Катализатор фишера-тропша, способ получения катализатора и способ получения углеводородов

Иллюстрации

Показать все

Настоящее изобретение относится к катализаторам Фишера-Тропша, их способу получения и к способу получения углеводородов с использованием этого катализатора. Катализатор включает кобальт в количестве от 5 до 20 мас.% от массы всего катализатора на подложке из глинозема. Указанная подложка имеет удельную площадь поверхности от 5 до 50 м2/г. Катализатор получают термической обработкой частиц глинозема при температуре в диапазоне от 700 до 1300°С в течение периода времени от 1 до 15 часов и пропиткой термически обработанных частиц кобальтом. Способ получения углеводородов осуществляют по методу Фишера-Тропша в присутствии заявленного катализатора. Катализаторы согласно настоящему изобретению открывают путь для достижения высокой селективности в отношении С5+ при низких значениях сопротивления диффузии внутри частиц. 3 н. и 16 з.п. ф-лы, 8 табл., 9 ил.

Реферат

Настоящее изобретение относится к катализаторам Фишера-Тропша (Ф-Т), их использованию в синтезе Фишера-Тропша (ФТ-синтезе), к способам их использования и их получения.

Превращение природного газа в жидкие углеводороды (процесс "газ в жидкость" или "ГВЖ") основано на 3-ступенчатой процедуре, состоящей из: 1) получения синтез-газа; 2) превращения синтез-газа с использованием ФТ-синтеза и 3) переработки продуктов ФТ-синтеза (воск и лигроин/дистилляты) в готовые продукты, такие как лигроин, керосин, дизельное топливо, или другие продукты, например, в основу смазочного масла.

Катализаторы на основе кобальта представляют собой предпочтительные катализаторы для проведения ФТ-синтеза. Наиболее важными свойствами кобальтового ФТ-катализатора являются активность, селективность, направленная обычно на С5+ и более тяжелые продукты, и устойчивость к дезактивации. Известные катализаторы подобного рода обычно имеют в качестве подложки титан, кремний или глинозем (оксид алюминия), при этом в качестве промоторов, как было показано, могут использоваться различные металлы и оксиды металлов.

Вышедшая недавно серия работ Иглесиа с соавт. ("Selectivity Control and Catalyst Design in the Fischer-Tropsch Synthesis: Sites, Pellets and Reactors", Vol. 39, 1993, p.221-302) содержит описание последовательности реакций, ведущих к образованию различных углеводородных продуктов, и методологию оптимизации свойств катализатора в направлении синтеза желательных тяжелых углеводородов. Максимальная селективность по С5+ наблюдается при разработке гранул катализатора с оптимальным сопротивлением диффузии внутри частиц. Указанная цель достигается за счет повышения сопротивления диффузии внутри частиц до значения, при котором достигается максимум вторичных реакций построения цепи первичных продуктов (альфа-олефинов) без возникновения значительного сопротивления диффузии реагентов (H2, CO), поскольку последнее приводит к меньшей селективности. Было показано, что данный принцип в целом применим ко всем указанным выше подложкам. При построении графиков, описывающих поведение различных катализаторов с различными физическими свойствами (размер частиц, пористость, содержание кобальта, дисперсия кобальта), получают типичную картину графика «в форме вулкана" и максимальную селективность по С5+ определяют для промежуточных значений параметра "χ", который представляет собой функцию указанных выше параметров и является мерой сопротивления диффузии внутри частиц при заданном наборе реакционных условий.

Определение χ:

χ=R02шθ/rp (1)

где R0 - радиус частицы катализатора, м,

ш - пористость катализатора,

θ - плотность каталитических центров (число центров/м2),

rp - средний радиус пор, м.

Согласно данным Иглесиа, оптимальное значение χ для типичного набора условий ФТ-реакции (200°С, 20 бар, H2/CO=2,1; 50-60% конверсии) составляет порядка 500-1000·1016 м-1, вне зависимости от природы используемой подложки для катализатора. Из определения χ следует, что любой рассматриваемый параметр (радиус частиц, пористость, радиус пор или плотность центров) может изменяться для достижения желательного значения χ. Однако такое представление может быть до некоторой степени ошибочным в связи с существованием известной взаимосвязи между удельной площадью поверхности, радиусом пор и пористостью (или удельным объемом пор). С учетом указанных взаимосвязей можно видеть, что χ может быть описан такими параметрами, как размер частиц, содержание кобальта, дисперсия кобальта и пористость. Таким образом, можно видеть, что параметр χ фактически не зависит от радиуса пор и плотности центров и определяется только по показателю (параметру) объемного переноса, который контролируется лишь размером частиц, содержанием кобальта, дисперсией кобальта и пористостью.

