Контейнеры, охлаждаемые за счет диффузионного испарения

Иллюстрации

Показать все

Контейнер, охлаждаемый за счет диффузионного испарения, содержащий: корпус контейнера, имеющий одну или несколько стенок, причем, по меньшей мере, 5% поверхности участка одной или нескольких стенок содержит матрицу, обеспечивающую диффузионное испарение, причем матрица содержит пористый гидрофобный материал, при этом матрица обеспечивает возможность прохода через нее небольших количеств молекул летучего пара, образуемого жидкостью, испарение которой обеспечивает охлаждение контейнера. Использование данного изобретения обеспечивает возможность охлаждения контейнера для напитка без использования механических насосов. 9 н. и 76 з.п. ф-лы, 22 ил., 3 табл.

Реферат

Данное изобретение относится к устройству и способу создания контейнера или укупорочного средства, используемого для охлаждения жидкости посредством диффузионного испарения.

Испарительное охлаждение как жилищ, так и воды начали использовать в Древнем Египте, и впоследствии оно распространилось на восток через Ближний и Средний Восток и Иран до севера Индии, на запад через Северную Африку в южную Испанию и другие регионы, страдающие от жаркого и сухого климата. При начальном использовании этого процесса неглазурованные глиняные горшки использовались в течение столетий для хранения воды, при этом дополнительное преимущество заключалось в охлаждении жидкого водного содержимого за счет абсорбции и впитывания воды в наружную глиняную поверхность с последующим испарением воды с этой поверхности. К сожалению, испарение непосредственно с наружной глиняной поверхности в конце концов приводило к образованию налета и уменьшению эффективности охлаждения, поскольку минералы накапливались на данной поверхности, уменьшая проницаемость по отношению к жидкостям и снижая давление пара, образованного жидкостью.

Применялись другие способы, основанные на уменьшении передачи тепла из окружающей среды к жидкости. Способы, которые использовались, предусматривали применение вакуумных термосов и термосов с воздушным зазором и изоляционных оболочек из вспененного материала. Дополнительные устройства, в которых использовался лед, замороженные холодные брикеты или палочки, применялись для компенсации нагрева, вызванного окружающей средой, и возврата жидкости в контейнере к температуре окружающей среды. Во всех этих случаях конструкция системы требует того, чтобы жидкое содержимое, отдельная камера и/или оболочка бутылки подвергались охлаждению, что может привести к проблемам излишней массы в дополнение к потере рабочего объема жидкости в контейнере. Во всех таких способах температура жидкости будет приходить в равновесие и в конце концов возвращаться к температуре окружающей среды.

Диффузионное испарение определяют как комбинацию проникновения пара и испарения через матрицу. С 1987 г. диффузионное испарение через мембрану получило широкое распространение в химической промышленности для разделения и регенерации смесей жидкостей (Chemical Engineering Progress, pp.45-52, July 1992). Способ отличается введением барьерной матрицы между жидкой и газообразной фазами. Жидкость находится в фактическом контакте с одной стороной матрицы. Перенос массы пара происходит избирательно к стороне матрицы, контактирующей с газом, что приводит к потере жидкости или к потере выбранных летучих компонентов жидкости и потере скрытой теплоты парообразования. Процесс назван диффузионным испарением вследствие уникальной комбинации "проникновения" пара через пористую матрицу и "парообразования", перехода жидкости в паровую фазу. Без добавления тепла к жидкости температура падает вследствие скрытой теплоты парообразования до тех пор, пока не будет достигнута равновесная температура, при которой тепло, поглощаемое из окружающей среды, будет равно скрытой теплоте, теряемой вследствие испарения жидкости на поверхности матрицы или в порах.

