Способ получения удобрения для бобовых растений
Изобретение относится к сельскохозяйственной биотехнологии, в частности к технологии приготовления биопрепаратов для растениеводства. Способ включает вермикомпостирование органических отходов с использованием гибрида красного калифорнийского червя с дождевыми червями кубанской природной популяции в количестве 104 червей на м2, причем в качестве органических отходов используют навоз сельскохозяйственных животных, предварительно нейтрализованный до рН 7-8. Вермикомпостирование осуществляют в течение 2-3 месяцев при температуре 16-32°С в естественных условиях, причем после отделения червей из биогумуса виброситом с размером пор 0,5-1,0 см его подсушивают до влажности 50-60%, фасуют в пакеты из полипропилена, в которых автоклавируют в течение 45-75 мин при 0,8-1,2 атм, и вносят микроорганизмы, относящиеся к роду Rhizobium, и выдерживают до достижения титра 1·109. Изобретение позволяет расширить ассортимент микробиологических удобрений, повысить их биологическую активность за счет увеличения жизнеспособности микроорганизмов, снизить материальные затраты при производстве за счет упрощения технологии приготовления и сократить время изготовления препарата. 3 табл.
Реферат
Изобретение относится к сельскохозяйственной биотехнологии, в частности к технологии приготовления биопрепаратов для растениеводства.
В последние годы все большее применение в сельском хозяйстве находит биогумус - продукт вермикомпостирования различных органических отходов промышленного и сельскохозяйственного производства специально выведенной расой дождевых червей. Биогумус содержит гуминовые и фульвокислоты, макро- и микроэлементы, аминокислоты и гиббереллины и другие биологически активные вещества в доступной растениям форме. Поэтому само по себе применение биогумуса повышает урожайность сельскохозяйственных культур и увеличивает плодородие почв.
Известен способ получения биогумуса. Гидролизный лигнин складируют в кучи, посыпают известью и поливают. Процесс осуществляют в течение 1,5-2,0 месяцев, периодически поливают и перелопачивают. При необходимости добавляют известь дополнительно, доводят рН до значения 6,8-7,2. Подготовленный таким образом субстрат укладывают в ложа и запускают червей. После окончания процесса вермикультивирования червей отделяют от полученного биогумуса и реализуют (пат. РФ №2094413, кл. C 05 F 11/00, 27.10.1997).
Однако использование в качестве сырья лигнина требует длительной подготовки субстрата, что связано с особенностями химического строения лигнина. Кроме того, лигнин имеет очень низкую кислотность, что требует больших количеств извести, а она в свою очередь в больших количествах токсична для червей. Кроме того, низкое содержание в биогумусе полезных микроорганизмов делает его непривлекательным для потребителя.
Известен способ утилизации органических отходов в биогумус, который включает приготовление субстрата путем смешивания компонентов, одним из которых являются отходы животного происхождения, внесение в него червей и/или их коконов, укладку субстрата в коробку или гряды и компостирование при влажности 65-80% и аэрации, отделение червей от полученного биогумуса. В качестве главного компонента в субстрат вводят скоп, являющийся отходом производства картона, в количестве 20-80% к общей массе субстрата. В качестве отходов животного происхождения применены навоз крупного рогатого скота и/или навоз свиней и помет птиц, применены черви вида Eisenia foetida в количестве 15-25 тыс.особей на 1 м2. При низком содержании азота в субстрате после смешивания компонентов вводят добавки азота минеральных удобрений в виде мочевины в количестве не более 5% от общей массы субстрата с одновременной добавкой известняковой муки в количестве, обеспечивающем рН среды готового субстрата не более 8 (пат. РФ №2057743, кл. C 05 F 3/06. 10.04.1996).
Однако данный способ имеет некоторые недостатки. Введение скопа (отходов производства картона) не всегда возможно в связи с отсутствием сырья. Кроме того, широкий диапазон величины его ввода не позволяет стандартизировать процесс вермикомпостирования, так как доля скопа влияет на активность червей. Вызывает сомнение, что мочевина может обеспечивать заявляемый эффект. Кроме того, как и в вышеуказанном аналоге, маловероятно, чтобы полученный таким способом биогумус включал в себя необходимое количество полезных микроорганизмов, в том числе и способных к азотфиксации.
