Защитное покрытие

Изобретение относится к области производства защитных покрытий, которые могут быть использованы при эксплуатации неорганических волокнистых композиционных материалов конструкционного и технологического назначения, в изделиях авиационно-космической и машиностроительной промышленности. Технической задачей изобретения является создание защитного покрытия, обладающего повышенными термостойкостью и сцеплением к композиционным материалам при рабочих температурах до 1600°С. Защитное покрытие имеет следующий химический состав, мас.%: SiO2 12-15, SiB4 1-5, MoSi2 20-30, SiC 0,5-3, Si3N4 0,5-3, BaO 1-5, TiC 0,5-4, Si3С5Н15O0,25 остальное. Применение защитного покрытия на неорганических волокнистых материалах позволит получить термостойкие композиционные материалы с высокой надежностью для изделий нового поколения в авиакосмической и машиностроительной промышленности. 4 табл.

Реферат

Изобретение относится к области производства защитных покрытий, которые могут быть использованы при эксплуатации неорганических волокнистых композиционных материалов конструкционного, теплофизического и технологического назначения в изделиях авиационно-космической и машиностроительной промышленности до 1600°С.

Известно защитное покрытие следующего химического состава, мас.%:

SiO240-75
Al2О36-18
CaO4-11
MgO1-4
В2O35-15
Na2O0,5-1
К2O0,3-3
BaO5-10
Al2O3·3SiO22-7

Патент РФ №2151110

Недостатком известного покрытия является недостаточная термостойкость покрытия на композиционных материалах.

Известно также защитное покрытие химического состава, мас.%:

SiO228-50
Al2О35-15
CaO1-6
MgO1-4
В2O314-45
Na2O1-6
К2O1-4
BaO3-12
2CaO·SiO20,1-0,5
3СаО·Al2О30,1-0,5

Патент РФ №2151111

Недостатком известного покрытия является недостаточное сцепление к композиционным материалам.

Наиболее близким аналогом, взятым за прототип, является защитное покрытие следующего химического состава, мас.%:

SiO20,1-10
SiB40,1-0,5
MoSi20,2-5
SiC1,5-10
Si3C5H15O0,25Остальное

Патент РФ №2249571

Недостатками прототипа являются недостаточные термостойкость и сцепление покрытия к композиционным материалам.

Технической задачей изобретения является создание защитного покрытия, обладающего повышенной термостойкостью и сцеплением к композиционным материалам при рабочих температурах до 1600°С.

Поставленная техническая задача достигается тем, что предложено защитное покрытие, включающее SiO2, SiB4, MoSi2, SiC, Si3C5H15O0,25, которое дополнительно содержит Si3N4, BaO, TiC при следующем соотношении компонентов, мас.%:

SiO212-15
SiB41-5
MoSi220-30
SiC0,5-3
Si3N40,5-3
BaO1-5
TiC0,5-4
Si3C5H15O0,25Остальное

Авторами экспериментально установлено, что введение Si3N4, BaO и TiC в соответствии с заявленным соотношением и содержанием компонентов в покрытии привело к повышению термостойкости и сцепления покрытия к композиционным материалам систем SiO2/SiO2, SiO2/Al2O3, C/SiC.

Рентгеноструктурный анализ покрытия показал, что в процессе его формирования образуются сложные кристаллические фазы 3SiO2·SiC и 2Si2N4·SiB4·BaO. Исследование структуры покрытия электронно-микроскопическим методом свидетельствует, что структура покрытия имеет мелкокристаллическое строение с равным распределением кристаллических фаз. Полученные кристаллические фазы 3SiO2·SiC и 2Si2N4·SiB4·BaO и равномерная мелкокристаллическая структура обеспечивают повышение термостойкости и сцепления покрытия к защищаемому композиционному материалу при рабочих температурах до 1600°С.

Примеры осуществления

Пример 1

Для приготовления суспензии предлагаемого защитного покрытия поликарбосилан (Si3C5H15O0,25) в количестве 64,5 мас.% помещали в стеклянную емкость и механически смешивали с мелкодисперсными порошками размером 1-5 мкм, мас.%: SiO2 12, SiB4 1, MoSi2 20, SiC 0,5, Si3Н4 0,5, BaO 1, TiC 0,5, в течение 1 ч. Нанесение суспензии покрытия осуществили следующим образом: полученную суспензию (с вязкостью 14 с по В3246) заливали в эксикатор, в суспензию помещали образцы волокнистых композиционных материалов систем SiO2/SiO2, SiO2/Al2O3, C/SiC и подвергали свободной пропитке при комнатной температуре в течение 15 часов. Затем образцы извлекали из суспензии, подвергали сушке при температуре 150°С в течение 3 часов и формировали покрытие в инертной среде до температуры 800°С со скоростью 5°С/мин.

