Новые аминоалкилглюкозаминидфосфатные соединения, иммуностимулирующая фармацевтическая композиция, их содержащая, и способ индуцирования иммунного ответа

Иллюстрации

Показать все

Изобретение относится к новым иммуноэффекторным аминоалкилглюкозаминидфосфатным соединениям формулы (V)

,

или его фармацевтически приемлемым солям, где Х выбран из группы, состоящей из -О- и -NH-; R1, R2 и R3 независимо друг от друга выбраны из группы, состоящей из (С914) ванильных групп. Кроме того, изобретение относится к иммуностимулирующей фармацевтической композиции, включающей фармацевтически приемлемый носитель и терапевтически эффективное количество соединения формулы (V), и к способу индуцирования иммунного ответа у пациента. 3 н. и 16 з.п. ф-лы, 4 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение, в общем, касается новых иммуноэффекторных соединений, их применения в фармацевтических композициях и способов их получения и применения для профилактической и/или терапевтической вакцинации. В частности, настоящее изобретение касается новых соединений, содержащих 2-дезокси-2-амино-β-D-глюкопиранозу (глюкозамин), соединенную гликозидной связью с циклической аминоалкильной группой (агликоном), и их применения в фармацевтических адъювантных системах.

Уровень техники

Гуморальный иммунитет и клеточный иммунитет представляют собой две главные ветви иммунного ответа у млекопитающих. Гуморальный иммунитет включает образование антител к чужеродным антигенам. Антитела вырабатываются В-лимфоцитами. Клеточный иммунитет включает активацию Т-лимфоцитов, которые либо действуют на инфицированные клетки, несущие чужеродные антигены, либо стимулируют другие клетки, которые действуют на инфицированные клетки. Обе ветви иммунной системы млекопитающих важны в борьбе с болезнью. Гуморальный иммунитет представляет собой основную линию защиты против бактериальных патогенов. В случае вирусных заболеваний индукция цитотоксических Т-лимфоцитов (ЦТЛ) оказывается решающей для защитного иммунитета. Таким образом, эффективная вакцина предпочтительно стимулирует обе ветви иммунной системы для защиты от болезни.

Вакцины презентируют чужеродные антигены возбудителей болезни хозяину с тем, чтобы у хозяина возникал защитный иммунный ответ. Часто антигены вакцины представлены убитыми или аттенюированными формами микробов, вызывающих заболевание. Присутствие существенных компонентов и антигенов в таких убитых или аттенюированных вакцинах привело к направлению значительных усилий на очистку компонентов вакцин, включая разработку четко определенных синтетических антигенов с использованием химических и рекомбинантных методов. Очистка и упрощение микробных вакцин привели, однако, к сопутствующему снижению активности. Низкомолекулярные синтетические антигены, хотя и лишенные потенциально вредных примесей, часто сами по себе недостаточно иммуногенны. Такие наблюдения привели исследователей к добавлению стимуляторов иммунной системы, известных как адъюванты, в вакцинные композиции для усиления активности компонентов вакцин.

Иммунные адъюванты - это соединения, которые при введении индивидууму или при тестировании in vitro усиливают иммунный ответ на антиген у субъекта, которому данный антиген введен, или усиливают определенные активности клеток иммунной системы. Был получен и протестирован целый ряд соединений, обладающих адъювантной активностью в различной степени (см., к примеру, Shimizu et al. 1985, Bulusu et al. 1992, Ikeda et al. 1993, Shimizu et al. 1994, Miyajima et al. 1996). Однако эти и другие разработанные ранее адъювантные системы зачастую проявляют токсические свойства, нестабильны и/или обладают неприемлемо низким иммуностимулирующим действием.

В настоящее время единственным адъювантом, который разрешен для применения на людях в Соединенных Штатах, являются квасцы - группа солей алюминия (к примеру, гидроокись алюминия, фосфат алюминия), в которые заключают антигены вакцин. Носители в виде частиц типа квасцов, как сообщалось, способствуют захвату, процессингу и презентации растворимых антигенов макрофагами. Однако квасцы не лишены побочных эффектов и, к сожалению, ограничиваются только гуморальным иммунитетом (антитела).

Открытие и разработка эффективных адъювантных систем необходимы для улучшения эффективности и безопасности существующих и будущих вакцин. Таким образом, существует постоянная потребность в новых и усовершенствованных адъювантных системах, особенно таких, которые бы усиливали обе эффекторные ветви иммунной системы, что будет способствовать разработке следующего поколения синтетических вакцин. Настоящее изобретение удовлетворяет этим и другим потребностям.