Приведенные ниже известные уравнения действительны для пор идеальной цилиндрической структуры:

rp=2Vg/Sg(2)
Vg=ш/ρp(3)
ρp=(1-ш)ρs(4)

где Vg - удельный объем пор, см3/г,

Sg - удельная площадь поверхности, м2/г,

ρp - плотность частиц, г/см3,

ρs - плотность материала, г/см3.

Параметр плотности центров в уравнении (1) (θ=центры кобальта/м2) может быть выражен следующим уравнением:

θ=число центров Со/м2 площади поверхности=XCoDCoA/SgMCo (5),

где XCo - общая концентрация Со в катализаторе (гCoкат),

DCo - дисперсия Со (доступная часть общего кобальта)

А - число Авогадро = 6,23·1023 атомов/моль

МCo - молекулярная масса кобальта = 58,9 г/моль.

При объединении уравнений (2)-(5) с уравнением (1) можно видеть, что параметр χ может быть описан следующим образом:

χ=R02XCoDCoA(1-ш)ρs/2MCo (6)

Из уравнения (6) видно, что χ фактически не зависит от радиуса пор и зависит лишь от волюметрической плотности центров в свободном объеме пор катализатора. Очевидно также, что в связи с наличием зависимости второго порядка от размера частиц самым простым способом контроля параметра χ является варьирование размера частиц.

Если катализатор на основе кобальта используется в реакторе типа реактора с неподвижным слоем, необходимо использовать частицы с размером 1 мм или больше, с тем чтобы избежать неприемлемого перепада давления в реакторе. Однако значение χ вследствие этого становится слишком высоким для того, чтобы достичь оптимальной селективности, из-за высокого сопротивления диффузии реагентов. До некоторой степени это может быть связано с использованием так называемых катализаторов типа «яичная скорлупа» или катализаторов тороидального типа, в которых фаза, содержащая активный кобальт, размещена на относительно тонком участке во внешнем слое (оболочке) подложки. Однако в реакторах суспензионного типа необходимо использовать более мелкие частицы, обычно размером 10-100 мкм. Легко заметить, что при этом будет чрезвычайно трудно получить значения параметра χ в желательном диапазоне. Так, например, катализатор с содержанием 10 мас.% кобальта с 5% дисперсией кобальта, 50%-ной пористостью и размером частиц 50 мкм будет иметь χ=13·1016 м-1.

Следует также иметь в виду, что параметры в уравнении (6) обычно не могут изменяться независимо, то есть чем выше содержание кобальта, тем труднее достичь высокой дисперсии. Более того, чем ниже пористость, тем труднее становится использовать катализатор с высоким содержанием кобальта. Сочетание 20 мас.% содержания кобальта при 10% дисперсии и 30% пористости дает более высокую объемную плотность кобальта, чем можно обнаружить в любых работах, известных заявителям и приведенных в качестве ссылок. Соответствующее значение χ для частицы размером 50 мкм (которая приемлема для работы в реакторе суспензионного типа) будет составлять 75·1016 м-1, что все еще гораздо ниже, чем оптимальное значение, указанное Иглесиа.

Таким образом, отсутствует ясное руководство по получению катализаторов с высокой селективностью с целью использования их при малых размерах частиц, таких, как те, которые встречаются в реакторах суспензионного типа.

Заявители провели серию экспериментов для изучения влияния значений χ на селективность с использованием промотированного рением катализатора на основе кобальта на глиноземной подложке. Они показали только ограниченную возможность оптимизации посредством изменения χ за счет изменения размера частиц. Результаты приведены на фиг.1. Фиг.1 показывает влияние χ на селективность при использовании катализатора на основе 20%, Co1%Re/γ-Al2O3 (8% дисперсия, 60% пористость, средний размер частиц (мкм): 46, 113, 225, 363, 638). Испытания в реакторе с неподвижным слоем проводились в следующих условиях: 200°С, 20 бар, H2/CO=2,1; 50-70% конверсии, >24 часов в потоке. Все данные получены в результате двух или более повторов.

