Ветродвигатель

Иллюстрации

Показать все

Изобретение относится к ветроэнергетике и может быть использовано для преобразования энергии движения ветра в механическое вращение вала ветродвигателя, к которому могут быть присоединены различные механические устройства или преобразователи механической энергии. Технический результат, заключающийся в упрощении конструкции ветродвигателя, уменьшении его массогабаритных характеристик, увеличении коэффициента использования энергии ветра, обеспечивается за счет того, что в ветродвигателе, содержащем ветроколесо с вертикальной осью вращения, снабженное не менее чем тремя ветровоспринимающими элементами, скрепленными с радиальными траверсами, закрепленными на вертикальной оси вращения перпендикулярно ей, при этом внешние концы траверс оперты на кольцевую опору, кроме того, ветроколесо установлено с возможностью взаимодействия с генератором электрической энергии, согласно изобретению каждый ветровоспринимающий элемент выполнен в виде щелевого крыла, содержащего не менее двух параллельных лопастей, профилю поперечного сечения которых придана серповидная форма, выпуклая в сторону вращения ветроколеса и вогнутая со стороны ветровоспринимающих поверхностей, при этом ширина и длина лопастей щелевого крыла увеличивается от его поверхности, воспринимающей ветер, не менее чем на 5% от размеров соседней наименьшей, причем поперечному сечению наибольшей лопасти каждого щелевого крыла придана каплеобразная форма, для чего радиус кривизны профиля центральной части ее выпуклой поверхности выполнен меньше, чем у остальных лопастей щелевого крыла. 1 з.п. ф-лы, 4 ил.

Реферат

Изобретение относится к устройствам для преобразования энергии движения ветра в механическое вращение вала ветродвигателя, к которому могут быть присоединены различные механические устройства или преобразователи механической энергии.

Известен ветродвигатель в котором в центральной области потока ветер непосредственно действует на многолопастной ротор, а справа и слева от потока установлены подвижные заслонки, по периметру вне ротора (слева открывают потоку движение, а справа перекрывают), причем эти заслонки также использованы в качестве направляющего аппарата для направления ветрового потока к ротору (см. патент РФ №2074980).

Недостаток этого решения - сектор использования ветра не превышает угла 120°, зато значительно увеличены габариты всего устройства и усложнена конструкция даже в сравнении с лопастным ветроагрегатом.

Известен ветродвигатель, выполненный в виде осевой турбины с сопловым аппаратом и содержащий электрогенератор, переднюю, центральную, дополнительную и наружные оболочки. Перечисленные оболочки создают между смежными поверхностями три канала, каждый из которых представляет собой сопло Лаваля (см. патент РФ №2124142).

По утверждению автора, такая конструкция обеспечивает высокую эффективность использования ветра, что весьма спорно, так как диаметр внешней оболочки более чем на порядок больше диаметра самой турбины, значит аэродинамический момент оболочки будет почти в тысячу раз больше сопротивления турбины. Утверждение автора о том, что капиталовложения на 1 кВт мощности такого ветроагрегата будут не более 0,25 капиталовложений для классического ветряка не выдерживают критики (в настоящее время во всем мире капиталовложения на 1 кВт мощности ветроагрегатов составляют в среднем 1500-2000$).

Известен также ветродвигатель, содержащий ветроколесо с вертикальной осью вращения, снабженное не менее чем тремя ветровоспринимающими элементами, скрепленными с радиальными траверсами, закрепленными на вертикальной оси вращения перпендикулярно ей, при этом внешние концы траверс оперты на кольцевую опору, кроме того, ветроколесо установлено с возможностью взаимодействия с генератором электрической энергии (см. пат. РФ по з-ке №2002130128 от 10.11.2002 "Ветроэнергетическая установка", решение о выдаче патента от 08.01.2004 г.).

Недостаток этого решения - громоздкость и сравнительно небольшой сектор использования ветра, кроме того, для обеспечения безопасности эксплуатации конструкции, имеющей развитую площадь ветровоспринимающих элементов, она снабжена устройствами для изменения их площади парусности.

Задача, на решение которой направлено заявленное техническое решение, - упрощение конструкции ветродвигателя, уменьшение его массогабаритных характеристик, увеличение его коэффициента использования энергии ветра.

