Рекомбинантный белок уриказы млекопитающего для конъюгирования с пэг, молекула нуклеиновой кислоты, кодирующая его, вектор для его экспрессии, способ его получения и применение

Иллюстрации

Показать все

Изобретение относится к области биотехнологии, в частности генетической инженерии, и может быть использовано в медицине. В результате увеличения числа доступных сайтов связывания ПЭГ в молекуле уриказы млекопитающего, достигаеиого путем замены, по меньшей мере, одного фрагмента аминокислотной последовательности природного фермента млекопитающего, не содержащего остатка лизина, гомологичным фрагментом уриказы млекопитающего другого вида, содержащим остаток лизина, и скрининга вариантов уриказы по показателям активности и иммуногенности после конъюгирования с ПЭГ получены новые химерные ферментные белки, в частности формы, состоящие из фрагментов уриказы свиньи и уриказы павиана (РВС и PKS). Предлагаемые варианты уриказы отличаются тем, что после ПЭГ - илирования сохраняют по существу такую же уриколитическую активность, что и немодифицированный фермент, и являются по существу неиммуногенными. Описаны способы получения новых химерных белков уриказы с помощью технологии рекомбинантных ДНК и необходимые для их осуществления векторные конструкции и системы экспрессии. Применение изобретения обеспечивает получение промежуточных продуктов для производства медицинских препаратов с низкой иммуногенностью и повышенной биодоступностью. 5 с. и 11 з.п. ф-лы, 4 табл., 14 ил.

Реферат

Данная заявка заявляет эффект предварительной заявки Соединенных Штатов с номером 60/095 489, поданной 6 августа 1998 года, все содержание которой включено здесь в качестве ссылки.

Описанное здесь изобретение было выполнено с поддержкой Правительства Соединенных Штатов по гранту №DK48529, присужденному Национальным институтом здравоохранения. Правительство имеет определенные права в отношении данного изобретения.

Данное изобретение относится, в общем, к белкам уратоксидазы (уриказы) и кодирующим их молекулам "нуклеиновых кислот. Конкретно, данное изобретение относится к уриказным белкам, которые, в частности, применимы, например, в качестве промежуточных продуктов для получения улучшенных модифицированных уриказных белков с пониженной иммуногенностыо и увеличенной биодоступностью. Предпочтительные модифицированные уриказные белки данного изобретения включают в себя уриказные белки, ковалентно связанные с поли(этиленгликолями) или поли(этиленоксидами). Таким образом, данное изобретение представляет уриказные белки, антитела, которые специфически связываются с этими белками, молекулы нуклеиновых кислот, кодирующие уриказные белки и их полезные фрагменты, векторы, содержащие эти молекулы нуклеиновых кислот, клетки-хозяева, содержащие эти векторы, и способы применения и получения этих уриказных белков и молекул нуклеиновых кислот.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Подагра является наиболее обычным воспалительным заболеванием суставов у людей в возрасте более 40 лет (Roubenoff 1990). Болезненный подагрический артрит появляется, когда повышенный уровень мочевой кислоты в крови (гиперурицемия или гиперурикемия) приводит к эпизодическому образованию микроскопических кристаллов моногидрата урата мононатрия в суставах. С течением времени, хроническая гиперурицемия может также приводить к деструктивным кристаллическим отложениям урата (подагрическим узлам) вокруг суставов, в мягких тканях и в некоторых органах (Hershfield 1996). Мочевая кислота имеет ограниченную растворимость в моче и при повышенной экскреции (гиперурикозурии) может вызывать образование почечных камней (уриколитиаз). У пациентов с некоторыми злокачественными заболеваниями, в частности с лейкозом и лимфомой, заметная гиперурицемия и гиперурикозурия (обусловленные усиленным оборотом и лизисом опухолевых клеток во время химиотерапии) создают серьезный риск острой, обструктивной почечной недостаточности (Sandberg et al. 1956; Gold and Fritz 1957; Cohen et al. 1980; Jones et al. 1990). Серьезные гиперурицемия и подагра связаны с дисфункцией почек вследствие различных причин, в том числе вследствие терапии с использованием циклоспорина для предупреждения отторжения органа при аллотрансплантации (West et al. 1987; Venkataseshan et al. 1990; Ann et al. 1992; Delaney et al. 1992; George and Mandell 1995).