Иглесия предполагает, что селективность по С5+ может быть повышена за счет снижения относительной плотности или реакционной способности центров гидрирования олефинов относительно центров реадсорбции олефинов. Указанный эффект представляет собой прямое следствие разработки и подготовки реакционной цепочки. Однако нет никаких указаний относительно того, как такое изменение может быть введено в реальный катализатор.

Целью настоящего изобретения является создание ФТ-катализатора для использования в реакторах суспензионного типа с улучшенной селективностью в отношении С5+ углеводородов.

Одним из требований, предъявляемых к катализатору, предназначенному для применения в реакторе суспензионного типа, является то, что размер частиц катализатора должен сохранять свою структурную целостность. Катализаторы, которые имеют в качестве подложки двуокись титана, относительно слабы, и хотя с точки зрения селективности были получены обнадеживающие результаты в случае кобальтовых катализаторов на титановой подложке, у них может наблюдаться тенденция к разложению при длительном использовании. Глинозем обладает присущей ему более высокой устойчивостью против истирания и разрушения частиц катализатора, чем титан, и в этой связи представляет собой более предпочтительный материал в качестве подложки с точки зрения его механических свойств.

В соответствии с одним аспектом настоящего изобретения в нем предлагаются катализаторы для использования в реакции синтеза Фишера-Тропша, которые включают кобальт на глиноземной подложке, в которых глиноземная подложка имеет удельную площадь поверхности <50 м2/г, предпочтительно <30 м2/г, но, предпочтительно, не ниже чем 5 м2/г.

Предпочтительно глинозем представляет собой, по меньшей мере, 50% альфа-окисью алюминия, а остаток представлен гамма- и/или тета-окисью алюминия, предпочтительно и преимущественно тета-окисью алюминия. Предпочтительно, чтобы это была, по меньшей мере, 80% или даже, по существу, чистая альфа-окись алюминия.

Предпочтительно кобальт составляет от 3 до 35 мас.% катализатора, более предпочтительно от 5 до 20 мас.%. Катализатор может также включать до 2 мас.% рения, например от 0,25 до 1 мас.% или от 0,25 до 0,5 мас.% рения. Могут также быть включены другие известные металлические промоторы/присадки, такие как платина, родий, иридий и палладий, предпочтительно в тех же количествах, а также оксидные промоторы/присадки, такие как оксиды щелочно-земельных металлов и оксиды щелочных металлов.

Соответственно другому аспекту настоящего изобретения предлагается способ получения катализатора Фишера-Тропша, который включает обработку частиц глинозема при температуре в диапазоне от 700 до 1300°С в течение периода времени от 1 до 15 часов и пропитку частиц глинозема после термической обработки кобальтом и желательными промоторами/присадками. Предпочтительная температура обработки находится в диапазоне от 900 до 1200°С, а время обработки составляет от 5 до 10 часов.

Изобретение также охватывает использование катализаторов согласно первому аспекту изобретения в реакции ФТ-синтеза. Она может быть проведена в суспензионном реакторе типа колонны с барботажем.

Изобретение также относится к способу превращения природного газа в углеводороды С5+, который включает обработку поступающего потока природного газа с целью проведения реакции реформинга с получением исходного потока синтез-газа в составе углеводорода и моноокиси углерода, введение исходного потока синтез-газа в реакцию ФТ-синтеза в присутствии катализатора в соответствии с первым аспектом изобретения и отделение потока продукта, включающего углеводороды С5+.