Раскрытие изобретения

Соединения настоящего изобретения представляют собой иммуноэффекторные молекулы, которые усиливают гуморальные и клеточные иммунные ответы на антигены вакцин. Эти соединения, в общем, можно описать как принадлежащие к классу циклических соединений АГФ, где АГФ означает аминоалкилглюкозаминидфосфаты. Термин "циклический АГФ" означает такой азациклоалкил- или (азациклоалкил)алкилглюкозаминидфосфат, в котором 2-дезокси-2-амино-β-D-глюкопираноза (глюкозамин) соединена гликозидной связью с азациклоалкильной или (азациклоалкил)алкильной группировкой (агликоном).

Соединения данного изобретения охватывают 2-дезокси-2-амино-β-D-глюкопиранозу (глюкозамин), соединенную гликозидной связью с азациклоалкильной или (азациклоалкил)алкильной группировкой (агликоном). Эти соединения фосфорилированы в положении 4 или 6 кольца глюкозамина и ацилированы алканоилокситетрадеканоиловыми остатками по азоту агликона и в положении 2 и 3 кольца глюкозамина. Соединения данного изобретения и их фармацевтически приемлемые соли в общем описываются формулой I:

где Х означает -О-или -NH-, Y означает -О-или -S-; a R1, R2 и R3 независимо друг от друга представляют собой (С914)ацильные группы, включая насыщенные, ненасыщенные и разветвленные ацильные группы; R4 - это -Н или -РО3R7R8, где R7 и R8 независимо друг от друга представлены Н или (С14)алифатической группой; R5 - это -Н, -СН3 или -РО3R9R10, где R9 и R10 независимо друг от друга выбраны из -Н или (C14)алифатических групп; R6 независимо выбран из числа Н, ОН, (С14)оксиалифатических групп, -РО3R11R12, -ОРО3R11R12, -SO3R11, -OSO3R11, -NR11R12, -SR11, -CN, -NO2, -СНО, -CO2R11 и -CONR11R12, где R11 и R12 независимо друг от друга выбраны из Н или (С14)алифатической группой; при условии, что одна из групп R4 и R5 содержит фосфор, а когда R4 представлен -РО3R7R8, то R5 не является -РО3R9R10, при этом *1-3 и ** обозначают хиральные центры; причем индексы n, m, р и q независимо друг от друга означают целое число от 0 до 6 при условии, что сумма р и m составляет от 0 до 6.

В некоторых воплощениях соединений настоящего изобретения Х и Y представлены кислородом, R4 означает РО3R7R8, R5 и R6 представлены Н, а индексы n, m, р и q - целые числа от 0 до 3. В более предпочтительном воплощении R7 и R8 представлены - Н. В еще более предпочтительном воплощении n=1, m=2, а подстрочные индексы р и q=0. В еще более предпочтительном воплощении R1, R3 и R3 представлены (С913)ацильными группами, более предпочтительно (С1012) ванильными группами. В еще более предпочтительном воплощении *1-3 находятся в R-конфигурации, Y находится в экваториальном положении, а ** находятся в s-конфигурации. Особенно предпочтительны N-[(R)-3-тетрадеканоилокситетрадеканоил]-(S)-2-пирролидинилметил-2-дезокси-4-O-фосфоно-2-[(R)-3-тетрадеканоилокситетрадеканоиламино]-3-O-[(R)-3-тетрадеканоилокситетрадеканоил]-β-D-глюкопиранозид (формула II),

[N-(R)-3-додеканоилокситетрадеканоил]-(S)-2-пирролидинилметил-2-дезокси-4-D-фосфоно-2-[(R)-3-додеканоилокситетрадеканоиламино]-3-О-[(R)-3-додеканоилокситетрадеканоил]-β-D-глюкопиранозид (формула III),

[N-(R)-3-деканоилокситетрадеканоил]-(S)-2-пирролидинилметил-2-дезокси-4-O-фосфоно-2-[(R)-3-деканоилокситетрадеканоиламино]-3-О-[(R)-3-деканоилокситетрадеканоил]-β-D-глюкопиранозид (формула IV)

и их фармацевтически приемлемые соли.

Настоящее изобретение также предусматривает фармацевтические композиции, содержащие соединения представленной выше общей формулы и конкретных формул. Фармацевтические композиции могут комбинироваться с различными антигенами и различными лекарственными составами, известными в этой области.

Соединения настоящего изобретения также полезны при различных способах индукции иммунного ответа у индивида. Такой способ заключается во введении индивиду терапевтически эффективного количества одного или нескольких соединений настоящего изобретения, предпочтительно в виде фармацевтической композиции, содержащей также и фармацевтически приемлемый носитель.