В патенте США 5946931 раскрыто использование устройства с политетрафторэтиленовой мембраной для испарительного охлаждения, в котором используется поток текучей среды с ламинарным течением над мембраной для охлаждения присоединенного устройства или окружающей среды. В патенте США 4824741 раскрыто использование матрицы для охлаждения посредством диффузионного испарения, предназначенной для охлаждения поверхности пластины гальванического элемента. Влажная пластина может быть изготовлена из некатализированного, скрепленного политетрафторэтиленом, электродного материала, пригодного пористого спекшегося порошка, пористых волокон или даже из пористой полимерной пленки. В JP 2002-089755 (реферат, чертеж) раскрыто использование испарительной трубки, в частности гибкой трубки, охлаждаемой за счет диффузионного испарения, в которой, по меньшей мере, один из множества материалов является пористым. В патенте США 4007601 раскрыто использование испарительного охлаждения в циркуляционном пористом полом теплообменнике для получения охлажденной текучей среды.

Задачей изобретения является создание упрощенной системы охлаждения посредством диффузионного испарения для контейнеров для напитков и жидкостей, в которой не используются никакие механические насосы для подачи жидкости к поверхности матрицы, обеспечивающей диффузионное испарение, и которая не основана на действии разрежения для повышения эффективности охлаждения, что было присуще системам согласно известному уровню техники. Контейнер определяют как любое устройство или оболочку, которое удерживает жидкость независимо от того, является ли оно открытым или закрытым по отношению к внешней среде.

Поставленная задача решается всеми признаками формулы изобретения.

В заявленном изобретении предусмотрено использование матрицы, обеспечивающей диффузионное испарение, которая предпочтительно образует часть тела или корпуса контейнера и образует от 5 до 100% всей площади поверхности контейнера. В этом случае жидкое содержимое контейнера охлаждается непосредственно на поверхности раздела между окружающей жидкостью и мембраной вследствие скрытой теплоты парообразования воды. Полученный в результате пар, образуемый жидкостью, теряется за счет выхода его через матрицу в окружающую среду или в коллектор или уловитель, такой, который может содержать абсорбирующий материал. К предпочтительным контейнерам относятся бутылки, банки, оплетенные бутыли и пакеты. В некоторых вариантах осуществления контейнеры могут быть встроены в конструкции большего размера, включая дома, раздаточные устройства и предметы одежды.

В одном варианте осуществления создан контейнер, охлаждаемый за счет диффузионного испарения, содержащий:

корпус контейнера, имеющий одну или несколько стенок,

причем, по меньшей мере, 5% поверхности участка одной или нескольких стенок содержат матрицу, обеспечивающую диффузионное испарение, причем матрица содержит пористый гидрофобный материал, при этом матрица обеспечивает возможность прохода через нее небольших количеств молекул летучего пара, образуемого жидкостью, испарение которой обеспечивает охлаждение контейнера.

Матрица дополнительно содержит тонкий гидрофобный или олеофобный пористый материал, присоединенный путем ламинирования к пористому гидрофобному материалу или осажденный на пористый гидрофобный материал.

Матрица расположена на корпусе контейнера таким образом, что слой пористого гидрофобного материала обращен к внутреннему пространству контейнера.

Предпочтительно, по меньшей мере, 10% поверхности участка одной или нескольких стенок содержат указанную матрицу.

Контейнер дополнительно содержит основание, прикрепленное к одной или нескольким стенкам.

Кроме того, контейнер дополнительно содержит восстанавливаемый наружный слой или наружный слой одноразового применения, расположенный непосредственно рядом с, по меньшей мере, частью корпуса контейнера, причем слой содержит осушитель или абсорбирующий материал, который абсорбирует влагу или другую текучую среду, образующуюся в результате диффузионного испарения.

Предпочтительно, матрица содержит внутренний слой, содержащий пористый материал с высокой степенью гидрофобности, размещенный между двумя наружными слоями пористого гидрофобного материала.

При этом внутренний слой имеет размер пор и толщину, которые меньше размера пор и толщины наружных слоев.

Внутренний слой может содержать политетрафторэтилен и наружный слой может содержать полиэтилен.

Контейнер предпочтительно содержит множество опорных выступов.

Предпочтительно, матрица может состоять из полых или вспененных частиц, которые сплавлены или склеены вместе для уменьшения удельной теплопроводности матрицы и потери эффективности охлаждения за счет диффузионного испарения.