Гиперурицемия может быть результатом как повышенного образования урата, так и пониженной секреции урата (Hershfield and Seegmiller 1976; Kelley et al. 1989; Becker and Roessler 1995). Умеренная гиперурицемия может контролироваться диетой, но сильно выраженная и связанная с серьезными клиническими последствиями гиперурицемия требует лечения лекарственными средствами, либо агентом, способствующим выведению мочевой кислоты, который усиливает экскрецию мочевой кислоты (неэффективным при снижении функции почек), либо ингибитором ксантиноксидазы аллопуринолом, который блокирует образование уратов. Аллопуринол является главной средством терапии в случае пациентов с подагрическими узлами, почечной недостаточностью, лейкозом и некоторыми наследственными нарушениями. Лечение гиперурицемии является обычно эффективным и хорошо переносимым. Однако некоторые пациенты с обезображивающей, лишающей трудоспособности подагрой с отложением солей трудно поддаются всем общепринятым способам терапии (Becker 1988; Fam 1990; Rosenthal and Ryan 1995). Кроме того, у ˜2% пациентов, принимающих аллопуринол, развиваются аллергические реакции и тяжелый синдром гиперсенсибилизации имеет место в ˜0,4% (Singer and Wallace 1986; Arellano and Sacristan 1993). Этот часто опасный для жизни синдром может вызвать острую почечную и печеночную недостаточность и серьезное кожное повреждение (токсический эпидермальный некролиз, эксфолиативный дерматит, мультиформную (экссудативную) эритему, синдром Стивенса-Джонсона). Аллопуринол нарушает также метаболизм азатиоприна и 6-меркаптопурина, лекарственных средств, применяемых в лечении лейкоза и для предотвращения отторжения органа-аллотрансплантата, состояний, при которых имеет место заметная гиперурицемия, и может вызывать тяжелую подагру или создавать угрозу для почечной функции.

В конечном счете, гиперурицемия является результатом мутационной инактивации гена уратоксидазы (уриказы) человека во время эволюции (Wu et al. 1989; Wu et al. 1992). Активная уриказа в пероксисомах печени большинства приматов, не являющихся человеком, и других млекопитающих превращает урат в аллантоин (+СО2 и H2O2), который является в 80-100 раз более растворимым, чем мочевая кислота, и более эффективно выводится почками. Парентерально вводимую уриказу, полученную из Aspergillus flavus (Uricozyme®, Clin-Midy, Paris) использовали для лечения тяжелой гиперурицемии, связанной с химиотерапией лейкоза, на протяжении 20 лет во Франции и Италии (London and Hudson 1957; Kissel et al. 1968; Brogard et al. 1972; Kissel et al. 1972; Potaux et al. 1975; Zittoun et al. 1976; Brogard et al. 1978; Masera et al. 1982), и использовали в недавних клинических испытаниях на пациентах с лейкозом в Соединенных Штатах (Pui et al. 1997). Уриказа имеет более быстрое наступление действия, чем аллопуринол (Masera et al. 1982; Pui et al. 1997). У пациентов с подагрой инфузии уриказы могут прерывать острые приступы и уменьшать размер подагрических узлов (Kissel et al. 1968; Potaux et al. 1975; Brogard et al. 1978).

Хотя и эффективная для лечения острой гиперурицемии во время кратковременного курса химиотерапии, ежедневная инфузия уриказы A. flavus была бы серьезным недостатком для лечения рецидивирующей подагры или подагры с отложениями солей. Кроме того, эффективность уриказы A. flavus быстро снижается в пациентах, которые образуют антитела против уриказы (Kissel et al. 1968; Brogard et al. 1978; Escudier et al. 1984; Mourad et al. 1984; Sibony et al. 1984). Имели место серьезные аллергические реакции, в том числе анафилаксия (Donadio et al. 1981; Montagnac and Schillinger 1990; Pui et al. 1997). Для более продолжительной терапии явно необходим более длительно действующий, менее иммуногенный препарат уриказы.

Один подход для секвестрации (изоляции) экзогенных ферментов от протеаз и иммунной системы включает в себя ковалентное присоединение инертного, нетоксичного полимера, монометоксиполиэтиленгликоля (ПЭГ) к поверхности белков (Harris and Zaiipsky 1997). Сначала было показано, что ПЭГ с молекулярным весом (Mr) ˜1000 - >10000 пролонгирует время циркулирования в кровотоке и снижает иммуногенность некоторых чужеродных белков в животных (Abuchowski et al. 1877а; Abuchowski et al. 1977b; Davis et al. 1981a; Abuchowski et al. 1984; Davis et al. 1991). В 1990 году бычья аденозин-деаминаза (ADA), модифицированная ПЭГ с Mr 5000 (PEG-ADA, ADAGEN®, производимая Enzon, Inc.), стала первым ПЭГилированным (ПЭГ-модифицированным) белком, одобренным Управлением по контролю за продуктами и лекарствами Соединенных Штатов (FDA), для лечения тяжелого заболевания комбинированного иммуннодефицита, вызываемого недостаточностью ADA (Hershfield et al. 1987). Опыт последних 12 лет показал, что антитела против ADA могут быть обнаружены при помощи чувствительного анализа ELISA в большинстве пациентов во время продолжительной терапии с использованием PEG-ADA, но не было обнаружено аллергических реакций или реакций гиперсенсибилизации; ускоренный клиренс PEG-ADA имел место в небольшом числе образующих антитела против ADA пациентов, но обычно это было временным эффектом (Chaffee et al. 1992; Hershfield 1997). Должно быть понятно, что иммунная функция пациентов с ADA-недостаточностью обычно не становится нормальной во время лечения с использованием PEG-ADA (Hershfield 1995; Hershfield and Mitchell 1995). Таким образом, иммуногенность может быть более важной проблемой в разработке ПЭГилированного фермента для продолжительного лечения пациентов с нормальной иммунной функцией.