Настоящее изобретение также охватывает способы лечения млекопитающих, страдающих от или подверженных инфекции патогеном, раковому или аутоиммунному заболеванию. Такой способ заключается во введении млекопитающему терапевтически эффективного количества одного или нескольких соединений настоящего изобретения, предпочтительно в виде фармацевтической композиции, содержащей также и фармацевтически приемлемый носитель.

Кроме того, настоящее изобретение включает и способ лечения заболеваний или состояний, улучшающихся при образовании оксида азота у пациента. Способ заключается в обработке пациента эффективным количеством соединения или соединений настоящего изобретения либо эффективным количеством композиции, содержащей одно или несколько соединений настоящего изобретения и фармацевтически приемлемый носитель. В некоторых воплощениях соединения настоящего изобретения могут быть введены за 48 часов до, непосредственно перед или во время ишемии.

Осуществление изобретения

Определения

Термин "ацил" относится к тем группам, которые происходят из органической кислоты при удалении ее гидроксильной части. Соответственно, ацил может означать, к примеру, ацетил, пропионил, бутирил, деканоил и пивалоил. Например, "(С914)ацил" означает ацильную группу, содержащую от 9 до 14 атомов углерода.

Термин "алифатический" сам по себе или в составе другого заместителя означает, если не указано иначе, неразветвленную или разветвленную цепь либо циклическую углеводородную группу, включая группы, содержащие как циклические элементы, так и цепи, которые могут быть полностью насыщенными либо моно- или полиненасыщенными, содержащими указанное число атомов углерода (например, C1-C4 означает от 1 до 4 атомов углерода). Примеры насыщенных углеводородных радикалов включают такие группы, как метил, этил, н-пропил, изопропил, н-бутил, t-бутил, изобутил, втор-бутил, циклопропил, циклопропилметил, метилен, этилен и н-бутилен. Ненасыщенная алкильная группа - это группа, содержащая одну или несколько двойных связей и/или тройных связей. Примеры ненасыщенных алифатических групп включают винил, 2-пропенил, кротил, 2-бутадиенил, 1-пропинил и 3-пропинил.

Термин "оксиалифатический" относится к тем группам, которые содержат алифатическую группу, соединенную с остальной частью молекулы через атом кислорода.

Каждый из вышеперечисленных терминов (например, "алкил", "ацил") может включать и замещенные, и незамещенные формы указанных групп.

Заместителями в алифатических группах может служить целый ряд групп, выбранных из числа -OR', -О,=S, -NR', -N-OR', -NR'R'', -SR', -галоген, -SiR'R''R''', -OC(O)R', -C(O)R', -CO2R', -CONR'R'', -OC(O)NR'R'', -NR''C(O)R', -NR'C(O) NR''R''', -NRC(O)2R', -NH-C(NH2)=NH, -NR'C(NH2)=NH, -NH-C(NH2)=NR', -S(O)R', -S(O)2R', -S(O)2NR'R'', -CN и NO2, число которых варьирует от 0 до (2m'+1), где m' = это суммарное число атомов углерода в таком радикале. R', R'' и R''' независимо друг от друга означают водород и незамещенные (С14)алифатические группы. Из вышеизложенного обсуждения замещений должно быть понятно, что термин "алкил" может включать и такие группы, как галоалкил (к примеру, -CF3 и -СН2CF3) и им подобные.

Термин "гало" или "галоген" сам по себе или в составе другого заместителя означает, если не указано иначе, атом фтора, хлора, брома или иода. В соединениях с несколькими галогенными заместителями галогены могут быть одинаковыми или разными.