Наиболее близким к заявляемому способу является способ получения биоудобрения, заключающийся в получении биогумуса путем вермикомпостирования сельскохозяйственных и промышленных отходов с использованием дождевых червей, отделении биогумуса от червей и его досушивании, причем из дождевых червей используют черви "Оболенский гибрид", полученные нами путем скрещивания "Красного калифорнийского гибрида" с российской популяцией дождевых червей Eisenia foetida, при этом вермикомпостирование осуществляют при температуре 16-24°С в течение 4-6 месяцев, в полученный биогумус вносят микроорганизмы, обладающие фунгицидными свойствами. В способе микроорганизмы, обладающие фунгицидной активностью, вносят после отделения червей или после дозревания биогумуса, кроме того, в качестве их используют штамм бактерий Bacillus subtilis ИПМ-215 в концентрациях 1·109-1·1012 спор на 1 кг биогумуса или культуру микофильного гриба Trichoderma viride Pers ex S.F.Gray 16 в концентрациях 1·104-1·108 колониеобразующих единиц на 1 кг биогумуса (пат. РФ №2125549, кл. C 05 F 11/08, 1999 г., бюл. №3. - прототип).
Однако данный способ имеет ряд существенных недостатков. Во-первых, использование указанного гибрида не позволяет повсеместно получать качественный биогумус, так как климатические условия нашей страны очень разнообразны. Во-вторых, вызывает сомнение возможность использования данной технологии в южных регионах России, так как указанный диапазон температур не позволяет в теплые месяцы проводить культивирование данного гибрида, а время культивирования (4-6 месяцев) не позволяет получать достаточное количество биогумуса. Кроме того, дефицит азота во многих агроландшафтах требует дополнительного азотного питания, что не может обеспечить предлагаемый препарат. Кроме того, низкий титр препарата требует высоких доз внесения для борьбы с болезнями, что делает экономически неэффективным применение биопрепарата.
Известные способы не позволяют получать биопрепарат с высоким титром полезных микроорганизмов, обладающий азотфиксирующей активностью и одновременно большим содержанием питательных для растений веществ.
Техническим решением задачи является расширение ассортимента биопрепаратов, повышение их биологической активности, улучшение агрохимических показателей почвы за счет питательных веществ, входящих в состав биогумуса, наличия у препарата азотфиксирующей активности и высокого титра полезных микроорганизмов.
Поставленная задача достигается тем, что в способе получения удобрения для бобовых растений, включающем получение биогумуса путем вермикомпостирования органических отходов с использованием дождевых червей и внесение в биогумус микроорганизмов, причем в качестве органических отходов используют навоз сельскохозяйственных животных, предварительно нейтрализованный до рН 7-8, а в качестве дождевых червей используют гибрид красного калифорнийского червя с дождевыми червями кубанской природной популяции в количестве 104 на м2, при этом вермикомпостирование осуществляют в течение 2-3 месяцев при температуре 16-32°С в естественных условиях, причем после отделения червей из биогумуса виброситом с размером пор 0,5-1,0 см, его подсушивают до влажности 50-60%, фасуют в пакеты из полипропилена, в которых автоклавируют в течение 45-75 мин при 0,8-1,2 атм, вносят микроорганизмы, относящиеся к роду Rhizobium и выдерживают до достижения титра 1·109.
Заявленный способ получения удобрения для бобовых растений отличается от прототипа режимами изготовления биогумуса и родом используемых микроорганизмов.
Эти отличия позволяют сделать вывод о соответствии заявляемых технических решений критерию "новизна".
Признаки, отличающие заявляемое техническое решение от прототипа, направлены на достижение поставленной задачи и не выявлены при изучении патентной и научно-технической литературы в данной и смежной областях науки и техники и, следовательно, соответствуют критерию "изобретательский уровень".