Способ осаждения активного металла, металлических промоторов, щелочного и редкоземельного оксида на подложку из глинозема не является критическим и может быть выбран из множества различных методов, хорошо известных специалисту в данной области. Был использован один из приемлемых способов, известный как пропитка при (начальном) минимальном увлажнении. В рамках данного способа соли металлов растворяют в таком количестве подходящего растворителя, которого как раз достаточно для того, чтобы заполнить поры катализатора. По другому методу оксиды или гидроксиды металлов совместно осаждают из водного раствора путем добавления осаждающего агента. В еще одном способе соли металла смешивают с влажной подложкой в соответствующем смесителе с получением, по существу, гомогенной смеси. В настоящем изобретении в случае использования пропитки при минимальной влажности каталитически активные металлы и промоторы могут быть осаждены на подложку с использованием водного или органического раствора. Подходящие органические растворители включают, например, ацетон, метанол, этанол, диметилформамид, диэтиловый эфир, циклогексан, ксилол и тетрагидрофуран.

Подходящие соединения кобальта включают, например, нитрат кобальта, ацетат кобальта, хлорид кобальта и карбонат кобальта, при этом наиболее предпочтительным в случае проведения пропитки с использованием водного раствора является нитрат. Подходящие соединения рения включают, например, оксид рения, хлорид рения и перрениевую кислоту. Перрениевая кислота является предпочтительным соединением в случае изготовления катализатора с использованием водного раствора. Подходящие платиновые, иридиевые и родиевые соединения включают нитраты, хлориды и их комплексы с аммиаком. Щелочные соли, подходящие для включения щелочного компонента в катализатор, включают нитраты, хлориды, карбонаты и гидроксиды. Промотор на основе оксида редкоземельного металла может быть подходящим образом включен в катализатор в форме, например, нитрата или хлорида.

После проведения водной пропитки катализатор сушат при температуре от 110°С до 120°С в течение времени от 3 до 6 часов. В случае проведения пропитки с использованием органических растворителей катализатор предпочтительно сначала сушат в роторном испарителе при температуре от 50°С до 60°С при низком давлении, а затем сушат еще несколько часов при 110°С-120°С.

Высушенный катализатор отжигают на воздухе при медленном повышении температуры до верхней границы, составляющей от 200°С до 500°С, предпочтительно в диапазоне от 250°С до 350°С. Скорость повышения температуры составляет предпочтительно от 0,5°С до 2°С в минуту, при этом катализатор выдерживают при наивысшей температуре в течение времени от 1 до 24 часов, предпочтительно, от 2 до 16 часов. Процедуру пропитки повторяют столько раз, сколько необходимо для получения катализатора с нужным содержанием металлов. В случае присутствия промотора на основе оксида кобальта, рения, щелочного и редкоземельного металла пропитка может быть проведена совместно или на отдельных стадиях. В случае использования отдельных стадий порядок пропитки активными компонентами можно варьировать.

Перед использованием отожженный катализатор предпочтительно восстанавливают водородом. Указанная процедура может быть соответствующим образом проведена путем продувки водородом с пространственной скоростью, по меньшей мере, 1000 нсм3/г. Температуру медленно повышают от температуры окружающей среды до максимального уровня от 250°С до 450°С, предпочтительно в диапазоне от 300°С до 400°С и поддерживают на максимальном уровне в течение времени от 1 до 24 часов, более предпочтительно 5-16 часов.

Реактор, используемый для синтеза углеводородов из синтез-газа, может быть выбран из различных типов реакторов, хорошо известных специалистам в данной области техники, таких, например, как реактор с неподвижным слоем, реактор с псевдоожиженным слоем, реактор с кипящим слоем или суспензионный реактор. Размер частиц катализатора в случае реактора с неподвижным или кипящим слоем составляет предпочтительно от 0,1 до 10 мм и более предпочтительно от 0,5 до 5 мм. Для других указанных типов операций предпочтителен размер частиц от 0,01 до 0,2 мм.

Синтез-газ представляет собой смесь моноокиси углерода и водорода и он может быть получен из любого источника, известного специалистам в данной области, такого, каким является, например, конверсия природного газа водяным паром или частичное окисление угля. Молярное отношение H2:CO составляет, предпочтительно от 1:1 до 3:1 и более предпочтительно от 1,5:1 до 2,5:1. Двуокись углерода не является желательным исходным компонентом для использования с катализатором согласно настоящему изобретению, но она не оказывает вредного воздействия на активность катализатора. С другой стороны, все серусодержащие соединения должны присутствовать в поступающем потоке в очень низких количествах, предпочтительно в количестве менее 100 ч/млрд.

