Способ получения фторированного сложного эфира

Иллюстрации

Показать все

Изобретение относится к способу получения фторированного сложного эфира. Процесс включает стадию переэтерификации, в которой RAF-COOCF2-RAF и RA-СН2ОН подвергают реакции переэтерификации при молярном соотношении 1:1-2 с образованием RAF-COOCH2-RA, и стадию фторирования, в которой полученное соединение фторируют, получая реакционный продукт в количестве, превышающем мольное количество до переэтерификации, содержащий RAF-COOCF2-RAF. При этом RA обозначает С1-20 одновалентную углеводородную группу, C1-20 одновалентную углеводородную группу, содержащую галоген, С1-20 одновалентную углеводородную группу, содержащую гетероатом или C1-20 одновалентную углеводородную группу, содержащую галоген и гетероатом и RAF обозначает такую же группу, как RA, или одновалентную углеводородную группу, полученную фторированием RA. 8 з.п. ф-лы.

Реферат

Настоящее изобретение относится к способу получения фторированного сложного эфира и к способу получения фторированного ацилфторида и фторированного винилового эфира с использованием такого фторированного сложного эфира.

Фторированный сложный эфир представляет собой соединение, пригодное в качестве промежуточного продукта для синтеза, например, фторированного ацилфторида или фторированного винилового эфира. В настоящей заявке предлагается способ получения фторированного сложного эфира и фторированного ацилфторида путем объединения ряда процессов, таких как реакция этерификации, реакция фторирования и реакция диссоциации эфирной связи. Здесь также предлагается непрерывный способ, в котором фторированный ацилфторид, полученный таким способом, используют повторно в реакции этерификации (WO 00/56694).

Данный способ представляет собой процесс, который, по существу, включает три стадии, т.е. стадию этерификации, стадию фторирования и стадию диссоциации эфирной связи. То есть он представляет собой способ, в котором следующий ниже фторированный ацилфторид (4) и следующее ниже соединение (2), имеющее гидроксильную группу, подвергают реакции этерификации, чтобы получить следующее ниже соединение (3), представляющее собой сложный эфир, которое фторируют, чтобы получить следующий ниже фторированный сложный эфир (1), и эфирную связь фторированного сложного эфира (1) подвергают диссоциации, чтобы получить фторированный ацилфторид (4), который используют для реакции этерификации с вышеуказанным соединением (2) для осуществления такого же способа (здесь, значения символов в следующей ниже схеме являются такими же, что и значения символов, указанные ниже).

Далее в качестве более эффективного способа получения фторированного сложного эфира (1) в больших количествах заявители также предложили способ, где фторированный сложный диэфир, имеющий одинаковые группы (RAF) на обоих концах молекулы, получают реакцией этерификации, и две эфирные связи сложного диэфира подвергают диссоциации, получая двукратное мольное количество фторированного ацилфторида.

Задача настоящего изобретения состоит в представлении способа, посредством которого фторированный сложный эфир (1) и фторированный ацилфторид (4) можно эффективно получить в больших количествах меньшим числом стадий, чем в случае вышеуказанных способов. Другая задача настоящего изобретения заключается в представлении способа получения фторированного винилового эфира с использованием фторированного сложного эфира (1) и фторированного ацилфторида (4), полученного таким способом.

В результате всестороннего исследования для достижения вышеуказанных задач заявители обнаружили, что можно достигнуть вышеуказанные цели и получить фторированный сложный эфир массовым производством, комбинируя стадию переэтерификации фторированного сложного эфира со стадией фторирования. Далее заявители обнаружили, что можно получить фторированный ацилфторид или фторированный виниловый эфир, используя фторированный сложный эфир, полученный таким способом.

То есть настоящее изобретение представляет способ получения следующего ниже фторированного сложного эфира (1), который включает стадию переэтерификации, где следующий ниже фторированный сложный эфир (1) взаимодействует со следующим ниже соединением (2) с образованием за счет реакции переэтерификации следующего ниже соединения (3), и стадию фторирования, где соединение (3) затем фторируют, чтобы получить следующий ниже фторированный сложный эфир (1) в количестве, превышающем молярное количество до переэтерификации:

RAF-COOCF2-RAF(1)
RA-CH2OH(2)
RAF-COOCH2-RA(3)

где RA обозначает одновалентную органическую группу и RAF обозначает такую же группу, как RA, или одновалентную органическую группу, полученную фторированием RA.