Способ получения удобрения для бобовых растений реализуется следующим образом.
Пример 1. Навоз крупного рогатого скота складируется в бурты размером 1·5·1,5 метров. Навоз перелопачивается до достижения им температуры окружающей среды. Для регуляции кислотности используется мел или гашеная известь. Защелачивание проводят послойно до достижения навозом рН 7-8. Если кислотность навоза будет менее 7 ед., то черви развиваться в нем не будут, а значит биогумус не будет образовываться. Если кислотность навоза будет более 8 ед., то черви развиваться также в нем не будут, так как это значение рН для них также не оптимально, кроме того, будет перерасход защелачивающего агента, что приведет к дополнительным расходам на подготовке субстрата для червей. Таким образом, оптимальной кислотностью навоза для развития червей является рН, равная 7,5 ед.
В качестве кольчатых червей используется гибрид красного калифорнийского червя с дождевыми червями кубанской природной популяции, полученный при совместном культивировании гибрида красного калифорнийского червя с кубанской популяцией кольчатых навозных червей. Это связано с тем, что гибрид красного калифорнийского червя очень чувствителен к условиям внешней среды и требует оптимальной температуры, определенных качеств субстрата, что делает его нетехнологичным в наших условиях. В то же время кольчатые навозные черви, обитающие в почве, хотя и всеядны, но низкопродуктивны и сохраняют инстинкт к миграции, что делает их неудобным объектом для вермикомпостирования. Поэтому использование адаптированной породы обеспечивает достаточно высокую степень продуктивности червей и одновременно низкую восприимчивость к внешним условиям среды.
Готовый к использованию навоз заселяют червями из расчета 10 тыс. червей на 1 м2, предварительно проверив тестом "50 червей", который позволяет оценить качество субстрата. Заселение производится вечером или в пасмурный день, так как черви не выносят прямых солнечных лучей. Навалы с заселенным червями субстратом сверху накрывают травой для защиты от солнца и снижения испарения воды. Навалы периодически поливают, рыхлят верхний слой субстрата. Вермикомпостирование осуществляют в течение 2-3 месяцев. Если время культивирования составляет менее 2 месяцев, то гибрид красного калифорнийского червя и кольчатого червя кубанской популяции не переработает субстрат, а значит выход биогумуса будет незначительный. Если время культивирования составляет более 3 месяцев, то гибрид красного калифорнийского червя и кольчатого червя кубанской популяции, переработав весь субстрат, начтет угнетаться и терять продуктивность, а, кроме того, это увеличивает время процесса приготовления биопрепарата, что увеличивает его себестоимость. Поэтому оптимальное время культивирования червей в субстрате составляет 2,5 месяцев. Оптимальное культивирование червей в субстрате осуществляют при температуре 24°С. Если температура культивирования составляет менее 16°С, то метаболизм и рост гибридных червей замедляется, а значит и эффективность конверсии субстрата в биогумус будет низкая. Если температура культивирования составляет более 32°С, то рост вермикультуры также будет низким.
В результате роста и размножения червей происходит переработка навоза в биогумус. Отделение червей осуществляют на механических виброситах, причем остающиеся на сите черви используются для последующего получения биогумуса из следующей партии навоза. При этом оптимальным является размер пор сита 0,75 см, что позволяет получать чистый биогумус, свободный от частиц непереработанного субстрата и остатков мусора. Если величина пор сита будет менее 0,5 см, то скорость просеивания будет низка, что увеличит время технологической операции. Если величина пор сита будет более 1,0 см, то вместе с частицами биогумуса в емкость с готовым продуктом будут попадать и частицы непереработанного субстрата, что будет негативно сказываться на качестве готового продукта.
Полученный биогумус подсушивается в потоке горячего воздуха до влажности 55% и складируется в крафт-мешки. Если влажность готового биогумуса будет менее 50%, то будет происходить перерасход теплоносителя при сушке продукта и это потребует дополнительного ввода воды для комфортного развития вносимых в биогумус клубеньковых бактерий. Если влажность готового биогумуса будет более 60%, то качество продукта ухудшится, так как получаемое удобрение потеряет сыпучесть, а, кроме того, аэрация субстрата будет низкая, что приведет к замедленному развитию микроорганизмов.