Специалисту с обычной квалификацией в данной области будет понятно, что иммуногенность обозначает индукцию иммунного ответа введенным препаратом антигена (такого как ПЭГ-модифицированный белок или немодифицированный белок), тогда как антигенность обозначает реакцию антигена с предсуществующими антителами. В целом, антигенность и иммуногенность называют иммунореактивностью. В прежних исследованиях ПЭГ-уриказы иммунореактивность оценивали различными способами, в том числе: реакцией in vitro ПЭГ-уриказы с предварительно образованными антителами; измерениями синтеза индуцированных антител и ускоренными скоростями клиренса после повторяемых введений.

Было показано, что ПЭГилирование снижает иммуногенность и пролонгирует время циркуляции грибковой и свиной уриказ у животных (Chen et al. 1981; Savoca et al. 1984; Tsuji et al. 1985; Veronese et al. 1997). ПЭГ-модифицированная уриказа Candida быстро снижала содержание урата в сыворотке до не детектируемых уровней у 5 нормоурицемических людей-добровольцев (Davis et al. 1981b). ПЭГилированную уриказу Arthrobacter, производимую Enzon, Inc., использовали для лечения имеющего повышенную чувствительность к аллопуринолу пациента с лимфомой, который обнаруживал почечную недостаточность и явную гиперурицемию из этических соображений (Chua et al. 1988; Greenberg and Hershfield 1989). Четыре внутримышечные инъекции вводили на протяжении приблизительно двух недель. Во время этого короткого периода гиперурицемия устранялась и антитела против уриказы не могли быть детектированы при помощи ELISA в плазме пациента. Дальнейшее применение и клиническая разработка этого препарата не были продолжены.

К настоящему времени, не была разработана ни одна форма уриказы или ПЭГ-уриказы, которая имеет время существования в кровообращении подходящей длительности и достаточно пониженную иммуногенность для безопасного и надежного применения в длительной терапии. Целью данного изобретения является обеспечение улучшенной формы уриказы, которая, в сочетании с ПЭГилированием, может удовлетворять этим требованиям. Данное изобретение заключается в получении уникального производного рекомбинантной уриказы млекопитающего, которая была модифицирована мутацией таким способом, который, как было показано, повышает способность ПЭГилирования маскировать потенциально иммуногенные эпитопы.

Сущность изобретения

Основной целью данного изобретения является представление новых уриказных белков и кодирующих их последовательностей нуклеиновых кислот.

Другой целью данного изобретения является представление способа очистки рекомбинантно полученных уриказных белков, таких как описанные здесь.

Следующей целью данного изобретения является представление способа уменьшения количества мочевой кислоты в жидкости тела млекопитающего путем введения композиции, содержащей уриказный белок данного изобретения, млекопитающему.

Еще одной целью данного изобретения является представление антител к описанным здесь уриказным белкам.

Следующей целью данного изобретения является представление векторов и клеток-хозяев, содержащих описанные здесь последовательности нуклеиновых кислот, и способов их применения для получения кодируемых ими уриказных белков.

Данное изобретение представляет уриказные белки, которые могут быть использованы для получения по существу неиммуногенной ПЭГ-уриказы, которая сохраняет всю или почти всю уриколитическую активность немодифицированного фермента. Уриколитическая активность выражена здесь в Международных Единицах (ME) на мг белка, где одна ME уриказной активности определена как количество фермента, которое потребляет один микромоль мочевой кислоты в минуту.

Данное изобретение представляет рекомбинантный уриказный белок вида млекопитающего, который был модифицирован для встраивания одного или нескольких остатков лизина. Термин "рекомбинантный белок" в применении здесь относится к любому искусственно полученному белку и рекомбинантный белок отличается от природно продуцируемых белков (т.е. белков, которые продуцируются в тканях животного, который имеет только природный ген для представляющего интерес специфического белка). Термин "белок" включает в себя пептиды и аминокислотные последовательности. Рекомбинантный уриказный белок данного изобретения может быть химерой или гибридом из двух или более белков, пептидов или аминокислотных последовательностей млекопитающего. В одном варианте, данное изобретение может быть использовано для получения рекомбинантного уриказного белка видов млекопитающих, причем этот белок был модифицирован для увеличения числа лизинов до такого количества, при котором, после ПЭГилирования этого рекомбинантного уриказного белка, ПЭГилированный уриказный продукт является по существу таким же ферментативно активным, что и немодифицированная уриказа, и этот ПЭГилированный уриказный продукт не является неприемлемо иммуногенным. Также представлены укороченные формы уриказ данного изобретения, в которых могут отсутствовать амино- и/или карбокси-концевые участки уриказы. Предпочтительно уриказа не является укороченной до такой степени, что удаляются лизины.