Подходящая температура реакции составляет от 150°С до 300°С и более предпочтительно находится в диапазоне от 175°С до 250°С. Общее давление может находиться в диапазоне от атмосферного до примерно 100 атм, предпочтительно в диапазоне от 1 до 50 атм. Среднечасовая скорость подачи газа применительно к общему количеству синтез-газа составляет предпочтительно от 100 до 20000 см3 газа на грамм катализатора в час и более предпочтительно от 1000 до 10000 см3/г/час, при этом среднечасовую объемно-массовую скорость подачи газа определяют как объем синтез-газа (измеренный при стандартных значениях температуры и давления), подаваемого на единицу массы катализатора в час.

Продукты реакции представляют собой сложную смесь, но основная реакция может быть проиллюстрирована следующим уравнением:

nCO+2nH2→(-CH2-)n+nH2O

где (-CH2-)n обозначает линейную цепь углеводорода с углеродным числом n. Углеродное число представляет собой число атомов углерода, составляющих основной скелет молекулы. При ФТ-синтезе продукты представляют собой в основном либо парафины либо олефины, либо спирты. Продукты характеризуются углеродным числом от одного до 50 или выше.

Кроме того, в случае многих катализаторов, например катализаторов на основе железа, реакция конверсии водяного газа представляет собой известную побочную реакцию:

CO+H2O→H2+CO2

В случае катализаторов на основе кобальта скорость указанной последней реакции обычно очень низка.

Углеводородные продукты в реакции синтеза Фишера-Тропша включают спектр от метана до высококипящих соединений, что описывается так называемым распределением Шульца-Флори, известным специалистам в данной области. Распределение Шульца-Флори выражается математически уравнением Шульца-Флори: Wn=(1-α)2n-1, где n обозначает углеродное число, α обозначает коэффициент распределения Шульца-Флори, который представляет собой отношение скорости наращивания цепи к скорости наращивания цепи плюс скорость обрыва цепи, а Wn обозначает массу фракции продукта с углеродным числом n. Данное уравнение показывает, что повышение α приводит к более высокому среднему углеродному числу продукта. Более высокие значения α желательны в тех случаях, когда более тяжелые продукты, такие как дизельное топливо, относительно более ценны, чем более легкие продукты, такие как лигроин и легкие газы.

Настоящее изобретение в этой связи относится к получению и использованию в ФТ-синтезе катализатора на основе кобальта на подложке из глинозема с малой площадью поверхности для оптимизации селективности в отношении С5+. Данная цель предпочтительно достигается посредством термической обработки глиноземов с высокой площадью поверхности с получением желательных площадей поверхности, но следует понимать, что любые способы получения материалов с такими свойствами также охватываются рамками настоящего изобретения. Другим достоинством изобретения является неожиданно высокая активность и высокая устойчивость описанных материалов к дезактивации.

Настоящее изобретение описывает каталитические материалы, которые могут использоваться в любом типе ФТ-реактора, подходящего для синтеза тяжелых углеводородов (например, в реакторе с неподвижным слоем и в суспензионном реакторе). Следует понимать, что любое сочетание кобальта и подходящих промоторов (таких как Re, Pt или других подходящих компонентов) будет давать более значительную выгоду при использовании подложек из глинозема с малой площадью поверхности, включая кобальтовые катализаторы без промоторов.

Катализаторы согласно настоящему изобретению открывают путь для достижения высокой селективности в отношении С5+ при низких значениях χ, то есть при низких значениях сопротивления диффузии внутри частиц. Таким образом, в случае указанных катализаторов удается обойти ограничения, свойственные подходу Иглесиа. Было обнаружено, что кобальт на подложке из глинозема с низкой площадью поверхности может существенно улучшать селективность в отношении С5+ в ФТ-синтезе в сравнении с вариантом использования глинозема с высокой площадью поверхности, даже при низких значениях χ. Данная цель была достигнута посредством термической обработки глиноземов с высокой площадью поверхности до получения продуктов с желательной площадью поверхности. Результаты проведенных испытаний показывают, что увеличение селективности в отношении С5+ может, по меньшей мере, частично быть связанным со снижением активности гидрирования олефинов по сравнению с основной активностью ФТ-синтеза.