Далее настоящее изобретение представляет вышеуказанный способ получения фторированного сложного эфира (1), где в стадии фторирования фторирование соединения (3) проводят, вводя газообразный фтор в жидкую фазу.

Далее настоящее изобретение представляет вышеуказанный способ получения фторированного сложного эфира (1), где на стадии фторирования используют соединение (3), содержащее следующий ниже фторированный ацилфторид (4) и/или соединение (1), полученное на стадии переэтерификации, когда оно содержит фторированный ацилфторид (4) и/или соединение (1):

RAF-COF(4)

где RAF является таким, как описано выше.

Далее настоящее изобретение представляет вышеуказанный способ получения фторированного сложного эфира (1), где стадию переэтерификации проводят в отсутствие растворителя.

Далее настоящее изобретение представляет вышеуказанный способ получения фторированного сложного эфира (1), где фторированный сложный эфир (1) на стадии переэтерификации представляет собой фторированный сложный эфир (1), полученный на стадии фторирования.

Далее настоящее изобретение представляет вышеуказанный способ получения фторированного сложного эфира (1), который включает стадию получения следующего ниже фторированного сложного эфира (1) фторированием в жидкой фазе следующего ниже соединения (3), полученного реакцией следующего ниже фторированного ацилфторида (4) со следующим ниже соединением (2), и где фторированный сложный эфир (1), полученный на указанной стадии, используют в качестве фторированного сложного эфира (1) на стадии переэтерификации:

RAF-COF(4)
RA-CH2OH(2)
RAF-COOCH2-RA(3)
RAF-COOCF2-RAF(1)

где RA и RAF являются такими, как определено выше.

Далее настоящее изобретение представляет способ получения фторированного ацилфторида (4), который включает диссоциацию эфирной связи следующего ниже фторированного сложного эфира (1), полученного вышеуказанным способом:

RAF-COOCF2-RAF(1)
RAF-COF(4)

где RAF является таким, как определено выше.

Далее настоящее изобретение представляет вышеуказанный способ получения фторированного сложного эфира (1), где фторированный сложный эфир (1) представляет собой следующее ниже соединение (1a), соединение (2) представляет собой следующее ниже соединение (2a), соединение (3) представляет собой следующее ниже соединение (3a) и RAF представляет собой RAF1O-CF(CF3)-:

RAF1O-CF(CF3)-COOCF2-CF(CF3)-ORAF1(1a)
RA1O-CX1(CX2X3X4)-CH2OH(2a)
RAF1O-CF(CF3)-COOCH2-CX1(CX2X3X4)-ORA1(3a)

где RA1 представляет собой одновалентную органическую группу, RAF1 представляет собой такую же группу, как указанная для RA1, или одновалентную органическую группу, полученную фторированием указанного RA1, и каждый из Х1, Х2, Х3 и Х4, которые могут быть одинаковыми или различными, представляет собой атом водорода или атом фтора.

Далее настоящее изобретение представляет способ получения следующего ниже фторированного винилового эфира (5a), который включает диссоциацию эфирной связи следующего ниже соединения (1a), полученного вышеуказанным способом, для получения следующего ниже соединения (4a), и пиролиз соединения (4a):

RAF1O-CF(CF3)-COOCF2-CF(CF3)-ORAF1(1a)
RAF1O-CF(CF3)-COF(4a)
RAF1O-CF=CF2(5a)

где RAF1 является таким, как определено выше.

Далее настоящее изобретение представляет способ получения следующего ниже фторированного винилового эфира (5a), который включает пиролиз следующего ниже соединения (1a), полученного вышеуказанным способом, при температуре, по меньшей мере, 250°С:

RAF1O-CF(CF3)-COOCF2-CF(CF3)-ORAF1(1a)
RAF1O-CF=CF2(5a)

где RAF1 является таким, как определено выше.

ЛУЧШИЙ РЕЖИМ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Типичная реакция переэтерификации, в которой самое большее - это вдвое большее мольное количество соединения (2) взаимодействует с фторированным сложным эфиром (1), представлена следующей ниже схемой, где RA и RAF являются такими, как определено выше.