Специалисту в данной области будет понятно, что конъюгированный комплекс уриказаноситель не должен содержать так много связей, чтобы существенно уменьшать ферментативную активность уриказы, или слишком мало связей, так что он остается неприемлемо иммуногенным. Предпочтительно, этот конъюгат будет сохранять, по меньшей мере, приблизительно 70-90% уриколитической активности немодифицированного белка уриказы, являясь более стабильным, так что он сохраняет его ферментативную активность при хранении, в плазме и/или сыворотке млекопитающего при физиологической температуре, в сравнении с немодифицированным белком уриказы. Сохранение, по меньшей мере, приблизительно 80-85% уриколитической активности было бы приемлемым. Кроме того, в предпочтительном варианте, этот конъюгат обеспечивает существенно уменьшенную иммуногенность и/или иммунореактивность, в сравнении с немодифицированным белком уриказы. В одном варианте, данное изобретение представляет уриказный белок, описанный здесь, который может быть модифицирован присоединением к нетоксичному, неиммуногенному, фармацевтически приемлемому носителю, такому как ПЭГ, ковалентной связью с, по меньшей мере, 1 из лизинов, содержащихся в этом уриказном белке. Альтернативно, уриказный белок модифицирован ковалентным присоединением к носителю через менее чем приблизительно 10 лизинов, его аминокислотной последовательности. В качестве альтернативных вариантов, предлагается присоединение к 2, 3, 4, 5, 6, 7, 8 или 9 из этих лизинов.

Уриказный белок данного изобретения является рекомбинантной молекулой, которая включает в себя сегменты белков уриказы печени свиньи и павиана. Представлена также модифицированная последовательность павиана. В одном варианте, данное изобретение представляет химерную уриказу свиньи-павиана (РВС-уриказу (SEQ ID NO:2)), которая включает аминокислоты (аа) 1-225 свиной уриказы (SEQ ID NO:7) и аминокислоты (аа) 226-304 уриказы павиана (SEQ ID NO:6) (см. также последовательность на фигуре 5). В другом варианте, данное изобретение представляет химерную уриказу свиньи-павиана (PKS-уриказу), которая включает аминокислоты (аа) 1-288 свиной уриказы и аминокислоты (аа) 289-304 уриказы павиана (SEQ ID NO:4). Укороченные производные РВС и PKS также рассматриваются. Предпочтительными укороченными формами являются белки РВС и PKS, укороченные таким образом, что у них делегированы 6 амино-концевых аминокислот или 3-карбокси-концевые аминокислоты или и те и другие. Последовательности, представленные в SEQ ID NO:8 (амино-укороченная РВС), SEQ ID NO:9 (карбокси-укороченная РВС), SEQ ID NO:10 (амино-укороченная PKS) и SEQ ID NO:11 (карбокси-укороченная PKS), приведены в качестве примера. Каждая из РВС-уриказы, PKS-уриказы и их укороченных форм имеет на один-четыре лизина больше, чем обнаружено в других уриказах млекопитающих, которые были клонированы.

Данное изобретение представляет молекулы (последовательности) нуклеиновых кислот (ДНК и РНК), в том числе выделенные, очищенные и/или клонированные формы молекул нуклеиновых кислот, которые кодируют описанные здесь уриказные белки и укороченные белки. Предпочтительные варианты показаны в SEQ ID NO:1 (РВС-уриказа) и SEQ ID NO:3 (PKS-уриказа).

Данное изобретение представляет также векторы (экспрессирующие и клонирующие), включающие эти молекулы нуклеиновых кислот.

Кроме того, данное изобретение представляет клетки-хозяева, содержащие эти векторы.

Представлены также антитела, которые специфически связываются с уриказными белками данного изобретения. Антитела к амино-части свиной уриказы и антитела к карбокси-части уриказы павиана, при совместном использовании, должны быть применимы в детектировании РВС или других подобных химерных белков. Предпочтительно, антитело к амино-части химерной уриказы не должно узнавать амино-часть уриказы павиана, и, подобным образом, антитело к карбокси-части химерной уриказы не должно узнавать карбокси-часть свиной уриказы. Более предпочтительно, представлены антитела, которые специфически связываются с РВС или PKS, но не связываются с нативными белками, такими как уриказы свиньи и/или павиана.

В другом варианте, данное изобретение может быть использовано для получения фармацевтической композиции для снижения количества мочевой кислоты в жидкостях тела, таких как моча и/или сыворотка или плазма, содержащей, по меньшей мере, один из уриказных белков или конъюгатов уриказы, описанных здесь, и фармацевтически приемлемый носитель, разбавитель или наполнитель.

