Способ переработки окисленной никелькобальтовой руды
Изобретение относится к области металлургии, в частности к способам извлечения никеля и кобальта из руд, и может быть использовано при переработке окисленных никелевых и кобальтовых руд. В предложенном способе окисленную руду сушат, измельчают и смешивают в грануляторе с серной кислотой, полученные гранулы сначала сульфатизируют, а затем прокаливают в работающей в режиме противотока трубчатой вращающейся печи, из прокаленного продукта водой выщелачивают никель и кобальт, после отделения от кека, нейтрализации раствора и осаждения железа и алюминия сорбируют на ионит никель и кобальт и обрабатывают насыщенный металлами ионит с получением никелевого концентрата. Нейтрализацию раствора ведут до оптимального для работы ионита рН в интервале его значений 3,0-5,5 и сорбируют никель и кобальт из полученной пульпы. Достигается высокая степень извлечения никеля и кобальта и окисленной руды с низким содержанием примесей и ненужных металлов. 1 з.п. ф-лы, 4 табл.
Реферат
Изобретение относится к способам извлечения никеля и кобальта из руд и может быть использовано при переработке окисленных никелевых и кобальтовых руд.
Известен способ автоклавного сернокислотного выщелачивания никеля и кобальта из окисленных руд [1]. По этому способу, например, на заводе Моа Бей пульпу, содержащую 45% руды, подогревают в нагревательных колоннах острым паром, а затем выщелачивают в цепочке из четырех паролифтных автоклавов. Обработку ведут при температуре 240-250°С (давление около 4,0 МПа). Необходимую серную кислоту (98%-ную) в количестве примерно 240 кг/т руды подают в первый автоклав. Перемешивание в автоклавах осуществляют острым паром. Время выщелачивания 1-2 часа, при этом в раствор переходит около 95% никеля и кобальта. Недостатки процесса: высокая стоимость аппаратуры для автоклавного выщелачивания, сложность эксплуатации автоклавов.
Наиболее близок к предлагаемому техническому решению способ извлечения никеля и кобальта из латеритовых руд в результате их смешивания с серной кислотой, термической обработки смеси и последующего выщелачивания металлов из огарка [2]. По этому способу измельченную до -0,15 мм руду распульповывают в воде с получением пульпы с содержанием около 60% твердого материала. Затем пульпу смешивают в течение 15 мин с заданным количеством концентрированной серной кислоты. Полученную пасту сушат при температуре выше 110°С, высушенную пасту дробят до крупности 4,7-1,65 мм, обжигают при температуре до 700-750°С, выщелачивают из огарка сульфаты и осаждают из раствора сульфиды никеля и кобальта. Испытаны образцы руды с содержанием 1,20-2,27% никеля и 0,03-0,26% кобальта. Получено извлечение 85% никеля и 90% кобальта. Недостатки способа - сложность подготовки шихты руды с серной кислотой к прокалке (распульповка руды в воде, сушка кислой пасты, дробление высушенной пасты со значительным выходом продукта некондиционной крупности), проведение двух термических операций (сушка и прокалка) и, соответственно, увеличение количества оборудования, относительно невысокое извлечение никеля из богатых окисленных руд, использование для осаждения металлов из растворов выщелачивания токсичного сероводорода.
Технический результат предлагаемого решения заключается в достижении высокой степени извлечения никеля и кобальта из окисленной руды, в том числе с низким содержанием металлов.
Технический результат достигается тем, что согласно предлагаемому способу окисленную руду сушат, измельчают и смешивают в грануляторе с серной кислотой, полученные гранулы последовательно сначала сульфатизируют, а затем прокаливают в одну стадию в работающей в режиме противотока трубчатой вращающейся печи, из прокаленного продукта водой выщелачивают никель и кобальт, после нейтрализации раствора и осаждения железа и алюминия сорбируют на ионит никель и кобальт и перерабатывают насыщенный металлами ионит с получением никелькобальтового концентрата. Нейтрализацию раствора ведут до оптимальной для работы ионита рН в интервале его значений 3,0-5,5 и сорбируют никель и кобальт из полученной пульпы.
Пример 1
Окисленную никелевую руду с содержанием никеля 0,70 и 1,25% высушили, измельчили до крупности 100% -0,15 мм и смешали на чашевом грануляторе с серной кислотой при расходе последней 0,47-0,52 т/т руды. Последовательно операции сульфатизации и прокалки проводили, помещая пробы загранулированной смеси в муфельную печь при комнатной температуре и нагревая ее до заданной в пределах 650-800°С. Время термообработки 4,5 часа. Прокаленный продукт выщелачивали водой в течение 1 часа при температуре 70°С и Т:Ж=1:1, операцию повторяли 3 раза, после каждой отделяли раствор, после последнего выщелачивания гранулы промыли водой. Объединенный раствор проанализировали. Полученные данные приведены в табл.1.
