтительно от 60 до 95%, атомов водорода замещено атомами фтора. В качестве примеров можно назвать перфторированный алкилсульфат, перфторированные алкилсульфонаты, перфторированные алкилфосфонаты, перфторированные алкилфосфинаты и перфторированные карбоновые кислоты.

В качестве полимерных вспомогательных фобизаторов для нанесения гидрофобного покрытия или в качестве полимерного гидрофобного материала для поверхности предпочтительно применять соединения с молярной массой Мw от более 500 до 1000000, предпочтительно от 1000 до 500000, наиболее предпочтительно от 1500 до 20000. Такими полимерными вспомогательными фобизаторами могут являться неионогенные, анионогенные, катионогенные или амфотерные соединения. Помимо указанных в качестве подобных полимерных вспомогательных фобизаторов могут использоваться гомо- и сополимеры, привитые полимеры и привитые сополимеры, а также статистические блоксополимеры.

К наиболее предпочтительным полимерным вспомогательным фобизаторам относятся блоксополимеры типа АВ, ВАВ и АВС. В блоксополимерах типа АВ или ВАВ А-звено представляет собой гидрофильный гомополимер либо сополимер, а В-блок представляет собой гидрофобный гомополимер либо сополимер или их соль.

Особо предпочтительными являются также анионогенные полимерные вспомогательные фобизаторы, прежде всего продукты конденсации ароматических сульфокислот с формальдегидом и алкилнафталинсульфокислот или получаемые из формальдегида, нафталинсульфокислот и/или бензолсульфокислот продукты конденсации, а также продукты конденсации необязательно замещенного фенола с формальдегидом и бисульфитом натрия.

Предпочтительны далее продукты конденсации, получаемые взаимодействием нафтолов с алканолами, продуктами присоединения алкиленоксида и по меньшей мере при частичном переводе концевых гидроксигрупп в сульфогруппы или полуэфиры малеиновой кислоты и фталевой кислоты либо янтарной кислоты.

Согласно другому предпочтительному варианту осуществления предлагаемого в изобретении способа вспомогательный фобизатор предлагается выбирать из группы, включающей эфиры сульфоянтарной кислоты, а также алкилбензолсульфонаты. Предпочтительны далее сульфатированные, алкоксилированные жирные кислоты или их соли. Под алкоксилированными спиртами из жирных кислот подразумеваются прежде всего насыщенные или ненасыщенные спирты из жирных С622-кислот, содержащие 5-120, предпочтительно 6-60, наиболее предпочтительно 7-30, этиленоксидных звеньев, в частности стеариловый спирт. Сульфатированные алкоксилированные спирты из жирных кислот представлены предпочтительно в виде солей, прежде всего солей щелочных металлов или солей амина, предпочтительно в виде соли диэтиламина.

Между слоем вспомогательного фобизатора и основой наиболее предпочтительно предусматривать дополнительный слой промотора адгезии на основе благородных металлов, предпочтительно слой золота толщиной от 10 до 100 нм.

Объектом настоящего изобретения является также способ выбора необязательно снабженных поверхностным покрытием основ с ультрафобными, обладающими низким светорассеянием поверхностями, заключающийся в том, что

A) выбирают по меньшей мере одну снабженную поверхностным покрытием основу путем подбора ее состава, толщины и последовательности расположения отдельных слоев,

Б) варьируют топографию поверхности каждой основы, выбранной согласно стадии А), и в каждом случае для таких основ рассчитывают общие потери света на рассеяние, выбирая при этом основы, поверхность которых имеет топографию, характеризующуюся общими потерями света на рассеяние ≤7%, предпочтительно ≤3%, наиболее предпочтительно ≤1%,

B) поверхности выбранных согласно стадии Б) основ проверяют на соответствие их топографии условию наличия у них ультрафобных свойств согласно следующему уравнению:

при этом интеграл функции S(log f), вычисленный между нижним пределом интегрирования log(f1/мкм-1)=-3 и верхним пределом интегрирования log(f2/мкм-1)=3, составляет по меньшей мере 0,3, и

Г) выбирают основы, топография поверхностей которых удовлетворяет условию согласно стадии В).

Ниже отдельные стадии А)-Г) описанного выше способа рассмотрены более подробно с указанием некоторых предпочтительных особенностей этих стадий.

А) Выбор одно- или многослойной системы, характеризуемой составом, толщиной и последовательностью расположения отдельных слоев

Для применения в качестве основ согласно настоящему изобретению пригодны в принципе все известные специалистам материалы, соответственно их сочетания. Предпочтительными материалами основы являются материалы, указанные выше в пунктах б и в. При этом основа может иметь или может не иметь покрытия. Основа без покрытия имеет по меньшей мере один слой. Основа с покрытием имеет по меньшей мере два, но обычно несколько слоев. Основу предпочтительно выбирать по таким ее параметрам, как состав, толщина каждого слоя, толщина всей основы и при определенных условиях последовательность расположения отдельных слоев.

При выборе состава и последовательности расположения слоев основы следует, однако, учитывать прежде всего дополнительные свойства, которыми должна обладать поверхность основы в соответствии с конкретной целью ее технического применения. Если, например, для практического применения важное значение имеет особо высокая стойкость к царапанью, то в этих случаях следует выбирать особо твердые материалы, такие, например, как TiN, SiC, WC или Si3N4.

Специалистам в данной области в принципе хорошо известно, какие именно условия необходимо соблюдать при выборе материала и толщины отдельных слоев, а также последовательности расположения слоев в слоистой структуре многослойных систем во избежание нежелательных оптических эффектов, таких, например, как поглощение излучения, цветоискажающие оттенки (в результате поглощения видимого излучения или интерференции) либо зеркальное отражение видимого излучения. С другой стороны, однако, во многих случаях целесообразно обеспечить также наличие определенных оптических свойств, например наличие создающих определенный цветовой эффект слоев, наличие слоев с частичным или полным отражением падающего на них излучения и т.д.

Б) Расчет общих потерь света на рассеяние для поверхностей с различной топографией и выбор топографии, характеризующейся общим рассеянием света ≤7%, предпочтительно ≤3%, наиболее предпочтительно ≤1%

Поверхностям выбранных на стадии А) одно- или многослойных систем придают различную топографию и определяют их общее светорассеяние.

Методика проведения расчетов, соответственно методика определения общих потерь света на рассеяние известна специалистам в данной области и широко используется в технике, например, при разработке оптических элементов и компонентов оптических систем. Методика проведения таких расчетов описана, например, в публикации A.Duparré, Thin Films in Optical Coatings, изд-во CRC Press, Boca Raton, London 1995, которая включена в настоящее описание в качестве ссылки и тем самым является его частью. В этой публикации приведено уравнение 10 следующего вида:

В этом уравнении величина ARS (от англ. "angle resolved scatter") обозначает разрешаемую по углу долю рассеянного света. Общие потери света на рассеяние TS (от англ. "total integrated scatter") можно определить интегрированием величины ARS по расположенному в прямом направлении полупространству и расположенному в обратном направлении полупространству согласно следующему выражению:

Оптический коэффициент К рассеяния в расположенном в обратном направлении полупространстве, соответственно в расположенном в прямом н