Данное изобретение может быть также использовано в способе для уменьшения количества мочевой кислоты в жидкостях тела млекопитающего. Этот способ предусматривает введение млекопитающему эффективного снижающего мочевую кислоту количества композиции, содержащей уриказный белок или конъюгат уриказы данного изобретения и разбавитель, носитель или наполнитель, который предпочтительно является фармацевтически приемлемым носителем, разбавителем или наполнителем.

Млекопитающим, которого подвергают лечению, предпочтительно является человек.

Путь введения может быть, например, внутривенный, внутрикожный, подкожный, внутримышечный или внутрибрюшинный. Повышенные уровни мочевой кислоты могут быть в крови или моче и могут быть связаны с подагрой, отложением солей, почечной недостаточностью, трансплантацией органов или злокачественным заболеванием.

В другом варианте, данное изобретение представляет способ выделения и/или очистки уриказы из раствора уриказы, содержащего, например, клеточный или субклеточный дебрис, из, например, рекомбинантного способа получения. Предпочтительно, способ очистки использует вследствие ограниченной растворимости уриказы млекопитающих при низком рН (Conley et al. 1979), путем промывания неочищенного рекомбинантного экстракта при рН приблизительно 7-8,5 для удаления большей части белков, которые растворимы в этом низком диапазоне рН, после чего активную уриказу растворяют в буфере, предпочтительно натрий-карбонатном буфере, при рН приблизительно 10-11, предпочтительно около 10,2. Затем растворенную активную уриказу можно нанести на анионообменную колонку, такую как колонка Q-Sepharose, которую промывают низкосолевым-высокосолевым градиентом в буфере при рН приблизительно 8,5, после чего очищенную уриказу получают элюцией градиентом хлорида натрия в натрий-карбонатном буфере при рН приблизительно 10-11, предпочтительно около 10,2. Фермент может быть очищен дополнительно гель-фильтрационной хроматографией при рН приблизительно 10-11. На этой стадии фермент может быть очищен дополнительно путем снижения рН до приблизительно 8,5 или ниже для селективного осаждения уриказы, но не более растворимых примесей. Затем после промывания при низком рН (7-8) уриказу растворяют при рН около 10,2. Затем препарат уриказы может быть подвергнут анализам с использованием способов, известных в области получения фармацевтических препаратов, таких как, например, жидкостная хроматография высокого разрешения (ВЭЖХ), другие хроматографические способы, светорассеяние, центрифугирование и/или гель-электрофорез.

Краткое описание рисунков

Фигура 1. Анализ при помощи гель-электрофореза в ПААГ с ДСН-меркаптоэтанолом (12% гель).

Фигура 2. Время циркуляции нативной и ПЭГилированной РВС-уриказы.

Фигура 3. Взаимосвязь активности уриказы в сыворотке и концентраций мочевой кислоты в сыворотке и моче.

Фигура 4. Поддержание уровня циркуляции уриказной активности (измеренного в сыворотке) после повторяемой инъекции.

Фигура 5 показывает расшифрованные аминокислотные последовательности химерной уриказы свиньи-павиана (РВС-уриказы) (SEQ ID NO:2) и свиной уриказы, содержащей мутации R291K и T301S (PKS-уриказы) (SEQ ID NO:4), в сравнении с последовательностями свиной уриказы (SEQ ID NO:7) и уриказы павиана (SEQ ID NO:6).

Фигура 6. Сравнение аминокислотных последовательностей PKS-уриказы (SEQ ID NO:4) и свиной уриказы (SEQ ID NO:7).

Фигура 7. Сравнение аминокислотных последовательностей РВС (SEQ ID NO:2) и PKS (SEQ ID NO:4).

Фигура 8. Сравнение аминокислотных последовательностей РВС (SEQ ID NO:2) и свиной (SEQ ID NO:7) уриказы.

Фигура 9. Сравнение аминокислотной последовательности свиной уриказы (SEQ ID NO:7) и D3H (SEQ ID NO:5).

Фигура 10. Сравнение аминокислотных последовательностей РВС (SEQ ID NO:2) и D3H (SEQ ID NO:5).

Фигура 11-1 и 11-2. Сравнение Bestfit (программное обеспечение GCG) (сравнение с оптимальным сопоставлением) кодирующих последовательностей кДНК PKS (SEQ ID NO:3) и свиной (SEQ ID NO:12) уриказы.

Фигура 12-1 и 12-2. Сравнение Bestfit (программное обеспечение GCG) кодирующих последовательностей кДНК PKS (SEQ ID NO:3) и уриказы павиана (SEQ ID NO:13).

Фигура 13-1 и 13-2. Сравнение Bestfit (программное обеспечение GCG) кодирующих последовательностей кДНК РВС (SEQ ID NO:1) и свиной (SEQ ID NO:12) уриказы.

Фигура 14-1 и 14-2. Сравнение Bestfit (программное обеспечение GCG) кодирующих последовательностей кДНК РВС (SEQ ID NO:1) и уриказы павиана (SEQ ID NO:13).