Было также обнаружено, что указанные катализаторы, несмотря на низкую площадь поверхности, доступной для пропитки активными компонентами, демонстрируют активность, которая является более высокой, чем у аналогичных катализаторов с высокой площадью поверхности (ВПП) в условиях, имитирующих высокую конверсию в суспензионном реакторе типа колонны с барботажем (то есть при высоких и однородных значениях парциального давления воды). Фактически активность катализатора с низкой площадью поверхности близка к активности катализатора с высокой площадью поверхности и с более высоким содержанием кобальта.

Катализатор с низкой площадью поверхности не подвергается влиянию потери активности в единицу времени, но в случае катализатора с низкой площадью поверхности имеет место обратимая стадия изменения в сторону повышения активности, которой не наблюдается в ВПП-катализаторе.

Дополнительное преимущество по сравнению с известной технологией заключается в том, что поскольку композиция воска становится более тяжелой (более высокое значение α), это ведет к увеличению общего выхода среднего отгона или основы смазочных масел, когда воск подвергается процессу гидрокрекинга или гидроизомеризации в последующем процессе. Следствием этого в общем ГВЖ-процессе является то, что возврат неконверсированного газа назад в зону конверсии природного газа может быть снижен, при этом общая эффективность процесса может быть повышена (то есть может быть снижено выделение CO2) и может быть снижено потребление кислорода. И далее было обнаружено, что катализаторы согласно настоящему изобретению демонстрируют сниженную активность в отношении процесса конверсии водяного газа, что ведет к снижению нежелательного образования CO2.

Настоящее изобретение может быть осуществлено на практике различными способами и ниже оно иллюстрируется следующими примерами.

На прилагаемых чертежах:

Фиг.1 представляет собой график, демонстрирующий влияние величины χ на селективность в отношении С5+;

Фиг.2 представляет собой график, показывающий влияние площади поверхности подложки на селективность в отношении С5+;

Фиг.3 представляет собой график, показывающий селективность в отношении С5+ как функцию % α-Al2O3 в подложке;

Фиг.4 представляет собой график, демонстрирующий влияние величины χ на селективность в отношении С5+ при использовании катализаторов на основе кобальта на подложке из Al2O3;

Фиг.5 представляет собой график, демонстрирующий влияние содержания кобальта на селективность в отношении С5+ при использовании кобальтовых катализаторов на подложке из Al2O3;

Фиг.6 представляет собой график, показывающий влияние содержания кобальта на производительность катализатора при использовании кобальтовых катализаторов на подложке из Al2O3;

Фиг.7 представляет собой график, показывающий селективность в отношении пропена и пропана как функцию площади поверхности подложки; и

Фиг.8 и 9 представляют собой графики, показывающие селективность в отношении пропана и пропена соответственно как функцию величины χ для кобальтовых катализаторов на подложке из Al2O3.

Пример 1. Получение катализатора

Катализаторы получают следующим образом: готовят раствор путем растворения заданного количества нитрата кобальта Co(NO3)2·6H2O и в случае некоторых катализаторов также перрениевой кислоты HReO4 или нитрата тетрааминоплатины Pt(NH3)4(NO3)2 в заданном количестве дистиллированной воды. Весь раствор добавляют при перемешивании к заданному количеству глинозема Condea Puralox SCCa 45/190, обработанного на воздухе при различных температурах перед пропитыванием, при этом количество указанного раствора берется достаточным для достижения начальной (минимальной) степени увлажнения. Полученные катализаторы сушат в течение 3 ч в сушильном шкафу при температуре 110°С. Высушенные катализаторы затем отжигают на воздухе путем повышения их температуры со скоростью нагревания 2°/мин до 300°С и выдерживания при указанной температуре в течение 16 ч. После отжига полученные катализаторы отсеивают до достижения желательного размера частиц. В таблице 1а приведены количества используемых при получении ингредиентов и состав полученных катализаторов.

Катализаторы 9-13 имеют разные размеры частиц одного и того же катализатора, причем указанные размеры частиц достигаются таблетированием порошка перед дроблением и скринингом. Катализатор (2х5 кг) получают посредством достижения начального увлажнения в смесителе, высушивания при 120°С в течение 2 ч и отжига при 300°С в течение 3 ч.

