Газодинамический испытательный стенд

Иллюстрации

Показать все

Изобретение относится к области анализа материалов путем определения их химических и физических свойств, а именно к подготовке образцов для исследования путем их разбавления, распыления и смешивания. Газодинамический испытательный стенд включает дозирующее устройство и газодинамическую установку для создания парогазовых смесей с заданной концентрацией, содержащую реакционную камеру для смешения газовых потоков и систему разбавления. Реакционная камера выполнена в виде делителя парогазовой смеси, состоящего из расширителя, связанного как с измерителем расхода парогазовой смеси и ее сбросом через фильтр и кран-дозатор, так и с системой разбавления через капилляр и смеситель делителя парогазовой смеси. На входе в дозирующее устройство и на входе в смеситель делителя парогазовой смеси установлены регуляторы расхода газа. Система разбавления включает несколько последовательно расположенных ступеней, каждая из которых состоит из расширителя, фильтра, смесителя и капилляра, диаметр которого определяется из математического уравнения. Расширитель каждой ступени через фильтр сообщается со смесителем этой же ступени и представляет собой капиллярный разбавитель с заданными коэффициентами разбавления для каждой ступени. Все основные узлы стенда: дозирующее устройство, делитель парогазовой смеси, и система разбавления помещены в бокс, в котором поддерживается единая для всех температура. Изобретение обеспечивает получение стабильных по составу в течение продолжительного времени парогазовых смесей для веществ, обладающих различной летучестью. 2 ил.

Реферат

Изобретение относится к области анализа материалов путем определения их химических и физических свойств, а именно к получению или подготовке образцов для исследования путем их разбавления, распыления или смешивания.

В последние годы уделяется большое внимание вопросам приготовления микроконцентраций образцовых (аттестованных) парогазовых смесей (ПГС). Аттестованные ПГС по своему назначению выполняют функции стандартных образцов для метрологического обеспечения различного рода испытаний, для контроля точности результатов при метрологической аттестации методик количественного химического анализа. Руководствуясь ГОСТом 17.2.4.02-81 (Государственная система обеспечения единства, измерений. Общие требования к аттестации смесей), можно выделить ряд общих требований, которым должны удовлетворять метод и стенд для создания микроконцентраций образцовых ПГС:

- созданные микроконцентрации отравляющих веществ (OB) в воздухе рабочей зоны, мг/м3, должны составлять для зарина 2·10-5; зомана 1·10-5; Vx 5·10-5; иприта 2·10-4; люизита 2·10-4;

- при проведении испытаний отбираемые объемы ПГС должны составлять 10...10000 л;

- погрешность приготовления аттестованной ПГС ОВ не должна превышать 10% во всем диапазоне создаваемых концентраций:

- метод и стенд должны обеспечивать создание с указанной погрешностью концентрации отравляющего вещества в пределах величины от 1 до 10000 ПДКра.

Известны статические и динамические методы приготовления ПГС. Применение статического метода даже для испытательной камеры объемом 2 м3 не позволяет отбирать пробы зараженного воздуха объемом более 200 л, хотя этого объема порой недостаточно для анализа концентраций на уровне предельно допустимых значений.

Применение динамических методов в этом случае дает наилучшие результаты, поскольку предполагает непрерывный газовый поток с известной концентрацией вещества. Известна установка для получения микроконцентраций диоксида серы (Е.Д.Перегуд, Д.О.Горелик. "Инструментальные методы контроля загрязнения атмосферы". Химия, 1981, 297 с.).

Известный испытательный стенд предназначен для приготовления смесей ОВ с воздухом. В состав стенда входят дозатор в термостатированной камере, смесители потоков воздуха и газодинамическая установка в термостатированной камере.