Подробное описание изобретения

Данное изобретение представляет уриказные белки, которые являются ценными промежуточными продуктами для улучшенных уриказных конъюгатов водорастворимых полимеров, предпочтительно поли(этиленгликолей) или поли(этиленоксидов), с уриказами. Под уриказой здесь подразумевают индивидуальные субъединицы, а также нативный тетрамер, если нет иных указаний.

Хотя в человеке не продуцируется активный фермент, мРНК-транскрипты уриказы были амплифицированы из РНК печени человека (Wu et al. 1992). Теоретически возможно, что некоторые транскрипты уриказы человека транслируются; даже если эти пептидные продукты были не полноразмерными или были нестабильными, они могли бы быть процессированы антигенпредставляющими клетками и играть роль в определении иммунологического ответа на экзогенную уриказу, используемую для лечения. Теоретически могут быть возможными реконструкция и экспрессия кДНК уриказы человека путем устранения двух известных нонсенс-мутаций (бессмысленных мутаций). Однако, в отсутствие давления отбора, очень вероятно, что неблагоприятные миссенс-мутации (мутации с изменением смысла) накапливались в этом гене человека в течение миллионов лет с введения первой нонсенс-мутации (Wu et al. 1989; Wu et al. 1992). Идентификация и "коррекция" всех мутаций для получения максимальной каталитической активности и стабильности белка была бы очень трудной.

Авторы данного изобретения понимали, что существует высокая степень гомологии (сходства) между расшифрованной аминокислотной последовательностью уриказы человека и аминокислотными последовательностями уриказ свиньи (около 86%) и павиана (около 92%) (см., фигуры 6-14, например, измерение сходства), тогда как гомология (сходство) между уриказами человека и A. flavus составляет <40% (Lee et al. 1988; Ready et а1. 1988; Wu et al. 1989; Legoux et а1. 1992; Wu et al. 1992). Данное изобретение представляет полученные рекомбинантно химерные уриказные белки из двух различных млекопитающих, которые были сконструированы для того, чтобы они были менее иммунореактивными для человека, чем более отдаленно родственный грибковый или бактериальный фермент. Ожидается, что применение производного уриказы млекопитающих является более приемлемым для пациентов и их врачей.

Опыт показал, что активированные ПЭГ, такие, которые были использованы для получения PEG-ADA и для модификации других белков, присоединяются через первичные аминогруппы амино-концевого остатка (когда они присутствуют и являются неблокированными) и эпсилон-аминогруппы лизинов. Эта стратегия применима, поскольку могут быть использованы средние условия реакции и поскольку положительно заряженные лизины имеют тенденцию к локализации на поверхности белков. Последнее является важным, так как для любого терапевтического белка желательные эффекты ПЭГилирования будут зависеть отчасти от характеристик ПЭГ-полимера (например, массы, разветвленной или неразветвленной структуры и т.д.), а также от числа и распределения сайтов присоединения ПЭГ белка относительно эпитопов и структурных элементов, которые определяют функцию и клиренс данного белка. Была придумана стратегия для усиления способности ПЭГилирования "маскировать" эпитопы и понижать иммуногенность путем полуселективного введения новых остатков лизина для потенциального присоединения ПЭГ (Hershfield et al. 1991). Эта стратегия использует мутагенез для замены выбранных кодонов аргинина кодонами лизина, замены, которая сохраняет положительный заряд и оказывает минимальное действие на предсказанные компьютером показатели поверхностной вероятности и антигенности (применимые, когда известна только одна аминокислотная последовательность).

В качестве экспериментального испытания этой стратегии, использовали рекомбинантную пуриннуклеозидфосфорилазу Е. coli (EPNP) (Hershfield et al. 1991). Вводили замены Arg на Lys в 3 сайтах, увеличивая число лизинов на субъединицу с 14 до 17, без изменения каталитической активности. Очищенный тройной мутант сохранял полную активность после модификации ˜70% доступных NH2-групп избытком дисукцинил-ПЭГ5000. Титрование реакционноспособных аминогрупп до и после ПЭГилирования предполагало, что тройной мутант мог акцептировать больше на одну цепь ПЭГ на субъединицу, чем фермент дикого типа. ПЭГилирование увеличивало время циркуляции как EPNP-фермента дикого типа, так и мутантного EPNP-фермента в мышах с ˜4 часов до >6 дней. После серии внутрибрюшинных инъекций с интервалами одна неделя/две недели, у всех мышей, обработанных немодифицированными EPNP, и у 10 из 16 мышей (60%), инъецированных ПЭГилированной EPNP дикого типа, развивались высокие уровни антител против EPNP и заметно снижалось время циркуляции. В противоположность этому, только у 2 из 12 мышей (17%), обработанных мутантным ПЭГ-EPNP, развился быстрый клиренс; низкие уровни антител в этих мышах не коррелировали с временем циркуляции. Таким образом, эта стратегия была успешной в существенном уменьшении иммуногенности, даже хотя только 1 из 3 новых лизинов становился модифицированным после обработки активированным ПЭГ.