Термин "фармацевтически приемлемые соли" охватывает такие соли активных соединений, которые получают с помощью относительно нетоксичных кислот или оснований, в зависимости от конкретных заместителей, находящихся в соединениях, описанных в настоящем изобретении. В том случае, когда соединения настоящего изобретения содержат сравнительно кислые функциональные группы, их соли с основаниями могут быть получены путем добавления требуемого основания как в соответствующем инертном растворителе, так и без него. Примеры фармацевтически приемлемых солей, образованных с основаниями, включают соли натрия, калия, кальция, аммония, органических аминов, магния и им подобные. В том случае, когда соединения настоящего изобретения содержат сравнительно основные функциональные группы, их соли с кислотами могут быть получены путем добавления требуемой кислоты как в соответствующем инертном растворителе, так и без него. Примеры фармацевтически приемлемых солей, образованных с кислотами, включают соли неорганических кислот, таких как соляная, бромистоводородная, азотная, угольная, однозамещенная угольная, фосфорная, однозамещенная фосфорная, двузамещенная фосфорная, серная, однозамещенная серная, иодистоводородная, фосфористая и им подобные кислоты, а также соли относительно нетоксичных органических кислот, таких как уксусная, пропионовая, изомасляная, щавелевая, малеиновая, малоновая, бензойная, янтарная, субериновая, фумаровая, миндальная, фталевая, бензолсульфоновая, пара-толилсульфоновая, лимонная, винная, метансульфоновая и им подобные. Также охватываются соли аминокислот, такие как аргинат и им подобные, и соли таких органических кислот, как глюкуроновая или галактуроновая кислота и им подобные (см., к примеру, Berge S.M. et al., "Pharmaceutical Salts", Journal of Pharmaceutical Science, 1977, 66, 1-19). Определенные соединения настоящего изобретения содержат как основные, так и кислотные функциональные группы, что позволяет их превратить в соли, образованные либо основанием, либо кислотой.

Нейтральные формы соединений могут быть регенерированы путем обработки соли основанием или кислотой и выделения исходного соединения стандартным методом. Исходная форма соединения отличается от разнообразных солевых форм по некоторым физическим свойствам, таким как растворимость в полярных растворителях, но в остальном эти соли эквивалентны исходной форме соединения в целях настоящего изобретения.

Наряду с солевыми формами настоящее изобретение предусматривает соединения, находящиеся в виде пролекарств (предшественников). Пролекарства описанных здесь соединений - это такие соединения, которые легко подвергаются химическим изменениям в физиологических условиях с образованием соединений настоящего изобретения. Кроме того, Пролекарства могут быть превращены в соединения настоящего изобретения с помощью химических или биохимических методов в условиях ex vivo. Например, Пролекарства могут медленно превращаться в соединения настоящего изобретения, если их поместить в трансдермальный пластырь-резервуар вместе с соответствующим ферментом или химическим реагентом.

Некоторые соединения настоящего изобретения могут существовать в несольватированных формах наряду с сольватированными формами, включая гидраты. В общем, сольватированные формы эквивалентны несольватированным формам и предусматривается, что они охватываются рамками настоящего изобретения. Некоторые соединения настоящего изобретения могут существовать во множественных кристаллических или аморфных формах. В общем, все физические формы эквивалентны для применения в соответствии с настоящим изобретением и предусматривается, что они охватываются рамками настоящего изобретения.

Некоторые соединения настоящего изобретения имеют асимметричные атомы углерода (оптические центры) или двойные связи. Предусматривается, что рацематы, диастереоизомеры, геометрические изомеры и индивидуальные изомеры охватываются рамками настоящего изобретения.

Соединения настоящего изобретения также могут содержать атомные изотопы в неестественных пропорциях по одному или нескольким атомам, входящим в состав таких соединений. Например, соединения могут быть радиоактивно помечены радиоактивными изотопами, к примеру, такими как тритий (3H) иод-125 (125I) или углерод-14 (14С). Предусматривается, что все изотопные варианты соединений настоящего изобретения, радиоактивные и нерадиоактивные, охватываются рамками настоящего изобретения.

Введение

В стремлении улучшить безопасность вакцин их производители избегают убитых вакцин из целых клеток и производят рекомбинантные или субъединичные вакцины. При получении этих более безопасных вакцин устраняются посторонние компоненты бактерий и вирусов, а остаются минимальные структуры или эпитопы, считающиеся необходимыми для защитного иммунитета. Безопасность этих вакцин улучшается благодаря устранению посторонних компонентов бактерий и вирусов, которые зачастую оказываются токсичными и пирогенными. Однако именно эти компоненты, вызывающие токсичность, обеспечивают неспецифическую иммуностимуляцию, которая делает вакцины из целых клеток столь эффективными. Без дополнительной иммуностимуляции минимальные структуры и эпитопы, образующие рекомбинантные и субъединичные вакцины, зачастую обладают слабой иммуногенностью.