При несомненных достоинствах известного стенда, заключающихся в возможности создания и поддержания в течение 8 часов работы ПГС с концентрацией вещества в интервале от 1·10-7 до 1·10-1 мг/л с заданными значениями влажности от 3 до 95%, температуры от 25 до 50°С и объемного расхода ПГС от 1 до 15 л/мин, значительная относительная ошибка создания массовой концентрации ПГС, составляющая 50%, не позволяет использовать его для метрологического обеспечения испытаний технических средств химической разведки и контроля, а такие для создания аттестованных смесей при проведении метрологической аттестации методик выполнения измерений химического анализа.

Согласно ГОСТ 17.2.4.02-81 (СТ СЭВ 2598-80) (Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ) общая погрешность метода определения загрязняющего вещества в воздухе не должна превышать 25%.

Кроме того, известный стенд не удовлетворяет требованиям, предъявляемым к нему по диапазону создаваемых концентраций. Ограниченными возможностями обладает и установка для получения микроконцентраций диоксида серы, признанная ближайшим из аналогов.

Данные недостатки устранены в стендах для созданий парогазовых смесей веществ широкого спектра летучести, в которых используется диффузионный дозатор с переменной поверхностью испарения вещества, автономным термостатированием, регулируемым газовым потоком и гравиметрическим контролем производительности.

Наиболее близким по технической сущности к заявляемому устройству является "Испытательный стенд для создания парогазовых и пароаэрозольных смесей с заданной концентрацией" по патенту РФ на изобретение №2219516, МПК G 01 N 1/22, G 01 N 1/38, 2003 г.

В данном испытательном стенде расширены функциональные возможности по диапазону создаваемых концентраций ПГС в аэродинамическом потоке в результате смешения веществ широкого спектра летучести и повышения точности создания заданной концентрации вещества. Это достигнуто за счет включения реакционной камеры смешения газовых потоков с автономным термостатированием и регулируемыми газовыми потоками и системы разбавления, состоящей из капиллярного делителя потока с переменным диаметром выходного отверстия капилляра и мощного побудителя расхода воздуха в трубопроводе-разбавителе. В стенде используются два диффузионных дозатора, действие которых основано на диффузии молекул с поверхности жидкого вещества в поток осушенного газа-носителя, в качестве которого может использоваться воздух, гелий, азот (температура дозатора и объемный расход газа-носителя регулируются), гравиметрический контроль убыли массы дозируемого вещества в единицу времени и система разбавления. Соотношением потоков через капилляр-разбавитель и потока, создаваемого фильтровентиляционным агрегатом, достигают необходимого разбавления исходного потока в реакционной камере смещения.

Использование в предлагаемом стенде дозатора с большой производительностью, контролируемой гравиметрическим методом, и системы разбавления, основанной на измерении газовых потоков с относительной ошибкой, не превышающей 8,0%, позволяет снизить относительную ошибку создания заданной концентрации ПГС до 10% и использовать его при создании аттестованных смесей отравляющих веществ (зарина, зомана, иприта, люизита и Vx) в течение 8 часов работы в диапазоне концентраций от 5·10-9 мг/л (Vx) до 1·10-1 мг/л, то есть от 1 до 10000 ПДК и более для метрологического обеспечения испытаний.

При несомненных достоинствах для данного стенда характерен ряд недостатков:

- автономное термостатирование составных частей стенда, в результате чего парогазовая смесь проходит по магистралям с различной температурой, что усиливает проявление эффектов сорбции и десорбции целевого вещества на внутренних поверхностях и, как следствие, приводит к произвольному изменению концентрации целевого вещества в ПГС. При этом часть магистрали вообще не термостатирована и имеет температуру окружающего воздуха, которая может меняться в ходе работы стенда.

- необходимость замены дозатора с требуемой производительностью для изменения концентрации целевого вещества в ПГС в широком диапазоне ее значений, после чего необходимо осуществить повторный запуск ГДС и стабилизировать систему в течение 1-2 часов, что, в свою очередь, не позволяет оперативно изменять концентрацию целевого вещества в ПГС.

Задачей изобретения является создание стабильных по составу в течение продолжительного времени парогазовых смесей для веществ, обладающих различной летучестью.