Каждая из субъединиц уриказы павиана и свиньи состоит из 304 аминокислот, 29 из которых (т.е. 1 приблизительно на 10 остатков) представляют собой лизины. Первоначальные попытки введения 2 замен Arg на Lys в клонированную кДНК уриказы павиана, а также замены кодон Lys на Glu в положении 208, которое соответствует Lys в гене уриказы человека, привели к экспрессированному мутантному белку павиана, который имел значительно уменьшенную уриказную каталитическую активность. Из этого эксперимента видно, что способность сохранять уриказную ферментативную активность после мутации аргинина на лизин ДНК-последовательности млекопитающих была непредсказуемой.

Впоследствии было обнаружено, что аминокислотный остаток 291 в уриказе павиана является лизином, а соответствующий остаток в уриказе свиньи является аргинином. Сайт рестрикции Apal, присутствующий в обеих кДНК, использовали для конструирования химерной уриказы, в которой первые 225 аминокислот произведены из кДНК свиньи, а карбокси-концевые 79 аминокислот произведены из кДНК павиана. Полученная химерная уриказа свиньи-павиана (РВС) (SEQ ID NO:2) имеет 30 лизинов, на один лизин больше, чем любой «исходный» фермент. Дополнительным признаком РВС-уриказы является то, что ее «павиан»-часть отличается от уриказы человека в 4 из 79 аминокислотных остатков, тогда как уриказы свиньи и человека различаются в 10 остатках в том же самом участке. Впоследствии была сконструирована модифицированная версия РВС, которая сохраняет лишний лизин в положении 291, а в других отношениях отличается от уриказы свиньи только заменой треонина серином в остатке 301 (уриказа "pigKS" (SEQ ID NO:4)). В связи с результатами, описанными в предыдущем абзаце, где несколько других инсерций лизинов были неблагоприятными для активности, было неожиданным, что химерные уриказы РВС и PKS были такими же активными в сравнении с немутированной нативной уриказой свиньи и приблизительно более чем в 4 раза, более активными, чем немутированная нативная уриказа павиана.

Данное изобретение представляет рекомбинантную химерную уриказу свиньи-павиана, составленную из частей последовательностей уриказы печени свиньи и павиана. Один пример такой химерной уриказы содержит первые 225 аминокислот из последовательности уриказы свиньи (SEQ ID NO:7) и последние 79 аминокислот из последовательности уриказы павиана (SEQ ID NO:6) (уриказа свиньи-павиана или уриказа РВС; фигура 6 и SEQ ID NO:2). Другой пример такой химерной уриказы содержит первые 288 аминокислот из последовательности уриказы свиньи (SEQ ID NO:7) и последние 16 аминокислот из последовательности уриказы павиана (SEQ ID NO:6). Поскольку эта последняя последовательность отличается от последовательности свиньи только в двух положениях, имея лизин (К) вместо аргинина в остатке 291 и серин (S) вместо треонина в остатке 301, этот мутант называют pig-K-S или уриказой PKS.

Представлены также векторы (экспрессирующие и клонирующие), включающие молекулы нуклеиновых кислот, кодирующие белки данного изобретения. Предпочтительные векторы представлены здесь в качестве примера. Специалисту в данной области будет понятно, что молекулы нуклеиновых кислот могут быть встроены в экспрессирующий вектор, такой как плазмида, в правильной ориентации и точной рамке считывания для экспрессии. Если необходимо, нуклеиновая кислота (ДНК) может быть связана с подходящими транскрипционными и трансляционными регуляторными нуклеотидными последовательностями, узнаваемыми желательным хозяином, хотя такие регуляторные элементы обычно доступны в экспрессирующих векторах, используемых и известных в данной области. Затем вектор может быть введен в клетки-хозяева при помощи стандартных способов. Обычно не все из клеток-хозяев будут трансформированы этим вектором. Таким образом, может быть необходимым отбор трансформированных клеток-хозяев. Один из таких способов отбора, известный из уровня техники, включает встраивание в экспрессирующий вектор ДНК-последовательности с любыми необходимыми регуляторными элементами, которая кодирует селектируемый маркерный признак в трансформированной клетке, такой как устойчивость к антибиотику. Альтернативно, ген для такого селектируемого признака может находиться в другом векторе, который используют для котрансформации целевых клеток-хозяев. Векторы могут также включать в себя подходящий промотор, такой как прокариотический промотор, способный к экспрессии (транскрипции и трансляции) этой ДНК в бактериальной клетке-хозяине, такой как Е. coli, трансформированной этим вектором. Многие экспрессионные системы доступны и известны в данной области, в том числе бактериальные системы (например, Е. coli и Bacillus subtilis), дрожжи (например, Saccharomyces cerevisiae), нитчатые грибы (например, Aspergillus), клетки растений, клетки животных и клетки насекомых.