Таблица 1 | |||||||||||
Влияние температуры обжига руды на извлечение металлов | |||||||||||
N п/п | Содерж. Ni в руде, % | Расход Н2SO4 (92%), т/т руды | Температура, °С | Содержание в растворе, г/дм3 | Извлечено из руды, %(Ni), кг/т руды | ||||||
Ni | Fe | Al | Mg | Ni | Fe | Al | Mg | ||||
12 | 0,701,25 | 0,540,53 | 20→650 | 1,153,02 | 6,5510,9 | 1,22,5 | 4,65,9 | 79,988,8 | 31,840,2 | 5,89,2 | 22,421,8 |
34 | 0,701,25 | 0,570,51 | 20→700 | 1,803,35 | 6,9719,9 | 1,63,2 | 5,96,4 | 99,699,2 | 27,073,4 | 6,211,8 | 22,823,8 |
56 | 0,701,25 | 0,540,56 | 20→750 | 1,983,35 | 4,267,8 | 1,62,2 | 8,16,0 | 93,398,0 | 12,929,1 | 4,88,4 | 24,522,6 |
7 | 1,25 | 0,65 | 20→800 | 3,15 | 2,0 | 1,7 | 8,1 | 75,2 | 6,1 | 5,1 | 24,3 |
Как видно из табл.1, при данных параметрах переработки и максимальных температурах прокалки 700-750°С для испытанных двух проб достигнуто одинаково высокое извлечение никеля в раствор.
Пример 2
Окисленную никелевую руду с содержанием, %, 1,25 Ni; 0,44 Со; 17,9 Fe смешали на чашевом грануляторе с серной кислотой при расходе последней 0,47 т/т руды. Полученные гранулы обработали в трубчатой вращающейся печи в течение 3,5 часов, а затем выщелачивали водой при соотношении Т:Ж=1:1 три раза в течение 1 часа, растворы объединили и проанализировали. Результаты проведенных экспериментов приведены в табл.2.
Таблица 2 | |||
Результаты последовательного выщелачивания гранул | |||
Температура, °С | Извлечение в раствор, % | ||
Ni | Со | Fe | |
600 | 86,4 | 95,2 | 27,4 |
650 | 95,2 | 93,0 | 23,8 |
700 | 92,0 | 95,3 | 6,4 |
750 | 2,2 | 4,6 | 0,1 |
В данном примере наилучшие результаты по извлечению никеля в раствор при выщелачивании получены при температуре прокалки 650°С. Дальнейшее повышение температуры (до 700°С) приводит к более полному разложению сульфата железа и, по-видимому, частичному экранированию соединений никеля. В результате наблюдается некоторое снижение извлечения никеля, однако снижение количества железа, переходящего в раствор при выщелачивании никеля и кобальта, играет положительную роль при последующей очистке растворов от этого металла.
Перед сорбцией никеля и кобальта из сернокислых растворов необходимо перевести в осадок содержащееся в растворе железо. Для этого можно нейтрализовать раствор, например, известняком или оксидом кальция. Экспериментальные данные показывают, что эффективность действия указанных реагентов имеет существенное различие (табл.3), проявляющееся в различной степени соосаждения с железом никеля (соответственно, 5,3 и 9,4%) и алюминия (96,4 и 99,5%).
При увеличении рН выше 3,5 количество переходящих в осадок металлов возрастает как за счет их соосаждения с железом, так и за счет достижения рН собственного осаждения. Например, при осаждении железа из приведенного в табл.3 исходного раствора его нейтрализацией оксидом кальция до рН 5 содержание в растворе железа снижается до 0,38; никеля - до 1,38 (т.е. на 18,8%); алюминия - до 0,006 г/дм3.
Таблица 3 | |||||
Осаждение гидроксида железа. | |||||
рН растворов после осаждения - 3.5-3.7 | |||||
N п/п | Раствор | Содержание, г/дм3 | |||
Fe | Ni | Al | Ca | ||
1 | Исходный | 10,5 | 1,70 | 2,15 | - |
2 | Осаждение СаСО3 | 1,95 | 1,61 | 0,077 | 0,41 |
3 | Осаждение СаО | 1,18 | 1,54 | 0,011 | 0,43 |
Минимизировать потери никеля и кобальта с осадком железа позволяет использование процесса сорбции этих металлов из пульпы, для чего полученную после нейтрализации пульпу при постоянных рН и температуре контактируют с ионитом в противоточном режиме. В качестве ионитов предлагается использовать пиридингидроксильные иониты, например, ВПГ, или иониты, содержащие пиридиниевый азот, например, DOWEX XWS 4195 фирмы DOW Chemical.
После сорбционного извлечения никеля и кобальта из сульфатного раствора насыщенный металлами ионит отмывают водой и обрабатывают при 40-45°С водным раствором минеральной кислоты (серной, соляной) с концентрацией не более 3н. Полученные концетрированные никель-кобальтовые растворы направляют на осаждение карбонатов или гидроксидов.