Технический результат, получаемый при решении поставленной задачи, выражается в том, что при наличии ветра, независимо от его направления, на его ветровоспринимающих элементах от 0 до 180° направления ветра возникают аэродинамические силы, заставляющие вращаться вал двигателя, так как поверхности ветровоспринимающих элементов, движущиеся навстречу ветру, имеют более низкое аэродинамическое сопротивление. При этом обеспечивается увеличение сектора использования ветра до 175° угла поворота вала, т.е. в 1,6 раза выше классических (на углах от 2,5° до 177,5° от направления ветра). Кроме того, выполнение лопасти по типу щелевого крыла Жуковского Н.Е. позволяет повысить аэродинамические силы на лопасти в 1,7-2 раза в сравнении с одинарной - обычной лопастью.

Для решения поставленной задачи ветродвигатель, содержащий ветроколесо с вертикальной осью вращения, снабженное не менее чем тремя ветровоспринимающими элементами, скрепленными с радиальными траверсами, закрепленными на вертикальной оси вращения перпендикулярно ей, при этом внешние концы траверс оперты на кольцевую опору, кроме того, ветроколесо установлено с возможностью взаимодействия с генератором электрической энергии отличается тем, что каждый ветровоспринимающий элемент выполнен в виде щелевого крыла, содержащего не менее двух параллельных лопастей, профилю поперечного сечения которых придана серповидная форма, выпуклая в сторону вращения ветроколеса и вогнутая со стороны ветровоспринимающих поверхностей, при этом ширина и длина лопастей щелевого крыла увеличивается от его поверхности, воспринимающей ветер, не менее чем на 5% от размеров соседней наименьшей, причем поперечному сечению наибольшей лопасти каждого щелевого крыла придана каплеобразная форма, для чего радиус кривизны профиля центральной части ее выпуклой поверхности выполнен меньшим, чем у остальных лопастей щелевого крыла. Кроме того, образующая ветровоспринимающей поверхности наименьшей из лопастей щелевого крыла радиальна и перпендикулярна вертикальной оси вращения.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию "новизна".

Признаки отличительной части формулы обеспечивают решение следующих функциональных задач:

Признаки "каждый ветровоспринимающий элемент выполнен в виде щелевого крыла, содержащего не менее двух параллельных лопастей" позволяют повысить аэродинамические силы на ветровоспринимающем элементе в 1,7-2 раза в сравнении с обычной - одинарной лопастью.

Признаки "профилю поперечного сечения лопастей придана серповидная форма, выпуклая в сторону вращения ветроколеса и вогнутая со стороны ветровоспринимающих поверхностей" обеспечивают, что при наличии ветра, независимо от его направления, на ветровоспринимающих элементах от 0 до 180° направления ветра возникают аэродинамические силы, заставляющие вращаться вал двигателя, так как поверхности ветровоспринимающих элементов, движущиеся навстречу ветру, имеют более низкое аэродинамическое сопротивление, чем ветровоспринимающие поверхности.

Признак "ширина и длина лопастей щелевого крыла увеличивается от его поверхности, воспринимающей ветер, не менее чем на 5% от размеров соседней наименьшей" обеспечивает возможность взаимодействия с ветром всех лопастей щелевого крыла.

Признаки "поперечному сечению наибольшей лопасти каждого щелевого крыла придана каплеобразная форма, для чего радиус кривизны профиля центральной части ее выпуклой поверхности выполнен меньшим, чем у остальных лопастей щелевого крыла" позволяют до минимума снизить аэродинамическое сопротивление передней кромки ветровоспринимающих элементов.

Признаки второго пункта формулы изобретения задают пространственную привязку лопастей щелевого крыла по отношению к оси вращения.

Изобретение поясняется чертежами, где на фиг.1 показан общий вид ветродвигателя; на фиг.2 показано укрупнено щелевое крыло; на фиг.3 и 4 показано взаимодействие ветроколеса с ветром при различных углах поворота колеса к ветру.