Пример 2. Кобальтовые катализаторы на подложке из глинозема с высокой площадью поверхности, имеющие различные размеры частиц

Катализаторы 9-13 из таблицы 1а исследуют в изотермическом микрореакторе с неподвижным слоем. Указанный реактор имеет длину 25 см и внутренний диаметр 1 см. Каждый катализатор подвергают предварительной обработке, состоящей из восстановления посредством пропускания водорода над катализаторами при нагревании указанного катализатора со скоростью 1°С/мин до 350°С и выдерживании при этой температуре в течение 16 ч под давлением 1 бар. В указанных тестах синтез-газ, состоящий из смеси Н2:СО в соотношении 2,1:1 (+3 об.% N2), пропускают над 1-2 г катализатора, разбавленного SiC в соотношении 1:5, под давлением 20 бар и при желательной температуре и объемной скорости. Объемную скорость обычно варьируют для поддержания конверсии СО в диапазоне от 40 до 70%. Продукты из реактора направляют в газовый хроматограф с детекторами ДИП и ДТП для проведения анализа, при этом в качестве основы для расчетов используют содержание метана, определенное с помощью обоих детекторов.

Для изучения влияния χ на селективность в отношении С5+ катализаторы 9-13 испытывают в тех же реакционных условиях, что использовались Иглесиа с соавт.Полученные результаты приведены в таблице 1b и проиллюстрированы графически на фиг.1, а также сопоставлены с результатами Иглесиа с соавт. На фиг.1 показано влияние χ на селективность в отношении С5+ с использованием катализатора 20%Co1%Re-1RE/γ-Al2O3 (8% дисперсия, 60% пористость, средний размер частиц (мкм): 46, 113, 225, 363, 638).

Резкое снижение селективности в отношении С5+ при значениях параметра χ выше примерно 1000·1016 м-1 вызвано диффузионными ограничениями для Н2 и СО внутри частиц, что согласуется с объяснениями Иглесиа с соавт. Однако в настоящем контексте более важно отметить, что селективность в отношении С5+ катализаторов на подложке из глинозема с высокой площадью поверхности не могла быть существенно повышена путем вариации χ (размер частиц) от низкого (<100·1016 м-1) до среднего (500-1000·1016 м-1) уровня значений и что, очевидно, нужны другие способы для необходимого повышения степени селективности кобальтовых катализаторов на подложке из глинозема в отношении С5+.

Таблица 1bСвойства и результаты испытаний катализаторов на основе материалов, описанных в таблице 1. Реакционные условия: Реактор с фиксированным слоем при 200°С, 20 бар, исходная смесь Н2/СО=2,1; конверсия 50-70%; >24 часов в потоке.
КатализаторСостав(масс.%)Температура обработки подложки (°С)Фаза глинозема (%α)Площадь поверхности (м2/г)ПористостьДисперсность Со (%)Средний размер частиц (мкм)χ м-1(·1016)GHSV2)(час-1)КонверсияСО (%)Скорость реакции3)(г/г/час)Селективность1) (%)
СН4C2-C4C5+
920%Со-1%Re*)50001820,60846292650570,3610,483,5
1020%Со-1%Re*)50001820,6081121772380570,276,110,883,1
1120%Со-1%Re*)50001820,6082257072500620,315,99,884,2
1220%Со-1%Re*)50001820,60836318362750630,347,59,982,7
1320%Со-1%Re*)50001820,60863856783300530,3512,98,878,3
*) Катализаторы содержат также 1% оксида редкоземельного металла (La2O3).1) Селективность в отношении углерода, СО2 в расчет не принимался (<1%CO2 во всех экспериментах).2) Скорость поступления: нсм32+СО+инертный газ)/г катализатора/час (3 об.% инертного газа (N2) использовались во всех экспериментах).3) г углеводородов С1+ на г катализатора в час.

Пример 3. Кобальтовые катализаторы на подложке из глинозема с различной площадью поверхности и составом фаз

Подложки из глинозема с разной площадью поверхности и составом фаз глинозема получают посредством тепловой обработки при различных температурах, как описано в примере 1. Катализаторы также содержат переменные количества кобальта и промотора. Катализаторы испытывают в реакторах с неподвижным слоем с использованием того же оборудования и тех же методик, что описаны в примере 2. Результаты тестирования всех катализаторов представлены в таблице 2 и проиллюстрированы на фиг.2, 3 и 4.