Технический результат, который может быть получен при использовании изобретения, заключается в разработке стенда для создания стабильных на протяжении длительного времени (до 8 часов) парогазовых смесей веществ широкого спектра летучести с возможностью оперативного изменения концентрации целевого вещества в ПГС в диапазоне от 1·10-9 мг/л до 1·10-1 мг/л с дискретностью 1·10-10 мг/л.

Поставленная задача достигается тем, что газодинамический испытательный стенд включает дозирующее устройство и газодинамическую установку для создания парогазовых смесей с заданной концентрацией, содержащую реакционную камеру для смешения газовых потоков и систему разбавления. Между ними установлена реакционная камера, выполненная в виде делителя парогазовой смеси, состоящего из расширителя, связанного как с измерителем расхода парогазовой смеси и ее сбросом через фильтр и кран-дозатор, так и с системой разбавления через капилляр и смеситель делителя парогазовой смеси, причем на входе в дозирующее устройство и на входе в смеситель делителя парогазовой смеси установлены регуляторы расхода газа, а система разбавления включает несколько последовательно расположенных ступеней, каждая из которой состоит из расширителя, фильтра, смесителя и капилляра, диаметр которого определяется из уравнения

где d - диаметр капилляра, см;

К - коэффициент пропорциональности;

G - производительность, мкг/мин;

L - длина капилляра, см;

Т - температура. К;

D0 - коэффициент диффузии при 25°С и давлении 0,1 МПа, см3/мин;

М - молекулярная масса, г/моль;

р - атмосферное давление, мм рт.ст.;

pт - давление паров вещества при температуре Т, мм рт.ст.;

Расширитель каждой ступени через фильтр сообщается со смесителем этой же ступени и представляет собой капиллярный разбавитель с заданными коэффициентами разбавления для каждой ступени, а все основные узлы стенда: дозирующее устройство, делитель парогазовой смеси и система разбавления помещены в бокс, в котором поддерживается единая для всех температура.

Суть изобретения поясняется блочной (фиг.1) и структурной (фиг.2) схемами стенда,

где 1 - дозирующее устройство;

2 - газодинамическая установка;

3 - регулятор расхода газа;

4 - делитель парогазовой смеси;

5 - система разбавления;

6 - расширитель делителя парогазовой смеси;

7 - фильтр делителя парогазовой смеси;

8 - кран - дозатор;

9 - измеритель расхода газа;

10 - капилляр делителя парогазовой смеси;

11 - смеситель делителя парогазовой смеси;

12 - расширитель системы разбавления;

13 - капилляр системы разбавления;

14 - фильтр системы разбавления;

15 - смеситель системы разбавления;

16 - бокс;

17 - выходное устройство для получения потока ПГС с заданной концентрацией ОВ, отравляющих веществ.

Разработанный газодинамический испытательный стенд (в дальнейшем стенд) предназначен для оценки качества технических средств систем мониторинга объектов по уничтожению химического оружия. Стенд обеспечивает приготовление в динамическом режиме газовых смесей отравляющих веществ с воздухом с концентрациями 1-10000 ПДКрз при расходе смеси на выходе от 10 до 50 дм3/мин.

Стенд обеспечивает приготовление парогазовых смесей ОВ с воздухом. Сущность метода создания ПГС ОВ с воздухом заключается в получении исходной парогазовой смеси путем испарения ОВ из его жидкой фазы в испарителе дозатора при заданной температуре и смешивании его со строго дозированным потоком очищенного и осушенного газа-носителя. Получение ПГС ОВ с воздухом с требуемыми значениями массовой концентрации ОВ достигается путем разбавления строго дозированной части исходной парогазовой смеси дополнительным потоком воздуха с заданной объемной скоростью.

Стенд выполнен по блочно-модульному принципу в стационарном исполнении и предназначен для эксплуатации в невзрывоопасных помещениях с приточно-вытяжной вентиляцией.

Стенд обеспечивает приготовление и поддержание во времени смеси отравляющего вещества в сухом воздухе с концентрациями 1-10000 ПДКрз (с учетом дальнейшего разбавления в смесителе). Для дозирования ОВ используется термодиффузионный дозатор - источник микропотока капиллярного типа.