Молекула дисахарида, происходящего из LPS Salmonella minnesota R595, - это иммуностимулятор MPL (Corixa Corp.), обладающий иммуностимулирующими свойствами. Иммуностимулятор MPL, или монофосфориллипид А, является структурным производным липида А (или LPS) и обладает лучшим терапевтическим индексом, чем липид А (см. структуру монофосфориллипида А в U.S. Patent 4,987,237 и описание получения монофосфориллипида А в U.S. Patent Nos.4,436,727 и 4,436,728). К другим полезным иммуностимуляторам относится 3-де-O-ацилированный монофосфориллипид А (3D-MPL), который описан в U.S. Patent No.4,912,094. Это соединение можно безопасно вводить человеку в дозах по меньшей мере вплоть до 20 мкг/кг, хотя у некоторых пациентов может отмечаться повышенная температура, симптомы гриппа, учащенный пульс и умеренное повышение кровяного давления при дозах ≥10 мкг/кг. Опыты на культурах клеток и животных подтверждают, что иммуностимулятор MPL все-таки сохраняет некоторую иммуностимулирующую активность исходного LPS в том, что сохраняется пирогенность и способность к индукции воспалительных цитокинов типа TNF и IL-8, хотя и при более высоких дозах. Таким образом, потребность в эффективных адъювантах для вакцин хорошо осознана. В идеальном случае такие адъюванты должны усиливать защитный иммунный ответ, но не вызывать нежелательной токсичности и пирогенности.

В стремлении получить иммуностимулятор, обладающий низкой пирогенностью, были получены синтетические молекулы, имеющие структурное сходство с иммуностимулятором MPL. Эти новые молекулы, которые собирательно именуют аминоалкилглюкозаминидфосфатами (АГФ), состоят из ацилированной молекулы глюкозы, соединенной с ацилированной аминоалкильной группой (Johnson et al. (1999) Bioorg. Med. Chem. Lett. 9:2273-2278; PCT/WO 98/50399 и приведенные в них ссылки). Каждая молекула имеет 6 жирнокислотных остатков, что считается оптимальным числом для максимальной активности адъюванта. Замещение различных химических группировок в аминоалкильных структурах АГФ было задумано с целью оптимизации стабильности и растворимости. Таким образом, в общих чертах АГФ можно разделить на несколько семейств на основании структуры аминоалкильных групп.После первоначальной биологической оценки стало очевидно, что аминоалкильные группировки могут сильно влиять на пирогенные свойства АГФ (см. U.S. Patent Application Serial No.09/074,720 filed May 7, 1998, и U.S. Patent Nos.6,113,918 и 6,303,347). В ходе первоначального процесса скрининга синтетических адъювантных соединений были получены данные по пирогенности на кроликах. Было отмечено, что некоторые из этих соединений не вызывают повышения температуры при внутривенном введении в дозе 10 мкг/кг. В общем, именно эти соединения не индуцировали воспалительные цитокины TNF-α или IL-1β в заметной степени при анализе индукции цитокинов ex vivo на мононуклеарных клетках периферической крови человека. Далее мы сообщим об изучении адъювантных свойств одного из классов АГФ, вызывающих минимальную активность при тестировании на пирогенность у кроликов и при анализе индукции цитокинов ех vivo.

Соединения и композиции

В настоящем изобретении представлены соединения, описываемые общей формулой I:

и их фармацевтически приемлемые соли, где Х означает -О-или -NH-, Y означает -O-или -S-; a R1, R2 и R3 независимо друг от друга представляют собой (С914)анильные группы, включая насыщенные, ненасыщенные и разветвленные ацильные группы; R4 - это

- Н или -РО3R7R8, где R7 и R8 независимо друг от друга представлены H или (C14)алифатической группой; R5 - это -Н, -СНз или -РО3R9R10, где R9 и R10 независимо друг от друга выбраны из -Н или (С14)алифатических групп; R6 независимо выбран из числа Н, ОН, (С14)оксиалифатических групп, -РО3R11R12, -ОРО3R11R12, -SO3R11, -OSO3R11, -NR11R12, -SR11, -CN, -NO2, -CHO, -CO2R11 и -CONR11R12, где R11 и R12 независимо друг от друга представлены Н или (С14)алифатической группой; при условии, что одна из групп R4 и R5 содержит фосфор, а когда R4 представлен -РО3R9R8, то R5 не является -РО3R9R10, при этом *1-3 и ** обозначают хиральные центры;

причем n, m, р и q независимо друг от друга являются целыми числами от 0 до 6 при условии, что сумма р и m составляет от 0 до 6.

Хотя гексопиранозид в формуле I представлен в глюко-конфигурации, другие гликозиды также входят в объем изобретения. Например, гликопиранозиды, в том числе и другие гексопиранозиды (алло-, альтро-, манно-, гуло-, идо-, галакто-, тало-), входят в объем изобретения.