Считается, что механизм реакции переэтерификации является таким, что сначала эквимолярное количество соединения (2) взаимодействует с фторированным сложным эфиром (1) с образованием в результате реакции переэтерификации эквимолярного количества соединения (3) и эквимолярного количества фторированного ацилфторида (4) (RAFCOF), и затем фторированный ацилфторид (4) далее взаимодействует с эквимолярным количеством соединения (2) с образованием эквимолярного количества соединения (3). То есть двукратное мольное количество соединения (2) взаимодействует с фторированным сложным эфиром (1) с образованием двукратного мольного количества соединения (3). Затем двукратное мольное количество соединения (3), полученное реакцией переэтерификации, фторируют, получая двукратное мольное количество фторированного сложного эфира (1).

Данная серия реакций будет показана следующей ниже схемой. То есть реакцию переэтерификации и затем реакцию фторирования осуществляют, используя двукратное мольное количество соединения (2) относительно фторированного сложного эфира (1), посредством чего теоретически мольное количество фторированного сложного эфира (1) будет увеличено в два раза (здесь RA и RAF в схеме являются такими, как описано выше).

Далее настоящее изобретение будет описано со ссылкой на данный механизм реакции.

В соединениях по настоящему изобретению каждый RA и RA1 представляет собой одновалентную органическую группу. В настоящем изобретении «органическая группа» обозначает группу, содержащую, по меньшей мере, один атом углерода, и органическая группа может иметь любую структуру с линейной цепью, разветвленную структуру или циклическую структуру.

В качестве RA и RA1 предпочтительной является С1-20 одновалентная органическая группа. В качестве одновалентной органической группы предпочтительной является одновалентная углеводородная группа, галогенсодержащая одновалентная углеводородная группа, содержащая гетероатом одновалентная углеводородная группа или галогенированная одновалентная углеводородная группа, содержащая гетероатом. В качестве одновалентной углеводородной группы среди таких групп предпочтительной является одновалентная алифатическая углеводородная группа. В одновалентной алифатической углеводородной группе может присутствовать ненасыщенная связь. В качестве одновалентной органической группы более предпочтительной является одновалентная насыщенная углеводородная группа, частично галогенированная одновалентная насыщенная углеводородная группа, одновалентная углеводородная группа, содержащая эфирный атом кислорода, или частично галогенированная одновалентная насыщенная углеводородная группа, содержащая эфирный атом кислорода. Здесь «насыщенная» группа представляет собой группу, где связи углерод-углерод представляют собой исключительно одинарные связи, и «содержащая гетероатом группа» обозначает группу, содержащую в своей структуре гетероатом, такой как атом кислорода, атом азота или атом серы. В качестве гетероатома предпочтительным является, например, эфирный атом кислорода (-О-) или =О. Среди них особенно предпочтительным является эфирный атом кислорода.

Одновалентная насыщенная углеводородная группа может представлять собой алкильную группу, циклоалкильную группу или циклоалкилалкильную группу. Циклоалкильная группа, предпочтительно, представляет собой циклоалкильную группу, содержащую 3-6-членное кольцо, или группу, имеющую, по меньшей мере, один атом водорода в такой циклоалкильной группе, замещенный алкильной группой. Циклоалкилалкильная группа, предпочтительно, представляет собой группу, в которой один атом водорода С1-3 алкильной группы замещен указанной выше циклоалкильной группой.

Галогенированная одновалентная насыщенная углеводородная группа может представлять собой группу, в которой, по меньшей мере, один атом водорода указанной выше одновалентной насыщенной углеводородной группы галогенирован, и она, предпочтительно, представляет собой фторалкильную или фтор(частично хлорзамещенную алкильную)группу. В качестве одновалентной насыщенной углеводородной группы, содержащей эфирный атом кислорода, особенно предпочтительной является алкоксиалкильная группа или алкоксигруппа.

Галогенированная одновалентная насыщенная углеводородная группа, содержащая эфирный атом кислорода, может представлять собой группу, в которой, по меньшей мере, один атом водорода вышеуказанной галогенированной одновалентной насыщенной углеводородной группы, содержащей эфирный кислород, галогенирован, и она, предпочтительно, представляет собой фторалкоксигруппу, фторалкоксиалкильную группу, хлоралкоксигруппу, хлоралкоксиалкильную группу, фтор(частично хлорзамещенную алкокси)группу или фтор(частично хлорзамещенную алкоксиалкильную)группу.