Целевые компоненты (ОВ): иприт, люизит, зарин, зоман, Vх.

Расход газа через блок, не более 50,0 дм3/мин.

Относительная погрешность измерения расхода, не более 2,0%.

Температура термостатирования дозатора от 20 до 60°С.

Способ задания температуры - плавный.

Погрешность термостатирования, не более 0,5 К.

В состав стенда входят капиллярные смесители, позволяющие ступенчато изменять концентрацию ОВ в смеси на выходе в 10, 100 и 1000 раз. Он создает парогазовые смеси с заданной концентрацией и включает дозирующее устройство 1 и газодинамическую установку 2 (фиг.1).

Дозирующее устройство 1 предназначено для создания исходной парогазовой смеси целевого вещества и представляет диффузионный дозатор; действие его основано на диффузии молекул с поверхности жидкого вещества в поток осушенного газа-носителя. В качестве такого газа-носителя может использоваться воздух (гелий, азот), который подается на вход дозирующего устройства 1 через регулятор расхода газа (РРГ) 3. Этот регулятор служит для регулирования и измерения расхода азота особой чистоты, подающегося из баллона. Другой регулятор РРГ, установленный на входе в смеситель 11 делителя парогазовой смеси 5, предназначен для регулирования и измерения расхода осушенного и очищенного воздуха от блока его подачи.

Температура дозатора и объемный расход газа-носителя регулируются.

Газодинамическая установка 2 предназначена для получения парогазовой смеси целевого вещества с заданной концентрацией путем деления и последующего разбавления исходной ПГС и состоит из делителя парогазовой смеси 4 и системы разбавления 5 (фиг.1).

Делитель парогазовой смеси 4 предназначен для изменения концентрации ПГС путем регулирования количества исходной ПГС, подаваемой в систему разбавления. Регулирование количества исходной ПГС, подаваемой в систему разбавления, может осуществляться в диапазоне значений от 10 до 1000 мл/мин с дискретностью 2 мл/мин. Он представляет собой расширитель 6, который через фильтр 7, кран-дозатор 8 и измеритель расхода газа 9 соединен с системой сброса, а через капилляр 10 и смеситель 11 - с системой разбавления 5 (фиг.2).

Назначение основных составных частей стенда:

- фильтры 7, 14 предназначены для очистки воздуха от примесей, которые находятся в воздухе лаборатории, а также для поглощения отравляющего вещества в смеси и представляет собой цилиндр с крышками, заполненный активированным углем. Внутренний объем фильтра составляет 1 дм3;

- кран-дозатор 8 предназначен для регулирования и контроля расхода ПГС через капилляр 10;

- измеритель расхода газа 9 предназначен для измерения количества очищенного газа-носителя, выбрасываемого в атмосферу после прохождения делителя парогазовой смеси 4;

- капилляры 10, 13 предназначены для задания расходов в линиях капиллярных смесителей;

- смесители 11, 15 предназначены для приготовления (гомогенизации) полученной газовой смеси.

Система разбавления 5 предназначена для изменения концентрации ПГС путем последовательного (ступенчатого) разбавления парогазовой смеси, поступающей из делителя ПГС. Последовательное разбавление ПГС осуществляется посредством капиллярных разбавителей. Коэффициент разбавления варьируется в интервале значений от 5 до 50. Система разбавления 5 представляет собой несколько последовательно расположенных ступеней, каждая из которой состоит из расширителя 12, капилляра 13, фильтра 14 и из смесителя 15. При этом ее расширитель 12 ступени через фильтр 14 сообщается со смесителем 15 этой же ступени и представляет собой капиллярный разбавитель с заданными коэффициентами разбавления для каждой ступени. Смеси с концентрациями, соответствующими 100, 10 и 1 ПДКрз, приготавливаются с использованием системы из трех капиллярных разбавителей с коэффициентом разбавления 10 на каждой ступени.