В вышеприведенной общей формуле 3'-стереогенные центры, по которым происходит присоединение нормальных жирнокислотных остатков и которые обозначаются как *1, *2 и *3, находятся в R- или S-конфигурации, предпочтительно в R-конфигурации. Абсолютная стереохимия атомов углерода в циклическом агликоне, к которому присоединяются R6 и глюкозамин прямо или опосредованно (обозначается как **), может быть представлена R- или S-конфигурацией. В вышеприведенной общей формуле Y может находиться в экваториальном или аксиальном положении, предпочтительно экваториальном. Все стереоизомеры, энантиомеры, диастереомеры и их смеси рассматриваются как входящие в объем настоящего изобретения.

В предпочтительных воплощениях настоящего изобретения Х и Y означают -О-, R4 является фосфоно, R5 и R6 означают Н, а n, m, р и q - целые числа от 0 до 3, более предпочтительно от 0 до 2. Наиболее предпочтительно n=1, m=2, а р и q равны 0. В этом предпочтительном воплощении соединения данного изобретения представлены 2-пирролидинилметил-β-D-глюкозаминид-4-фосфатами общей формулы V:

В предпочтительном воплощении настоящего изобретения 3'-стереогенные центры (*1-3), по которым происходит их присоединение, находятся в R-конфигурации, Y находится в экваториальном положении, а абсолютная стереохимия стереогенного центра пирролидина (**) представлена S- конфигурацией.

Особенно предпочтительными воплощениями являются N-[(R)-3-тетрадеканоилокситетрадеканоил]-(S)-2-пирролидинилметил-2-дезокси-4-O-фосфоно-2-[(R)-3-тетрадеканоилокситетрадеканоиламино]-3-О-[(R)-3-тетрадеканоилокситетрадеканоил]-β-D-глюкопиранозид и его фармацевтически приемлемые соли формулы II,

[N-(R)-3-додеканоилокситетрадеканоил]-(S)-2-пирролидинилметил-2-дезокси-4-O-фосфоно-2-[(R)-3-додеканоилокситетрадеканоиламино]-3-О-[(R)-3-додеканоилокситетрадеканоил]-β-D-глюкопиранозид и его фармацевтически приемлемые соли формулы III,

[N(R)-3-деканоилокситетрадеканоил]-(S)-2-пирролидинилметил-2-дезокси-4-O-фосфоно-2-[(R)-3-деканоилокситетрадеканоиламино]-3-O-[(R)-3-деканоилокситетрадеканоил]-β-D-глюкопиранозид и его фармацевтически приемлемые соли формулы IV.

Получение соединений

Соединения настоящего изобретения могут быть получены методами, изложенными в Johnson et al., Bioorg. Med. Chem. Lett. 9:2273-2278 (1999) и РСТ/WO 98/50399 и приведенных там ссылках. В общем, методы синтеза, описанные в вышеприведенных источниках, применимы в широком смысле к получению соединений с различными ацильными группами и заместителями. Специалисты в этой области должны понимать, что описанные в этих источниках сходящиеся методы могут быть модифицированы с использованием других ацилирующих реагентов или могут исходить из коммерчески доступных материалов, уже имеющих присоединенные соответствующие ацильные группы.

Оценка соединений

Представленные в настоящем изобретении соединения можно оценивать в различных форматах анализа, чтобы выбрать соединение с подходящим фармакофорным профилем. Например, в U.S. Patent No.6,013,640 описаны животные модели, пригодные для оценки кардиопротекторных свойств описанных соединений. В приведенных ниже примерах также представлены методы оценки пирогенности рассматриваемых соединений и другие методы для оценки провоспалительных свойств этих соединений.

Настоящее изобретение также обеспечивает фармацевтические композиции, содержащие представленные в нем соединения в смеси с одним и более фармацевтически приемлемыми носителями. Подходящие носители зависят от подлежащего лечению заболевания вместе со способом применения. Соответственно, обсуждение носителей приводится ниже в сочетании со способами применения.

Фармацевтические композиции и их применение

В одном из воплощений настоящее изобретение обеспечивает фармацевтические композиции, содержащие соединение настоящего изобретения и фармацевтически приемлемый носитель. Соединение находится в терапевтически эффективном количестве, необходимом для достижения требуемого эффекта в смысле лечения болезни или заболевания или достижения биологического проявления. Фармацевтическая композиция может действовать в качестве адъюванта при введении ее вместе с антигеном.