На полученных образцах исследовались термостойкость и сцепление предлагаемого защитного покрытия на композиционных материалах систем SiO2/SiO2, SiO2/Al2O3, C/SiC.

Примеры 2, 3 получения защитных покрытий осуществляли аналогично примеру 1.

Составы предлагаемых покрытий, свойства покрытий и композиционных материалов приведены в табл.1, 2, 3, 4.

Таблица 1
Номерасоставов покрытийКомпоненты, масс.%
SiO2SiB4MoSi2SiCSi3N4BaOTiCSi3C5H15O0,25
Предлагаемое
1121200,50,510,5ост.
2155303354ост.
313,532522,533,5ост.
Прототип 4100,551,5---ост

Таблица 2
Номера составов покрытийТермостойкость защитного покрытия режим 20-1200-20°С количество циклов на композиционном материалеВнешний вид образцов после испытаний
SiO2/SiO2SiO2/Al2O3C/SiC.
Предлагаемое
1505050трещин нет
2505050трещин нет
3505050трещин нет
Прототип 4522появление трещин
Таблица 3
Номера составов покрытийСцепление покрытия (площадь скола %) при испытании на термостойкость 20-1200-20°С-50 циклов на композиционном материалеВнешний вид
SiO2/SiO2SiO2/Al2O3C/SiC
Предлагаемое
1000
2000Сколов нет
3000
Прототип 4203020Скол покрытия
Таблица 4
Номера составовТемпературоустойчивость композиционных материалов систем (% усадки) при температуре °С испытания
покрытийSiO2/SiO2SiO2/Al2O3C/SiC.
1200°С1400°С1600°С1200°С1400°С1600°С1200°С1400°С1600°С
Предлагаемое
10,5330,050,10,20,10,10,2
20,5330,050,10,20,10,10,2
30,5330,050,10,20,10,10,2
Прототип 42105,10,150,350,50,230,330,45

Термостойкость предлагаемого защитного покрытия исследовалась по режиму 20-1200-20°С в течение 50 циклов. Предлагаемое защитное покрытие должно выдерживать 50 циклов теплосмен без разрушения покрытия.

Сцепление предлагаемого защитного покрытия к композиционным материалам систем SiO2/SiO2, SiO2/Al2O3, C/SiC определяли по площади скола в % и по внешнему виду.

Термостойкость предлагаемого защитного покрытия на образцах композиционных материалов систем SiO2/SiO2, SiO2/Al2O3, C/SiC выше в 10, 25, 25 раз соответственно по сравнению с термостойкостью защитного покрытия прототипа (табл.2).

Предлагаемое защитное покрытие обладает высоким сцеплением к композиционным материалам систем SiO2/SiO2, SiO2/Al2O3, C/SiC. Площадь скола покрытия с композиционных материалов составляет 0% (табл.3).

Предлагаемое покрытие в процессе испытания его на термостойкость не скалывается с композиционных материалов.

Температуроустойчивость с предлагаемым защитным покрытием на композиционных материалах системы SiO2/SiO2 при температурах нагрева 1200°С, 1400°С, 1600°С выше в 4, 3,3, 1,7 раза; на образцах системы SiO2/Al2O3 выше 3, 3,5, 2,5 раза; на образцах системы C/SiC выше в 2,3, 3,3, 2,25 раза соответственно по сравнению с композиционными материалами с покрытием прототипа (табл.4).

Применение защитного покрытия на неорганических волокнистых материалах позволит получить термостойкие композиционные материалы с высокой надежностью для изделий нового поколения авиакосмической и машиностроительной промышленности.

Защитное покрытие, включающее SiO2, SiB4, MoSi2, SiC, Si3С5Н15O0,25, отличающееся тем, что дополнительно содержит Si3N4, BaO, TiC при следующем соотношении компонентов, мас.%:

SiO212-15
SiB41-5
MoSi220-30
SiC 0,5-3
Si3N40,5-3
BaO 1-5
TiC 0,5-4
Si3C5H15O0,25Остальное