С точки зрения доступности соединения (2) и экономической эффективности каждый из RA и RA1, предпочтительно, представляет собой одновалентную органическую группу, не содержащую атом фтора, которую можно фторировать реакцией с фтором в жидкой фазе. В качестве такой группы особенно предпочтительной является алкильная группа, алкоксигруппа, алкоксиалкильная группа, частично хлорированная алкильная группа, частично хлорированная алкоксигруппа или частично хлорированная алкоксиалкильная группа.

В вышеуказанных соединениях RAF является такой же группой, как RA, или одновалентной органической группой, полученной фторированием RA, и RAF1 является такой же группой, как RA1, или одновалентной органической группой, полученной фторированием RA1. В настоящем изобретении «фторирование» представляет собой реакцию введения атома фтора. Фторирование в настоящем изобретении обычно является реакцией замещения атома водорода, связанного с атомом углерода, на атом фтора. Однако в случае, когда присутствует углерод-углерод ненасыщенная двойная связь (-СН=СН-), будут иметь место реакция замещения атома водорода атомом фтора и реакция присоединения. В случае, когда RA и RA1 представляют собой группы, которые не могут быть фторированы, или они являются группами, которые могут быть фторированы, но не являются фторированными, RAF и RAF1 являются такими же группами, как RA и RA1, соответственно. Например, в случае когда RA и RA1 представляют собой пергалогензамещенные одновалентные углеводородные группы или пергалогензамещенные одновалентные углеводородные группы, содержащие эфирный атом кислорода, атомы галогена в данных группах не будут заменяться, даже когда они реагируют с фтором в жидкой фазе, и таким образом, RAF и RAF1 будут представлять собой такие же группы, как RA и RA1, соответственно.

Каждая группа RAF и RAF1, предпочтительно, является группой, которая не будет изменяться даже реакцией фторирования, после того как указанный непрерывный способ можно осуществить таким образом. В качестве такой группы предпочтительной является перфторзамещенная одновалентная органическая группа, особенно предпочтительной является перфторзамещенная одновалентная насыщенная углеводородная группа, перфтор(частично хлорированная)одновалентная насыщенная углеводородная группа, перфторзамещенная одновалентная насыщенная углеводородная группа, содержащая эфирный атом кислорода, или перфтор(частично галогенированная)одновалентная насыщенная углеводородная группа, содержащая эфирный атом кислорода, и особенно предпочтительной является перфторалкильная группа, перфтор(частично хлорированная)алкильная группа, перфторалкоксигруппа, перфтор(частично хлорированная)алкоксигруппа, перфторалкоксиалкильная группа или перфтор(частично хлорированная)алкоксиалкильная группа.

Каждый из Х14 в соединении (2а) и соединении (3а) представляет собой атом водорода или атом фтора. Принимая во внимание доступность соединения (2а), предпочтительно, чтобы все заместители от Х1 до Х4 представляли собой атомы водорода.

В данном описании «галогенированная» группа обозначает группу, в которой, по меньшей мере, один из атомов водорода, связанных с атомом углерода, замещен атомом галогена; «пергалогенированная» группа обозначает группу, в которой, по существу, все атомы водорода, связанные с атомом углерода, замещены атомами галогена, и «частично галогенированная» группа обозначает группу, в которой некоторые атомы водорода, связанные с атомом углерода, замещены атомами галогена. В случае, когда атомы галогена представляют собой атомы фтора, такие группы могут быть представлены как «перфторированные», «частично фторированные» или аналогичным образом. Далее «пергалогенированная» группа или «частично галогенированная» группа может содержать атомы галогена одного типа или двух или более различных типов. «Пергалогенированная» группа, предпочтительно, представляет собой группу, в которой все атомы водорода, связанные с атомом углерода, замещены атомами галогена, но даже в случае, когда все еще остаются незамещенные атомы водорода, при условии, что природа в качестве группы, по существу, такая же, как у «пергалогенированной» группы, такая группа будет включена в понятие «пергалогенированной» группы.

В качестве конкретных примеров фторированного сложного эфира (1) и соединения (1а) можно указать соединения следующих ниже формул.