На фиг.2 и 3 показано, что селективность в отношении С5+ для всех указанных катализаторов со значением χ<150·1016 м-1 (то есть всех катализаторов с малыми частицами) представляет собой функцию площади поверхности подложки или содержания α-глинозема. Хотя имеется некоторое распределение данных, вполне очевидно, что катализаторы с малой площадью поверхности/высоким содержанием α-глинозема демонстрируют значительно более высокую селективность в отношении С5+, чем катализаторы с большой площадью поверхности и с подложкой из γ-глинозема. Очевидно также, что указанный эффект более значим при значениях площади поверхности менее примерно 50 м2/г и при содержании α-глинозема выше примерно 10%.

Следует также отметить, что параметр роста Шульца-Флори (α) повышается для катализаторов, в которых используется глинозем с малой площадью поверхности и высоким содержанием α-глинозема (см. катализаторы 2, 3 и 4 в таблице 2). Такое увеличение значения α от 0,92 до 0,94 приводит к повышению выхода воска (С19+) (в % от общей продукции углеводородов) более чем на 10% единиц (от менее 50% до более 60%).

На фиг.4 показан график зависимости селективности в отношении С5+ как функции от χ для катализаторов, приведенных в таблице 2. Видно наличие двух параллельных кривых, описывающих полученные данные: одной - для подложек из γ-глинозема с большой площадью поверхности, и другой - для подложек с малой площадью поверхности и с высоким содержанием α-глинозема. Последняя показывает в среднем на 4-6% единиц бульшую селективность в отношении С5+, чем отмеченная для всех уровней χ в первом случае. Видимый разброс данных на фиг.2-4 далее будет пояснен в примерах 4 и 5.

Таблица 2Свойства и результаты испытаний катализаторов на основе материалов, описанных в таблице 1. Реакционные условия: Реактор с неподвижным слоем при 210°С, 20 бар, исходная смесь Н2/СО=2,1; конверсия 40-70%, примерно 100 часов в потоке.
КатализаторСостав (масс.%)Температура обработки подложки (°С)Фаза глинозема (% α)Площадь поверхности (м2/г)ПористостьДисперсность Со (%)Средний размер частиц (мкм)χ м-1 (·1016)GHSV2) (час-1)Конверсия СО (%)Скорость реакции3) (г/г/час)Селективность1) (%)
СН4C2-C4C5+α4)α
120%Со-1%Re50001830,658,346277100430,618,810,181,1-
212%Co-0,5%Re50001910,7511,264305100490,509,19,281,80,92
2b12%Co50001910,759,872334700460,439,410,180,9-
2c20%Co50001910,757,572436200450,559,710,879,5-
2d20%Со-1%Re50001910,7510,572438400460,779,39,981,2-
312%Co-0,5%Re11007660,6412,472605500500,548,48,783,00,92
412%Co-0,5%Re115086160,2410,264833900550,436,85,487,80,94
4a12%Co-0,5%Re115086160,2410,2841394300530,456,05,388,7-
4b12%Co115086130,196,872743100480,308,28,083,8-
55%Co-0,25%Re115086130,198,572381700450,157,56,386,2-
68%Co-0,4%Re115086130,198,672622900450.266,65,488,0-
710%Co-0,5%Re115086130,199,672873700480,366,86,187,1-

820%Co-1%Re115086160,245,772984600470,437,66,985,5-
920%Со-1%Re*)50001820,60846294800540,516,89,483,8-
1020%Со-1%Re*)50001820,6081121773800550,417,19,783,1-
1120%Со-1%Re*)50001820,6082257074500560,497,18,184,8-
1220%Со-1%Re*)50001820,60836318365000620,6210,48,181,5-
1320%Со-1%Re*)50001820,60863856784500560,5016,88,674,6-
13b12%Co-0,5%Re11508670,1171132073000520,316,94,888,3-
13c12%Co-0,5%Re11508660,116,62257813000490,296,74,988,4-
13d12%Co-0,5%Re11508670,087,761369783400490,3413,4680,6-
1412%Co-0,3%Pt115086130,197,772843400510,34