Ветродвигатель содержит ветроколесо с вертикальной осью вращения 1, снабженное не менее чем тремя ветровоспринимающими элементами 2, скрепленными с радиальными траверсами 3, жестко закрепленными на вертикальной оси вращения 1 перпендикулярно ей (при больших размерах ветроколеса число траверс равно двум, при малых можно использовать только одну траверсу). Внешние концы 4 траверс 3 оперты на кольцевую опору 5. При необходимости (при больших размерах ветровоспринимающих элементов), можно использовать две параллельные кольцевые опоры, разнесенные по высоте друг над другом, но по нашим расчетам в большинстве случаев достаточно одной. Ветроколесо установлено с возможностью взаимодействия с генератором электрической энергии 6. Каждый ветровоспринимающий элемент 2 выполнен в виде щелевого крыла, содержащего не менее двух параллельных лопастей 7, разнесенных в плоскости вращения ротора друг от друга на 0,3 хорды лопасти по типу щелевого крыла Жуковского Н.Е. Профилю поперечного сечения лопастей 7 придана серповидная форма, выпуклая в сторону вращения 8 ветроколеса и вогнутая со стороны ветровоспринимающих поверхностей 9, при этом ширина и длина лопастей щелевого крыла увеличивается от его вогнутой поверхности, воспринимающей ветер, не менее чем на 5% от размеров соседней наименьшей. Поперечному сечению наибольшей лопасти каждого щелевого крыла придана каплеобразная форма, для чего радиус кривизны профиля центральной части ее выпуклой поверхности выполнен меньшим, чем у остальных лопастей щелевого крыла. Кроме того, образующая ветровоспринимающей поверхности 9 наименьшей из лопастей 7 щелевого крыла радиальна и перпендикулярна вертикальной оси вращения 1.

Внешние концы траверс снабжены роликами 10 с ребордами, которыми они оперты на кольцевую опору 5, с возможностью качения по ней. Кольцевая опора 5 зафиксирована на опорных мачтах 11 (как минимум, трех).

Ветродвигатель работает следующим образом. При наличии ветра, на ветровоспринимающих элементах 2, при направлениях ветра от 0 до 180° возникают аэродинамические силы, заставляющие вращаться вал двигателя (вертикальную ось вращения), так как поверхности щелевых крыльев, движущиеся навстречу ветру, имеют более низкое аэродинамическое сопротивление. При этом, в активной зоне щелевых крыльев возникают дополнительные аэродинамические силы в соответствии со свойствами щелевого крыла, которые повышают аэродинамические силы, действующие на лопасти, в 1,7-2 раза в сравнении с одинарной - обычной лопастью.

Взаимодействие ветровоспринимающих элементов 2 с ветром представлено на фиг.3, 4 при различных углах поворота вертикальной оси вращения 1.

Из чертежей следует, что при повороте блока лопастей от 0° до 180° практически сохраняется результирующая аэродинамическая сила на ветровоспринимающем элементе.

Увеличение числа лопастей в ветровоспринимающих элементах свыше трех приведет только к снижению эффективности ветродвигателя.

При повороте ветровоспринимающих элементов от 0° до 180° практически сохраняется результирующая аэродинамическая сила на нем.

Наличие кольцевой опоры 5, укрепленной не менее чем на трех опорных мачтах 11, обеспечивает почти полную разгрузку вертикальной оси вращения и траверс ветродвигателя от опрокидывающего момента при ветре любой силы.

Вращение вертикальной оси вращения 1 передается на вал генератора электрической энергии 6 с выработкой электроэнергии.

Таким образом, предлагаемая конструкция позволяет увеличить ветроэффективность ветродвигателя почти в 3,2 раза в сравнении с классической и довести ее до величины 0,65-0,75.

1. Ветродвигатель, содержащий ветроколесо с вертикальной осью вращения, снабженное не менее чем тремя ветровоспринимающими элементами, скрепленными с радиальными траверсами, закрепленными на вертикальной оси перпендикулярно ей, при этом внешние концы траверс оперты на кольцевую опору, кроме того, ветроколесо установлено с возможностью взаимодействия с генератором электрической энергии, отличающийся тем, что каждый ветровоспринимающий элемент выполнен в виде щелевого крыла, содержащего не менее двух параллельных лопастей, профилю поперечного сечения которых придана серповидная форма, выпуклая в сторону вращения ветроколеса и вогнутая со стороны ветровоспринимающих поверхностей, при этом ширина и длина лопастей щелевого крыла увеличивается от его поверхности, воспринимающей ветер, не менее чем на 5% от размеров соседней наименьшей, причем поперечному сечению наибольшей лопасти каждого щелевого крыла придана каплеобразная форма, для чего радиус кривизны профиля центральной части ее выпуклой поверхности выполнен меньшим, чем у остальных лопастей щелевого крыла.

2. Ветродвигатель по п.1, отличающийся тем, что образующая ветровоспринимающей поверхности наименьшей из лопастей щелевого крыла радиальна и перпендикулярна вертикальной оси вращения.