CF3CF2CF2OCF(CF3)CF2OCF(CF3)CF2OCOCF(CF3)OCF2CF(CF3)OCF2CF2CF3,

CF3(CF2)kOCF(CF3)CF2OCOCF(CF3)O(CF2)kCF3 (где k равно целому числу от 0 до 9).

В качестве конкретных примеров соединения (2) и соединения (2а) можно указать соединения следующих ниже формул.

CH3CH2CH2OCH(CH3)CH2OCH(CH3)CH2OH,

CH3(CH2)kOCH(CH3)CH2OH (где k равно целому числу от 0 до 9).

В качестве конкретных примеров соединения (3) и соединения (3а) можно указать соединения следующих ниже формул.

CH3CH2CH2OCH(CH3)CH2OCH(CH3)CH2OCOCF(CF3)OCF2CF(CF3)OCF2CF2CF3,

CH3(CH2)kOCH(CH3)CH2OCOCF(CF3)O(CF2)kCF3 (где k равно целому числу от 0 до 9).

В качестве конкретных примеров фторированного ацилфторида (4) и соединения (4а) можно указать соединения следующих ниже формул.

CF3CF2CF2OCF(CF3)CF2OCF(CF3)COF,

CF3(CF2)kOCF(CF3)COF (где k равно целому числу от 0 до 9).

В качестве конкретных примеров фторированного винилового эфира (5а) можно указать соединения следующих ниже формул.

CF3CF2CF2OCF(CF3)CF2OCF=CF2,

CF3(CF2)kOCF=CF2 (где k равно целому числу от 0 до 9).

Стадия переэтерификации по настоящему изобретению представляет собой стадию, в которой фторированный сложный эфир (1) взаимодействует с соединением (2), образуя в результате переэтерификации соединение (3).

На стадии переэтерификации пропорциональное содержание (молярная доля) соединения (2), которое должно взаимодействовать с фторированным сложным эфиром (1), особым образом не ограничивается и может представлять собой любую произвольную молярную долю. Однако если молярная доля соединения (2) превышает двукратное количество, в расчете на моли, то в продукте реакции переэтерификации будет оставаться непрореагировавшее соединение (2). И, вероятно, что присутствие непрореагировавшего соединения (2) вызовет нежелательную реакцию на стадии фторирования. Поэтому необходимо будет отделить такое непрореагировавшее соединение (2) перед последующей стадией фторирования. Кроме того, даже если соединение (2) реагирует в количестве, превышающем двукратное мольное количество, стехиометрически невозможно получить соединение (3) в количестве, превышающем более чем в два раза мольное количество фторированного сложного эфира (1). Соответственно, доля соединения (2), которая необходима для реакции с фторированным сложным эфиром (1), предпочтительно превышает мольное количество фторированного сложного эфира (1) самое большее в два раза.

С другой стороны, если молярное отношение соединения (2), необходимое для реакции с фторированным сложным эфиром (1), слишком мало, получающееся количество соединения (3) будет снижаться. Кроме того, в продукте будут содержаться фторированный ацилфторид (4) в качестве промежуточного продукта реакции и/или непрореагировавший фторированный сложный эфир (1). Далее, если пропорциональное содержание соединения (2) не превышает одну мольную долю, невозможно осуществить цель, заключающуюся в получении фторированного ацилфторида (1) массовым производством. Из предшествующего ясно, что доля соединения (2), которое должно реагировать с фторированным сложным эфиром (1), по отношению к фторированному сложному эфиру (1), предпочтительно, составляет от однократной до двукратной в расчете на моли, более предпочтительно, от 1,5-кратной до двукратной, в расчете на моли, особенно предпочтительна двукратная мольная доля.

Фторированный сложный эфир (1), соединение (2) и соединение (3), которые используются на стадии переэтерификации, предпочтительно, представляют собой соединение (1а), соединение (2а) и соединение (3а), соответственно.

Реакцию переэтерификации фторированного сложного эфира (1) и соединения (2) можно проводить при известных реакционных условиях. Указанную реакцию можно проводить в присутствии растворителя (в дальнейшем называемого «растворителем 1»). Однако предпочтительно проводить реакцию в отсутствие растворителя 1, поскольку посредством этого можно использовать неочищенную жидкость без дополнительной обработки на последующей стадии фторирования. Когда необходимо использовать растворитель 1, предпочтительно, чтобы он представлял собой дихлорметан, хлороформ, триэтиламин или смешанный растворитель из триэтиламина и тетрагидрофурана. Количество растворителя 1, которое необходимо использовать, предпочтительно, составляет от 50 до 500 мас.% от общего количества фторированного сложного эфира (1) и соединения (2).