Пример 3
Сорбцию никеля и кобальта из нейтрализованной пульпы с рН 5,0-5,5 вели при механическом перемешивании, Т:Ж=1:5, загрузке ВПГ в H+/SO4 2- - форме 30% к объему пульпы. Полученные результаты приведены в табл.4.
Таким образом, в присутствии ионита извлечение из пульпы (жидкой и твердой фаз) составило 97,6% никеля и 99,2% кобальта.
Аналогичные результаты по извлечению никеля и кобальта из нейтрализованной пульпы получены и при использовании ионита DOWEX XWS 4195 фирмы DOW Chemical. Однако в этом случае процесс проводится при более низком значении рН 3,0-3,5, что позволяет снизить расход нейтрализатора (СаСО3) на 10-12%.
Емкость ионитов по никелю составляет, мг/г: ВПГ - 48,2; DOWEX XWS 4195 - 83,9.
Таблица 4 | ||||||||
Результаты сорбции металлов | ||||||||
Состав продуктов | Стадия обработки | |||||||
продукт | ед.изм. | элемент | 0* | 1 | 2 | 3 | 4 | 5 |
пульпа, ж. фаза | г/дм3 | Ni | 8,625 | 3,880 | 1,120 | 0,354 | 0,009 | 0,0015 |
Со | 0,280 | 0,125 | 0,082 | 0,058 | 0,006 | 0,0004 | ||
пульпа, тв. фаза | % | Ni | 1,600 | 0,240 | 0,155 | 0,060 | 0,060 | 0,0290 |
Со | 0,050 | 0,020 | 0,010 | <0,010 | <0,010 | <0,010 | ||
ионит | мг/г | Ni | - | 61,4 | 48,2 | 45,2 | 32,6 | 30,4 |
Со | - | 3,4 | 2,5 | 2,1 | 1,6 | 0,3 | ||
*исходная пульпа |
Обработка ионитов, насыщенных никелем и кобальтом, водными растворами минеральных кислот, например серной, позволяет сконцентрировать металлы в виде раствора сульфатов, удобного для получения карбонатного концентрата известным способом. Полнота десорбции никеля и кобальта и степень их концентрирования зависят от концентрации кислоты и температуры процесса.
Пример 4
Раствором серной кислоты обработан ионит, насыщенный никелем и кобальтом в условиях, указанных в примере 3. Десорбцию металлов провели в динамических условиях, объем товарного десорбата составил 1,7-2,0 объема к объему ионита.
Наибольшая полнота десорбции (99%) достигнута при концентрации серной кислоты в десорбирующем растворе 100-120 г/дм и температуре 40-45°С. Концентрация никеля в товарном десорбате составила 8-10 г/дм3 для ВПГ и 15-16 г/дм3 для DOWEX XWS 4195.
Из товарных десорбатов осадили карбонатный концентрат 15%-ным раствором кальцинированной соды при температуре 70-80°С. Полученный концентрат отфильтровали, промыли и высушили. В расчете на вес сухого продукта он содержал, %: 38-45 Ni; 0,08-0,1 Со; 2,0-2,8 Fe; 1,0-1,1 Al; 0,4-0,5 Mg.
Техническая эффективность предлагаемого способа переработки окисленной никелевой руды заключается в том, что в результате использования процессов смешивания окисленной никелевой руды с серной кислотой на грануляторе, твердофазной сульфатизации руды и прокалки гранул обеспечивается хорошее взаимодействие серной кислоты и соединений извлекаемых ценных металлов. Прокалка гранул позволяет резко снизить количество железа, переходящего в раствор при выщелачивании. В свою очередь сорбционное извлечение никеля и кобальта из пульп обеспечивает получение высококачественного никелькобальтового концентрата, сводит к минимуму потери этих металлов с осадком гидроксида железа.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Резник И.Д., Ермаков Г.П., Шнеерсон Я.М. Никель. М.: ООО "Наука и технологии ", 2001. Т.2: Окисленные никелевые руды, стр.3 85-3 88.
2. Zubryckyj N., Evans D.J.I., Mackiw V.N. Preferential sulfation of nikel and cobalt in lateritic ores // Journal of metals. 1965. May. P.478-486.
1. Способ переработки окисленной никелькобальтовой руды, включающий сушку и измельчение руды, обработку руды серной кислотой, термическую обработку полученного продукта, перевод в раствор растворимых сульфатов и получение никелькобальтового концентрата, отличающийся тем, что руду смешивают с серной кислотой с использованием гранулятора, полученные гранулы сульфатизируют, а затем прокаливают в работающей в режиме противотока трубчатой вращающейся печи, из прокаленных гранул выщелачивают водой никель и кобальт и после нейтрализации раствора и осаждения железа и алюминия сорбируют на ионит никель и кобальт и насыщенный металлами ионит обрабатывают с получением никелькобальтового концентрата.
2. Способ по п.1, отличающийся тем, что раствор, содержащий сульфаты металлов, нейтрализуют до оптимального для работы ионита рН в интервале его значений 3,0-5,5 и из полученной пульпы сорбируют никель и кобальт.