Характеристики дозаторов типа источников микропотока (производительность, рабочие температуры и т.д.) определяются данными, указанными в паспорте на соответствующий источник микропотока.

Производительность капилляра системы разбавления рассчитывается по формуле 2, полученной экспериментальным путем:

где G - производительность, мкг/мин;

Т - температура. К;

D0 - коэффициент диффузии при 25°С и давлении 0,1 МПа, см3/мин;

М - молекулярная масса, г/моль;

S - площадь сечения капилляра, см2;

L - длинна капилляра, см;

р - атмосферное давление, мм рт.ст.;

рт - давление паров вещества при температуре Т, мм рт.ст.

С учетом формулы для определения площади поперечного сечения капилляра , подстановки ее в уравнение 2 и после некоторых преобразований получим зависимость для определения диаметра капилляра d (см. формулу 1).

Для поддержания единой температуры для всех основных элементов стенда они помещены в единый бокс 16, где устанавливается, регулируется и поддерживается с заданной точностью единая температура.

Стенд реализует два метода и работает следующим образом:

1) Термодиффузионный метод, основанный на смешении потоков целевого газа и газа-разбавителя, где поток целевого компонента задается термодиффузионным дозирующим устройством 1 (источником микропотока) капиллярного типа, а поток газа-разбавителя регулируется и измеряется с помощью регулятора расхода газа 3. Дозирующее устройство представляет собой емкость (ампулу), заполненную жидкостью. Вещество диффундирует из емкости в газ-разбавитель через тонкий капилляр. Производительность дозатора определяется свойствами вещества, геометрическими параметрами капилляра и температурой. Регулятор расхода газа 3 позволяет измерять и регулировать расход газа, причем его показания не зависят ни от давления, ни от температуры регулируемого потока. Требуемое значение расхода газа-разбавителя и состав смеси на выходе определяется расчетным путем.

2) Метод динамического разбавления, основанный на смешении потоков исходных газов, каждый из которых измеряется и регулируется тепловым регулятором массового расхода газа. Состав смеси на выходе определяется исходя из данных о составе исходных газов и их расходов.

В стенде также реализована разновидность метода динамического разбавления - капиллярный смеситель. Его использование обусловлено необходимостью приготовления смесей в широком диапазоне концентраций (от 1 до 10000 ПДКр.з.) при сохранении общего расхода смеси на выходе. Данный метод основан на делении в определенном соотношении потока газовой смеси, содержащей целевой компонент, поглощении целевого компонента на фильтре в одной части потока и смешении очищенной части потока со второй, содержащей компонент. Расход неочищенной части потока газовой смеси определяется капилляром. Коэффициент разбавления такой системы зависит от соотношения между потоками, которое определяется пневматическими сопротивлениями фильтра и капилляра.

Производительность капилляра 10 делителя парогазовой смеси рассчитывается по формуле 3:

где G - производительность капилляра, мкг/мин;

ρ - массовая концентрация целевого компонента в газовой смеси, мг/м3;

Q - расход газа разбавителя (газовой смеси), дм3/мин.

Смеси с концентрациями, соответствующими 10000, 1000, 100, 10 и 1 ПДКр.з., приготавливаются с использованием системы из нескольких капиллярных разбавителей с коэффициентом разбавления 10 на каждой ступени. Диаметр капиллярных дозаторов 13 рассчитывается по формуле 1.

Последовательность работы.

Перед началом работы в термостатированном боксе 16 задается требуемая температура. Это необходимо для термостатирования дозирующего устройства отравляющих веществ (капиллярного дозатора), а также всей газовой коммуникации, в которой происходит последующее разбавление и смешивание исходной парогазовой смеси, полученной на выходе из дозатора. Диапазон регулирования температуры термостатирования дозатора от 30 до 160°С. Корпус бокса 16 для создания аттестованных смесей ОВ термостатирован с целью стабилизации эффектов сорбции и десорбции на поверхностях, контактирующих с газовой смесью, содержащей отравляющие вещества. Температура термостатирования корпуса устанавливается в пределах от 25 до 60°С с дискретностью 1 К. Стабильность поддержания температуры ±0,5 К.