При взаимодействии фторированного сложного эфира (1) с соединением (2) будет образовываться HF. В качестве поглотителя HF в реакционную систему можно ввести, например, фторид щелочного металла (предпочтительным является NaF или KF) или триалкиламин. Однако, предпочтительно, чтобы в отсутствие такого поглотителя HF, HF удаляли из реакционной системы потоком азота, поскольку таким образом можно использовать неочищенную жидкость без дополнительной обработки на следующей стадии фторирования. В случае, когда необходимо использовать фторид щелочного металла, его мольное количество, предпочтительно, превышает количество фторированного сложного эфира (1) в 1-10 раз.

Температура реакции фторированного сложного эфира (1) с соединением (2), предпочтительно, составляет, по меньшей мере, -50°С и, предпочтительно, самое большее +100°С или самое большее равна температуре кипения растворителя в обычном случае. В случае, когда в отсутствие поглотителя HF, HF удаляют из реакционной системы потоком азота, температура реакции, предпочтительно, составляет, по меньшей мере, +20°С и самое большее +100°С или самое большее равна температуре кипения растворителя. Далее время реакции, соответственно, может изменяться в зависимости от скорости подачи исходных материалов и количеств соединений, которые необходимо использовать для реакции. Реакционное давление (избыточное давление, то же самое используется в дальнейшем), предпочтительно, составляет от атмосферного давления до 2 МПа.

Состав соединений, содержащихся в реакционном продукте стадии переэтерификации, может произвольно изменяться в зависимости от количеств соединений, израсходованных при взаимодействии, или реакционной способности соединений. То есть реакционный продукт на стадии переэтерификации может содержать в добавление к соединению (3) непрореагировавшие фторированный сложный эфир (1), соединение (2) и фторированный ацилфторид (4), который может присутствовать в качестве промежуточного продукта реакции. В том числе, если в реакционном продукте содержится соединение (2), его лучше удалить. С другой стороны, присутствие в реакционном продукте фторированного ацилфторида (4) не будет оказывать неблагоприятного воздействия на следующую после стадии переэтерификации стадию фторирования, и его предпочтительнее не удалять, поскольку он может являться жидкой фазой для стадии фторирования. В данном случае, когда стадию фторирования проводят в присутствии в реакционной системе фторированного ацилфторида (4), фторированный ацилфторид (4), вероятно, также будет присутствовать в реакционном продукте стадии фторирования. Однако если вышеуказанный непрерывный способ проводят в присутствии фторированного ацилфторида (4), соединение (2) и фторированный ацилфторид (4) будут реагировать на стадии переэтерификации во втором цикле с образованием соединения (3). Далее в случае, когда в неочищенном реакционном продукте на стадии переэтерификации присутствует непрореагировавший фторированный сложный эфир (1), предпочтительно не удалять такой фторированный сложный эфир (1), поскольку он может являться жидкой фазой для стадии фторирования. То есть в случае, когда реакционный продукт на стадии переэтерификации, кроме соединения (3), содержит фториованный ацилфторид (4) или фторированный сложный эфир (1), его можно использовать на стадии фторирования без дополнительной обработки.

В настоящем изобретении содержание фтора в соединении (3), предпочтительно, составляет, по меньшей мере, 30 мас.%, посредством чего можно легко осуществить фторирование в жидкой фазе, являющееся выгодным методом фторирования. Если содержание фтора в соединении (3) составляет менее 30 мас.%, растворимость в жидкой фазе имеет тенденцию быть недостаточной для метода фторирования в жидкой фазе. Содержание фтора в соединении (3) может регулироваться произвольно в зависимости от типа жидкой фазы, но, более предпочтительно, содержание фтора составляет от 30 до 86 мас.%, еще более предпочтительно, от 30 до 76 мас.%.