Подходящие векторы могут включать в себя прокариотический репликон, такой как ColEI ori, для размножения, например, в прокариотах. Типичными прокариотическими векторными плазмидами являются pUC18, pUC19, pUC322 и pBR329, доступные из Biorad Laboratories (Richmond, CA) и рТсr99А и pKK223-3, доступные из Pharmacia (Piscataway, NJ). Типичной векторной плазмидой клеток млекопитающих является pSVL, доступная из Pharmacia (Piscataway, NJ). Этот вектор использует поздний промотор SV40 для запуска экспрессии клонированных генов, причем наивысший уровень экспрессии обнаружен в Т-антигенпродуцирующих клетках, таких как клетки COS-1. Примером индуцируемого экспрессирующего вектора млекопитающих является pMSG, также доступный из Pharmacia. Этот вектор использует индуцируемый глюкокортикоидом промотор длинного концевого повтора вируса опухоли молочной железы мыши для запуска экспрессии клонированного гена. Применимыми дрожжевыми плазмидными векторами являются pRS403-406 и pRS413-416 и они обычно доступны из Stratagene Cloning Systems (La Jolla, CA). Плазмиды pRS403, pRS404, pRS405 и pRS406 являются дрожжевыми интегрирующими плазмидами (Yip) и включают дрожжевые селектируемые маркеры HIS3, TRP1, LEU2 и URA3. Плазмиды pRS413-416 являются дрожжевыми центромерными плазмидами (Ycp).

Кроме того, данное изобретение представляет клетки-хозяева, содержащие эти векторы. Предпочтительные клетки-хозяева включают в себя приведенные здесь в качестве примеров и описанные здесь клетки-хозяева.

Уриказные белки данного изобретения могут быть конъюгированы через биологически стабильную, нетоксичную, ковалентную связь с относительно небольшим числом нитей ПЭГ для улучшения биологического периода полужизни и растворимости этих белков и уменьшения их иммунореактивности. Такие связи могут включать в себя уретановые (карбаматные) связи, вторичные аминные связи и амидные связи. Различные активированные ПЭГ, пригодные для такой конъюгации, коммерчески доступны из Shearwater Polymers, Huntsville, AL.

Данное изобретение может быть также использовано для получения фармацевтических композиций уриказных белков в виде конъюгатов. Эти конъюгаты являются по существу неиммуногенными и сохраняют, по меньшей мере, 70%, предпочтительно 80% и более предпочтительно, по меньшей мере, около 90% или более уриколитической активности немодифицированного фермента. Водорастворимые полимеры, пригодные для применения в данном изобретении, включают линейные и разветвленные поли(этиленгликоли) или поли(этиленоксиды), все обычно известные как ПЭГ. Один пример разветвленных ПЭГ является предметом патента США 5643575.

В одном варианте данного изобретения среднее число лизинов, встроенных на субъединицу уриказы, находится между 1 и 10. В предпочтительном варианте, число дополнительных лизинов на субъединицу уриказы находится между 2 и 8. Должно быть понятно, что число дополнительных лизинов не должно быть таким большим, чтобы наносить ущерб каталитической активности уриказы. Молекулы ПЭГ конъюгата предпочтительно конъюгированы через лизины уриказного белка, более предпочтительно через не встречающийся природно лизин или лизины, которые были введены в участок сконструированного белка, который природно не содержит лизин в этом участке.

Данное изобретение представляет способ увеличения доступных не причиняющих вреда сайтов присоединения ПЭГ к уриказному белку, в котором нативный уриказный белок мутируют таким образом, чтобы ввести в него, по меньшей мере, один остаток лизина. Предпочтительно этот способ включает замену аргининов лизинами.

ПЭГ-уриказные конъюгаты, использующие данное изобретение, применимы для снижения уровней (т.е. уменьшения количества) мочевой кислоты в крови и/или моче млекопитающих, предпочтительно людей, и могут быть, следовательно, использованы для лечения повышенных уровней мочевой кислоты, связанных с состояниями, включающими в себя подагру, отложения солей, почечную недостаточность, трансплантацию органов и злокачественное заболевание.

ПЭГ-уриказные конъюгаты могут быть введены в млекопитающее, имеющее избыточные уровни мочевой кислоты, любым из путей введения, в том числе пероральным, при помощи клизмы или суппозитория, внутривенным, подкожным, внутримышечным и внутрибрюшинным путями. Patton, JS, et al. (1992) Adv Drug Delivery Rev 8:179-228.

Эффективная доза ПЭГ-уриказы будет зависеть от уровня мочевой кислоты и размера индивидуума. В одном варианте этого аспекта данного изобретения ПЭГ-уриказу вводят в фармацевтически приемлемом наполнителе или разбавителе в количестве в диапазоне от 10 мкг до приблизительно 1 г. В п