Композиции данного изобретения включают как композиции, составленные для непосредственного введения активных соединений пациентам без разбавления, либо вместе с вакциной или другим активным агентом, либо поодиночке, так и более концентрированные композиции соединений, которые могут быть составлены для последующего разбавления с тем, чтобы избежать перевозки и/или хранения больших количеств разбавителя (воды, физраствора, водных материалов). В общем, фармацевтические композиции данного изобретения, предназначенные для прямого или немедленного введения пациенту (то есть без разбавления), должны содержать одно или несколько соединений в терапевтически эффективном количестве. Такое количество варьирует в зависимости от конкретного терапевтического соединения или соединений и от требуемого терапевтического эффекта. Более концентрированные композиции должны содержать такие количества соединения или соединений изобретения, которые подходят для таких композиций.

При получении фармацевтических композиций фармацевтически приемлемые носители могут находиться в твердом или жидком виде. К препаратам в твердом виде относятся порошки, таблетки, пилюли, капсулы, облатки, свечи и дисперсивные гранулы. Твердый носитель может представлять собой одно или несколько веществ, которые также могут действовать как разбавители, ароматизаторы, связущие вещества, консерванты, дезинтегрирующие вещества или инкапсулирующие материалы.

В порошках носитель представляет собой тонкоизмельченное твердое вещество, которое смешано с тонкоизмельченным активным компонентом. В таблетках активный компонент смешан в соответствующей пропорции с носителем, обладающим необходимыми связывающими свойствами, и подвергнут сжатию до требуемой формы и размера.

Твердые формы композиций также могут быть получены путем распылительной сушки водных составов активных адъювантов (напр., в виде соли) или лиофилизации и измельчения вместе с наполнителями.

К подходящим носителям для твердых композиций данного изобретения относятся, к примеру, карбонат магния, стеарат магния, тальк, сахар, лактоза, пектин, декстрин, крахмал, желатин, трагакант, метилцеллюлоза, натриевая карбоксиметилцеллюлоза, легкоплавкий воск, масло какао и др. Термин "препарат" включает рецептуры активного соединения с инкапсулирующим материалом в качестве носителя, обеспечивающего капсулы, в которых активный компонент, с другими носителями или без них, окружен носителем, который таким образом находится в связи с ним. Аналогично включены и облатки и лепешки. Таблетки, порошки, капсулы, пилюли, облатки и лепешки могут применяться в качестве твердых дозированных форм, пригодных для перорального применения.

Для получения свечей сначала расплавляют легкоплавкий воск типа смеси глицеридов жирных кислот или масла какао и в нем гомогенно диспергируют активный компонент, например, путем перемешивания. Расплавленную гомогенную смесь затем разливают в формы соответствующего размера и охлаждают, при этом она затвердевает.

К жидким формам препаратов относятся растворы, суспензии и эмульсии, например, водные растворы или растворы в смеси вода/пропиленгликоль. Для парентеральных инъекций жидкие препараты можно приготовить в виде раствора в водном растворе полиэтиленгликоля. В определенных воплощениях фармацевтические композиции готовят в виде стабильных эмульсий (напр., эмульсий вода-в-масле или масло-в-воде) или водных составов, предпочтительно включающих одно и более поверхностно-активных веществ (детергентов). В таких эмульсиях могут использоваться подходящие детергенты, хорошо известные в этой области. В одном воплощении композиция имеет вид мицеллярной дисперсии, включающей по меньшей мере один подходящий детергент. К детергентам, пригодным для таких мицеллярных дисперсий, относятся фосфолипиды. Примеры фосфолипидов включают: диацилфосфатидилглицерины, такие как димиристоилфосфатидилглицерин (DMPG), дипальмитоилфосфатидилглицерин (DPPG) и дистеароилфосфатидилглицерин (DSPG); диацилфосфатидилхолины, такие как димиристоилфосфатидилхолин (DMPC), дипальмитоилфосфатидилхолин (DPPC) и дистеароилфосфатидилхолин (DSPC); диацилфосфатидные кислоты, такие как димиристоилфосфатидная кислота (DMPA), дипальмитоилфосфатидная кислота (DPPA) и дистеароилфосфатидная кислота (DSPA); и диацилфосфатидилэтаноламины, такие как димиристоилфосфатидилэтаноламин (DMPE), дипальмитоилфосфатидилэтаноламин (DPPE) и дистеароилфосфатидилэтаноламин (DSPE). Другие примеры включают производные этаноламина (такие как фосфатидилэтаноламин, указанный выше, или кефалин), серина (такие как фосфатидилсерин) и 3'-O-лизилглицерина (такие как 3'-O-лизилфосфатидилглицерин), но не ограничиваются ими.