Более того, молекулярная масса соединения (3), предпочтительно, составляет от 200 до 1000. Если молекулярная масса соединения (3) равна менее 200, температура кипения соединения (3) стремится быть низкой, посредством чего в способе фторирования имеется вероятность испарения соединения (3), и выход продукта фторирования имеет тенденцию снизиться. Далее имеется вероятность протекания реакции разложения. С другой стороны, если молекулярная масса превышает 1000, имеется вероятность, что растворимость в жидкой фазе снизится, когда необходимо осуществлять метод фторирования в жидкой фазе, или очистка имеет тенденцию быть затруднительной.

Соединение (3), полученное на вышеуказанной стадии переэтерификации, подвергают фторированию на стадии фторирования с получением фторированного сложного эфира (1). Фторированный сложный эфир (1) может представлять собой соединение, использующее соединение (3) в частично фторированном виде. Однако, предпочтительно, фторированный сложный эфир (1) представляет собой соединение, имеющее соединение (3) полностью фторированным, поскольку трудно контролировать положение для введения атомов фтора при реакции фторирования, и поскольку посредством этого способ по настоящему изобретению можно осуществить в виде непрерывного процесса, который будет описан далее. Однако в случае, когда в продукте стадии фторирования содержатся непрореагировавшее соединение (3) и частично фторированное соединение (3), непрерывный способ можно осуществить без их дополнительной обработки, посредством чего можно увеличить долю фтора, введенного в соединение (3).

С точки зрения выхода и эффективности протекания реакции реакцию фторирования на стадии фторирования, предпочтительно, проводят в жидкой фазе. Реакцию фторирования можно осуществить ECF методом, методом кобальтового фторирования или методом фторирования в газовой фазе. Однако метод жидкофазного фторирования, где фторирование осуществляют в жидкой фазе, с точки зрения выхода продукта реакции и эффективности осуществления реакции, является очень выгодным методом и, таким образом, предпочтительным.

Метод жидкофазного фторирования, предпочтительно, осуществляют, вводя газообразный фтор в жидкую фазу, в которой присутствует соединение (3). В таком случае газообразный фтор можно использовать без дополнительной подготовки или можно применять газообразный фтор, разбавленный инертным газом. В качестве инертного газа предпочтительным является газообразный азот или газообразный гелий, и по экономическим причинам газообразный азот является особенно предпочтительным. Количество фтора в газообразном азоте особым образом не ограничивается, и оно, предпочтительно, составляет, по меньшей мере, 10 об.% с точки зрения эффективности и, особенно предпочтительно, по меньшей мере, 20 об.%.

Предпочтительно, жидкую фазу образует растворитель, который, по существу, содержит C-F связь и не содержит С-Н связь. В качестве такого растворителя (в дальнейшем называемого «растворителем 2») предпочтительно использовать растворитель, который способен растворить, по меньшей мере, 1 мас.% соединения (3), особенно растворитель, который способен растворить, по меньшей мере, 5 мас.%. Далее растворитель 2, предпочтительно, представляет собой фторированный сложный эфир (1) или фторированный ацилфторид (4) в качестве продукта в стадии фторирования. В случае, когда фторированный сложный эфир (1) используют в качестве растворителя 2, существует положительный момент, состоящий в том, что последующая переработка после реакции является легкой. Кроме того, в случае, когда в качестве растворителя для реакции используется фторированный ацилфторид (4), и в случае, когда необходимо провести вышеуказанную стадию пиролиза, такую стадию можно осуществить, не отделяя фторированный ацилфторид (4) от продукта стадии фторирования.

В случае, когда в качестве растворителя 2 используют растворитель, отличный от фторированного сложного эфира (1) и фторированного ацилфторида (4), он может представлять собой, например, перфторалкан, перфторэфир, перфторполиэфир, хлорфторуглеводород, хлорфторполиэфир, перфторалкиламин или инертную жидкость. Количество растворителя 2, предпочтительно, в пять раз по массе, особенно предпочтительно, от 10 до 100 раз по массе превышает количество соединения (3).

В качестве реакционной системы для реакции фторирования можно указать периодическую систему или непрерывную систему. В качестве непрерывной системы можно указать следующие ниже непрерывную систему 1 и непрерывную систему 2. Однако, с точки зрения выхода продукта реакции и селективности, предпочтительной является реакционная система 2. Далее газообразный фтор, разбавленный инертным газом, таким как газообразный азот, можно использовать в любом случае, где фторирование осуществляют в периодической системе или в непрерывной системе. В следующем ниже описании газообразный фтор может быть разбавленным газообразным фтором.