Устанавливается дозирующее устройство 1 и посредством РРГ 3 подается поток газа-носителя с линейной скоростью 1 л/мин. Одновременно с подачей газа-носителя другим РРГ 3 подается поток воздуха в систему разбавления с линейной скоростью от 5 до 50 л/мин (в зависимости от создаваемой концентрации).

При этом в дозирующем устройстве 1 образуется исходная ПГС целевого вещества, которая подается в делитель 4, где в зависимости от создаваемой концентрации одна часть исходной ПГС поступает через расширитель 6 и капилляр 10 в систему разбавления 5, а другая - из расширителя 6 отводится на фильтр 7, кран-дозатор 8, после чего поступает в ИРГ 9 и далее выбрасывается в атмосферу. При этом посредством крана-дозатора 8 осуществляется дозированный сброс части исходной ПГС, количество которого определяется с использованием ИРГ.

В системе разбавления исходная ПГС первоначально разбавляется в смесителе 11 требуемым количеством воздуха (5-50 л/мин), после чего ПГС поступает в расширитель 12, где одна часть ПГС проходит через капилляр с заданным сечением 13, а другая часть поступает на фильтр 14, где очищается и направляется в смеситель 15. В смесителе 15 происходит смешивание ПГС с очищенным от целевого вещества потоком, чем достигается снижение концентрации ПГС в заданное количество раз. При необходимости дальнейшего уменьшения концентрации ПГС подается на вторую ступень разбавления.

Наличие реакционной камеры смешения расширяет функциональные возможности стенда, делая его пригодным для создания ПГС веществ широкого спектра летучести и концентрации.

Наличие в составе предлагаемого стенда трубопровода-разбавителя с объемной скоростью потока до 2000 л/мин позволяет производить отбор проб ПГС до 10000 л для достижения необходимого предела определения вещества.

Таким образом, преимуществом предлагаемого стенда является возможность создания парогазовых смесей с заданными значениями влажности, температуры, расхода и концентрации вещества.

Кроме того, поддержание единой для всех основных частей стенда требуемой температуры позволяет сократить количество приборов и упростить работу персонала. Использование вытеснительной системы подачи газа-носителя и воздуха в бокс стенда не требует проведения дополнительной дегазации устройств, расположенных вне бокса, таких как мощный побудитель расхода типа фильтровентиляционного агрегата.

Газодинамический испытательный стенд, включающий дозирующее устройство и газодинамическую установку для создания парогазовых смесей с заданной концентрацией, содержащую реакционную камеру для смешения газовых потоков и систему разбавления, отличающийся тем, что реакционная камера выполнена в виде делителя парогазовой смеси, состоящего из расширителя, связанного как с измерителем расхода парогазовой смеси и ее сбросом через фильтр и кран-дозатор, так и с системой разбавления через капилляр и смеситель делителя парогазовой смеси, причем на входе в дозирующее устройство и на входе в смеситель делителя парогазовой смеси установлены регуляторы расхода газа, а система разбавления включает несколько последовательно расположенных ступеней, каждая из которых состоит из расширителя, фильтра, смесителя и капилляра, диаметр которого определяется из уравнения

где d - диаметр капилляра, см; К - коэффициент пропорциональности; G - производительность, мкг/мин; L - длина капилляра, см; Т - температура, К; D0 - коэффициент диффузии при 25°С и давлении 0,1 МПа, см3/мин; М - молекулярная масса, г/моль; р - атмосферное давление, мм рт.ст.; рT - давление паров вещества при температуре Т, мм рт.ст. при этом расширитель каждой ступени через фильтр сообщается со смесителем этой же ступени и представляет собой капиллярный разбавитель с заданными коэффициентами разбавления для каждой ступени, а все основные узлы стенда: дозирующее устройство, делитель парогазовой смеси и система разбавления помещены в бокс, в котором поддерживается единая для всех температура.