Контейнер дополнительно содержит изолирующую гильзу, окружающую, по меньшей мере, участок одной или нескольких стенок. При этом изолирующая гильза содержит пористый материал, является в основном трубчатой, при этом в стенке выполнено одно или несколько отверстий, в результате чего гильза поворачивается вокруг контейнера для избирательного закрытия или открытия для воздействия участков матрицы, обеспечивающей диффузионное испарение.

Гильза для осушителя и/или материала для фазового превращения может быть размещена вокруг или на одном конце контейнера.

В еще одном варианте осуществления создан контейнер для жидкостей, содержащий:

корпус контейнера, имеющий одну или несколько стенок,

причем, по меньшей мере, участок одной или нескольких стенок содержит гидрофобную пористую матрицу, обеспечивающую прохождение пара из жидкости в контейнере так, что диффузионное испарение или испарение пара способствует охлаждению жидкости в контейнере,

восстанавливаемый наружный слой или наружный слой одноразового применения, расположенный непосредственно рядом с, по меньшей мере, участком корпуса контейнера, при этом слой содержит осушитель или абсорбирующий материал, который абсорбирует влагу или другую текучую среду, образующуюся в результате диффузионного испарения или испарения.

Пористая матрица предпочтительно содержит мембрану, содержащую пористую спеченную матрицу. При этом пористая матрица выполнена из полимера, выбранного из группы, включающей полиэтилен, полипропилен, сополимеры этилена, полиметилпентены, полибутилены и их смеси; пористая матрица выполнена из полимера, выбранного из группы, включающей политетрафторэтилен, поливинилфторид, поливинилиденфторид, полиэтилентетрафторэтилен, фторированный этилен пропилен, полиперфторалкоксиэтилен, поливинилхлорид, хлорированный поливинилхлорид, поливинилдихлорид и их смеси.

Пористая матрица выполнена из смеси фторированной добавки с нефторированной смолой, силикона или фторсиликона.

Пористая матрица может иметь толщину от 0,025 до 7.0 мм, от 0,05 до 3.0 мм.

Пористая матрица может иметь размер пор от 0,05 до 500 мкм, от 0,1 до 100 мкм.

Пористая матрица может иметь пористость в процентах от 10 до 90%, от 30 до 70%.

Предпочтительно, участок одной или нескольких стенок составляет от 5 до 100% всей площади поверхности контейнера.

Пористая матрица может состоять из полых или вспененных частиц, которые сплавлены или склеены вместе для уменьшения удельной теплопроводности матрицы.

Предпочтительно, гидрофобная пористая матрица имеет складчатую структуру.

В другом варианте осуществления создан контейнер для жидкостей, содержащий:

корпус контейнера, имеющий одну или несколько стенок,

причем, по меньшей мере, участок одной или нескольких стенок содержит гидрофобную пористую матрицу, обеспечивающую прохождение пара из жидкости в контейнере так, что диффузионное испарение или испарение пара способствует охлаждению жидкости в контейнере,

изолирующую гильзу, окружающую, по меньшей мере, участок одной или нескольких стенок.

В еще другом варианте осуществления создан контейнер для жидкостей, содержащий:

корпус контейнера, имеющий одну или несколько стенок,

причем, по меньшей мере, участок одной или нескольких стенок содержит пористую матрицу, имеющую первую поверхность и вторую поверхность, причем первая поверхность является гидрофобной поверхностью, а вторая поверхность является гидрофильной поверхностью, при этом пористая матрица обеспечивает прохождение пара из жидкости в контейнере так, что диффузионное испарение или испарение пара способствует охлаждению жидкости в контейнере.

Пористая матрица расположена таким образом, что гидрофильный слой обращен к внутреннему пространству контейнера.

Пористая матрица содержит мембрану из пористого гидрофильного материала, присоединенного путем ламинирования к пористому гидрофобному материалу.

Предпочтительно, второй поверхности придается гидрофильность с помощью процесса обработки, выбранного из группы, включающей плазменное травление, химическое травление, пропитку смачивающими веществами и нанесение гидрофильных покрытий.