Полученный вышеуказанным способом биогумус используется одновременно в качестве и носителя, и субстрата для развития и размножения симбиотических азотфиксирующих микроорганизмов. По мере необходимости биогумус из крафт-мешков расфасовывается по полипропиленовым пакетам в зависимости от объемов использования от 1 до 5 кг в пакет. Пакеты закрываются ватно-марлевыми пробками и стерилизуются в автоклаве. При режиме 1 атм в течение одного часа, что является оптимальным режимом стерилизации. Если время стерилизации будет менее 45 мин, а давление в автоклаве менее 0,8 атм, то полной стерилизации субстрата не произойдет и в нем останутся микроорганизмы, которые будут мешать росту и развитию азотфиксирующих микроорганизмов, а значит их нужного титра микроорганизмы не достигнут, что снизит качество препарата. Если время стерилизации будет более 75 мин, а давление в автоклаве более 1,2 атм, то за счет жесткого режима автоклавирования в субстрате (биогумусе) образуются вещества, токсичные для симбиотических азотфиксирующих микроорганизмов, и качество препарата снизится, кроме того, себестоимость бактериального препарата будет высокая за счет перерасхода теплоносителей.
Для засева биогумуса используют посевной материал из коллекции чистых культур Федерального государственного учреждения "Краснодарский биоцентр". Пробирку с лиофилизированной чистой культурой Rhizobium japonicum B-2437 оживляют с помощью питательного раствора. Производят засев оживленной культуры в колбы на 750 мл по 200-250 мл питательной среды, представляющей собой гороховый отвар, который дополнительно содержит сахарозу и минеральные соли. Затем полученный маточный раствор засевают в бутыли объемом 5 литров, содержащие по 2,0-2,5 литра питательной среды, включающей в себя кукурузный экстракт, мелассу и минеральные соли.
Полученный таким образом рабочий раствор культуры Rhizobium japonicum B-2437 засевают стерильно в биогумус из расчета конечного титра микроорганизмов 5·107. Перемешивание производят механически таким образом, чтобы не повредить полипропиленовые пакеты. Затем засеянные пакеты помещают в термостатируемое помещение с комнатной температурой.
По истечении 7-10 дней проверяют титр посеянных микроорганизмов, который должен увеличиться на 1-2 порядка за счет роста бактерий на биогумусе и будет достигать 1·109.
Дальнейшее хранение препаратов в неповрежденных пакетах в течение 3-х месяцев не снижало титра азотфиксирующих микроорганизмов препарата ниже 5·10, что связано с оптимальным содержанием в биогумусе необходимых для азотфиксирующих микроорганизмов питательных веществ.
Пример 2. Согласно технологии приготовления удобрения для бобовых растений по примеру 1 в качестве сырья для культивирования червей используют куриный помет с добавлением измельченной соломы.
Пример 3. Согласно технологии приготовления удобрения для бобовых растений по примеру 1 в качестве сырья для культивирования червей используют конский навоз.
Пример 4. Согласно технологии приготовления удобрения для бобовых растений по примеру 1 в качестве сырья для культивирования червей используют навоз телят на откорме с добавлением измельченной соломы.
Результаты определений количества бактерий Rhizobium japonicum B-2437 в биогумусе разного происхождения представлены в таблице 1.
Таблица 1Титр микроорганизма Rhizobium japonicum B-2437 при использовании биогумуса разного качества | ||
№ | Вариант | Титр культуры Rhizobium japonicum B-2437 |
1 | вариант 1 | 5,1×109 |
2 | вариант 2 | 1,5×109 |
3 | вариант 3 | 8,7×108 |
4 | вариант 4 | 8,2×108 |
Результаты лабораторных испытаний по примерам 1, 2, 3, 4 показали, что независимо от происхождения отходов животноводства биогумусом, полученным на его основе, обеспечивается высокий титр клубеньковых бактерий, необходимый для получения качественного удобрения для бобовых растений.