Непрерывная система 1

Способ, в котором соединение (3) и растворитель 2 загружают в реактор, начинают перемешивание и после регулирования температуры и давления до предварительно определенных реакционной температуры и реакционного давления для осуществления реакции непрерывно подают газообразный фтор или газообразный фтор и растворитель 2.

Непрерывная система 2

Способ, в котором растворитель 2 загружают в реактор, начинают перемешивание и после регулирования температуры и давления до предварительно предписанных реакционной температуры и реакционного давления непрерывно и одновременно в предварительно определенном молярном отношении подают соединение (3) и газообразный фтор.

Когда соединение (3) подают в непрерывную систему 2, предпочтительно подавать соединение (3), разбавленным растворителем 2, посредством чего можно повысить селективность и понизить количество побочных продуктов. Кроме того, когда соединение (3) разбавляют растворителем в непрерывной системе 2, отношение количества растворителя 2 к количеству соединения (3), предпочтительно, составляет, по меньшей мере, 5 по массе, особенно предпочтительно, по меньшей мере, 10 по массе. Данное условие является таким же также в случае, когда в непрерывной системе 2 используют соединение (3а).

Относительно количества фтора, который необходимо использовать в реакции фторирования, в любом случае, когда реакцию осуществляют в периодической системе или в непрерывной системе, предпочтительно, чтобы газообразный фтор всегда присутствовал в избытке по отношению к атомам водорода, которые необходимо фторировать, и особенно предпочтительно с точки зрения селективности, чтобы газообразный фтор использовали так, чтобы он превышал, по меньшей мере, в 1,5 раза по эквиваленту (т.е., по меньшей мере, в 1,5 раза по молям).

Реакционная температура для реакции фторирования обычно составляет, предпочтительно, по меньшей мере, -60°С и самое большее равна температуре кипения соединения (3), и с точки зрения выхода продукта реакции, селективности и применимости в промышленности, особенно предпочтительно, она составляет от -50°С до +100°С, еще более предпочтительно, от -20°С до +50°С. Реакционное давление для реакции фторирования особым образом не ограничивается, и с точки зрения выхода продукта реакции, селективности и применимости в промышленности, особенно предпочтительным является давление от атмосферного до 2 МПа.

Далее для того, чтобы дать возможность реакции фторирования протекать эффективно, предпочтительно в реакционную систему добавить соединение, содержащее С-Н связь, или провести облучение ультрафиолетом на более поздней стадии реакции. Например, в реакции, осуществляемой в периодической системе, предпочтительно добавлять соединение, содержащее С-Н связь, в реакционную систему или осуществлять облучение ультрафиолетом на более поздней стадии реакции фторирования. В реакции, осуществляемой в непрерывной системе, предпочтительно подавать соединение, содержащее С-Н связь, или облучать ультрафиолетовым светом, в то же время продолжая подавать газообразный фтор при завершении введения соединения (3). Посредством этого можно эффективно фторировать соединение (3), присутствующее в реакционной системе, посредством чего можно заметно увеличить скорость реакции.

В качестве соединения, содержащего С-Н связь, предпочтительным является ароматический углеводород и, особенно предпочтительным, например, является бензол или толуол. Количество соединения, содержащего С-Н связь, предпочтительно, составляет от 0,1 до 10 мол.%, особенно предпочтительно, от 0,1 до 5 мол.%, исходя из количества атомов водорода в соединении (3).

Соединение, содержащее С-Н связь, добавляют в таком состоянии, что в реакционной системе присутствует газообразный фтор. Далее в случае, когда добавляют соединение, содержащее С-Н связь, предпочтительно поддерживать повышенное давление в реакционной системе. Создаваемое давление, предпочтительно, составляет от 0,01 до 5 МПа.

В стадии фторирования, если происходит реакция замещения атомов водорода атомами фтора, в качестве побочного продукта будет образовываться HF. Для удаления побочного продукта HF предпочтительно в реакционную систему вводить поглотитель HF или осуществлять контакт поглотителя HF с выходящими газами на выходе газов из реактора. В качестве такого поглотителя HF можно использовать поглотители, указанные выше, и предпочтительным является NaF.

В случае, к