Водные растворы, пригодные для перорального применения, могут быть получены путем растворения активного компонента в воде и добавления подходящих красителей, ароматизаторов, стабилизаторов и загустителей, какие потребуются. Водные суспензии, пригодные для перорального применения, могут быть получены путем диспергирования тонкоизмельченного активного компонента в воде вместе с вязким материалом, таким как природные или синтетические камеди, смолы, метилцеллюлоза, натриевая карбоксиметилцеллюлоза и другие хорошо известные суспендирующие вещества.

Также включены препараты в твердом виде, которые нужно превратить, незадолго до употребления, в жидкие формы для перорального применения. Такие препараты, наряду с активным компонентом, могут содержать красители, ароматизаторы, стабилизаторы, буферы, искусственные и натуральные подслащивающие вещества, диспергирующие вещества, загустители, солюбилизирующие вещества и др.

Фармацевтические препараты предпочтительно находятся в дозированной форме. В такой форме препарат разделен на единичные дозы, содержащие надлежащее количество активного компонента. Дозированная форма может представлять собой расфасованный препарат, при этом упаковка содержит определенное количество препарата, например, упаковка таблеток, капсул, и порошки во флаконах или ампулах. Также дозированной формой может служить сама капсула, таблетка, облатка или лепешка, либо соответствующее количество их в упакованном виде.

Итак, адъювантные системы по изобретению особенно выгодны при изготовлении и применении вакцин и других иммуностимулирующих композиций для лечения и предупреждения заболеваний, индуцируя активный иммунитет к антигенам у млекопитающих, предпочтительно у человека. Получение вакцин представляет собой хорошо развитую область и общие указания по получению и составлению вакцин легкодоступны из многочисленных источников. Одним из таких примеров является New Trends and Developments in Vaccines, edited by Voller et al., University Park Press, Baltimore, Md., USA, 1978.

В одном из иллюстративных воплощений антиген в вакцинной композиции по изобретению представлен пептидом, полипептидом или его иммуногенной частью. "Иммуногенная часть" в применении к данному изобретению - это часть белка, которая распознается (то есть специфически связывается с) рецептором антигена на поверхности В-клеток и/или Т-клеток. Такие иммуногенные части обычно включают по меньшей мере 5 аминокислотных остатков, более предпочтительно по меньшей мере 10, еще более предпочтительно по меньшей мере 20 аминокислотных остатков антигенного белка или его варианта.

Иммуногенные части антигенных полипептидов в общем можно идентифицировать хорошо известными методами, как те, что изложены в Paul, Fundamental Immunology, 3 rrd ed., 243-247 (Raven Press, 1993) и приведенных там ссылках. Такие методы включают скрининг полипептидов по их способности к реакции с антиген-специфичными антителами, антисыворотками и/или линиями или клонами Т-клеток. В применении к данному изобретению антисыворотки и антитела являются "антиген-специфичными", если они специфически связываются с антигеном (то есть реагируют с белком при иммуноанализе ELISA или другим методом и не реагируют в заметной степени с неродственными белками). Такие антисыворотки и антитела могут быть получены, как описано в данном изобретении, хорошо известными методами. Иммуногенная часть белка - это часть, реагирующая с такими антисыворотками и/или Т-клетками в не меньшей степени, чем реагирует полноразмерный полипептид (напр., при анализе методом ELISA и/или Т-клеточной реакции). Такие иммуногенные части могут реагировать при таком анализе в такой же или большей степени, чем полноразмерный полипептид. Такой скрининг в общем может проводиться методами, хорошо известными в данной области, как те, что описаны в Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. Например, полипептид может быть иммобилизован на твердой подложке и подвергнут реакции с сыворотками пациентов, что ведет к связыванию антител в этих сыворотках с иммобилизованным полипептидом. Затем можно удалить несвязавшуюся сыворотку и провести детектирование связавшихся антител, используя, к примеру, меченный 125I белок А.

Пептидные и полипептидные антигены получают любым из целого ряда хорошо известных методов. Рекомбинантные белки, кодируемые последовательностями ДНК, можно легко получить из изолированных последовательностей ДНК с помощью целого ряда экспрессионных векторов, известных в данной области. Экспрессию можно осуществлять в любых подходящих клетках-хозяевах, трансформированных или трансфицированных экспрессионным вектором, содержащим молекулу ДНК, кодирующую рекомбинантный полипептид. К подходящим клеткам хозяина относятся прокариоты, клетки дрожжей и высших эукариот, такие как клетки млекопитающих и клетки растений. Предпочтительно применяются клетки Е.coli, дрожжевые клетки или клеточные линии млекопитающих, такие как COS или СНО.

Части и другие варианты белковых антигенов, содерж