Нами получены препараты для бобовых растений с использованием разных видов рода Rhizobium. Результаты титров этих бактерий при получении препарата по указанному способу представлены в таблице 2.
Таблица 2Титры микроорганизмов рода Rhizobium при использовании биогумуса по предлагаемому способу | ||
№ | Вид клубеньковых бактерий | Титр культуры |
1 | Rhizobium japonicum B-2437 | 6,2×108 |
2 | Rhizobium meliloti B-1730 | 1,0×109 |
3 | Rhizobium vigna B-0806 | 7,9×108 |
4 | Rhizobium leguminosarum B-2616 | 2,1×109 |
Как видно из таблицы, использование различных видов клубеньковых бактерий по указанному способу позволяет в независимости от вида микроорганизмов получить значительный титр, а значит и высокое качество препарата.
Кроме того, следует отметить, что технология получения биогумуса - это простой процесс, а сырье (органические отходы сельского хозяйства) общедоступно. Одновременно с получением биогумуса решается и проблема защиты окружающей среды, что актуально особенно в аграрных регионах с развитым животноводством.
Результаты анализа химического состава биогумуса и перегноя, полученных из навоза крупного рогатого скота, представлены в таблице 3.
Таблица 3Химическая характеристика биогумуса и перегноя (%) | ||
Наименование | Биогумус | Перегной |
Кислотность среды | 6,7 | 7,8 |
Органические вещества | 44,9 | 23,6 |
Гуминовые кислоты | 3,4 | 2,3 |
Фульвокислоты | 2,2 | 0,6 |
Органический углерод | 3,31 | 1,7 |
Азот | 3,22 | 1,54 |
Фосфор | 0,49 | 0,35 |
C:N | 1,04 | 1,10 |
Электрическая проводимость, мера относительной солености почвы или количества растворимых солей | 12,1 | 3,60 |
Как видно из таблицы, использование биогумуса позволяет не только обеспечить высокое содержание клубеньковых бактерий, но и использовать биогумус как высокоэффективный источник питательных веществ для роста растений (данные химического состава биогумуса приводятся в сравнении с составом перегноя).
Не следует забывать и о том, что использование биогумуса в качестве наполнителя для препарата клубеньковых бактерий не только обеспечивает растения полезными микроорганизмами, но и само по себе является источником питательных веществ. Следует отметить, что препараты на основе биогумуса при использовании для обработки семян бобовых практически не требуют прилипателя и позволяют равномерно распределить бактерии рода Rhizobium по поверхности семян, что в целом повышает биологическую активность препарата клубеньковых бактерий.
Таким образом, способ приготовления удобрения на основе биогумуса не только позволяет получить высокий титр клубеньковых бактерий за счет наличия в нем питательных веществ, а также активизировать бобовые растения и их семена за счет наличия питательных и стимулирующих веществ самого биогумуса, но и расширить ассортимент биопрепаратов за счет возможности размещения малотоннажных производств непосредственно в регионах и частично решить проблемы утилизации отходов животноводства.
Способ получения удобрения для бобовых растений, включающий получение биогумуса путем вермикомпостирования органических отходов с использованием дождевых червей и внесение в биогумус микроорганизмов, отличающийся тем, что в качестве органических отходов используют навоз сельскохозяйственных животных, предварительно нейтрализованный до рН 7-8, а в качестве дождевых червей используют гибрид красного калифорнийского червя с дождевыми червями кубанской природной популяции, в количестве 104 на 1 м2, при этом вермикомпостирование осуществляют в течение 2-3 месяцев при температуре 16-32°С в естественных условиях, причем после отделения червей из биогумуса виброситом с размером пор 0,5-1,0 см его подсушивают до влажности 50-60%, фасуют в пакеты из полипропилена, в которых автоклавируют в течение 45-75 мин при 0,8-1,2 атм, вносят микроорганизмы, относящиеся к роду Rhizobium, и выдерживают до достижения титра 1·109.