В одном варианте осуществления создана охлаждающая рубашка для контейнера, содержащая:

корпус рубашки, имеющий

наружный слой, содержащий гидрофобный пористый материал, и

внутренний слой, имеющий одинаковую протяженность с наружным слоем и сообщающийся по текучей среде с наружным слоем, причем внутренний слой приспособлен для удерживания летучей жидкости,

при этом корпус рубашки имеет такую форму, которая обеспечивает возможность контакта внутреннего слоя, по меньшей мере, с частью контейнера.

Внутренний слой может содержать подобный губке материал, одно или несколько пустых пространств.

Внутренний слой дополнительно содержит отверстие, выполненное с возможностью герметичного закрытия, для обеспечения возможности пополнения и герметизации внутреннего слоя.

Корпус охлаждающей рубашки является в основном цилиндрическим.

Охлаждающая рубашка дополнительно содержит средний слой между внутренним и наружным слоями.

В еще одном варианте осуществления создан охлаждающий предмет одежды, содержащий:

наружный слой, содержащий материал, обеспечивающий диффузионное испарение, содержащий матрицу, обеспечивающую диффузионное испарение и обладающую гидрофобностью, и

внутренний слой,

причем наружный слой сообщается по текучей среде с массой жидкого холодоносителя, и внутренний слой находится в тепловом контакте с пользователем предмета одежды.

Охлаждающий предмет одежды дополнительно содержит средний слой, содержащий тонкий опорный, образующий барьер для жидкостей слой для слоя, обеспечивающего диффузионное испарение.

Предпочтительно, охлаждающий предмет одежды может включаться или встраиваться в предмет форменной одежды или защитный костюм.

Охлаждающий предмет одежды дополнительно содержит трубку, сообщающуюся по текучей среде с массой жидкого холодоносителя, которая позволяет пользователю предмета одежды потреблять жидкий холодоноситель.

Охлаждающий предмет одежды дополнительно содержит восстанавливаемый наружный слой или наружный слой одноразового применения, содержащий осушитель или абсорбирующий материал, который абсорбирует влагу или другую текучую среду, образующуюся в результате диффузионного испарения.

При этом наружный слой собран в складки для увеличения площади поверхности для диффузионного испарения, средний слой представляет собой барьер для потенциально опасных биологических или химических материалов, внутренний слой содержит зоны с узором или змеевидные зоны, образованные термосваркой.

В другом варианте осуществления создана испарительная трубка или соломинка, охлаждаемая за счет диффузионного охлаждения, содержащая:

удлиненную полую трубчатую конструкцию, содержащую наружный слой, обеспечивающий диффузионное испарение, содержащий гидрофобный материал, имеющий одинаковую протяженность с пористым внутренним слоем, содержащим гидрофильный материал, причем внутренний слой образует полость, через которую проходит жидкость.

Причем во время использования трубки жидкость проникает в пористый внутренний слой, образуя жидкостную пробку, которая существенно уменьшает количество воздуха, поступающего в трубчатую конструкцию через наружный слой.

Предпочтительно, трубчатая конструкция образована из гидрофобной пористой трубки, внутренняя поверхность которой химически обрабатывается для придания ей гидрофильности.

Трубка может быть изготовлена из двух кусков ламинированного листового материала и затем расширена с помощью вставки или обернута пластиковой или металлической обмоткой для закрытия прохода для жидкости.

Предпочтительно, одна или несколько поверхностей покрыты осушителем и материалом для фазового превращения в поддерживающей гильзе для ускорения диффузионного испарения и предотвращения локального резкого повышения температуры.

В еще другом варианте осуществления создана гибкая трубка, содержащая множество материалов, в которой, по меньшей мере, один из множества материалов является пористым, которая представляет собой композит, изготовленный из, по меньшей мере, одного гибкого материала и, по меньшей мере, одного жесткого материала с помощью сварки, экструзии, совместной экструзии, ламинирования и клея.

При этом множество материалов размещены друг относительно друга или в виде спиралей, или в виде полосок, или чередующимся образом, причем жесткий материал является или пористым, или гидрофобным, или гидрофильным, или олеофобным, гибкий материал является или пористым, или гидрофобным, или гидрофильным, или олеофобным.

Согласно изобретению трубка или соломинка, охлаждаемая за счет диффузионного испарения, представляет собой удлиненную полую трубчатую конструкцию, имеющую наружный слой, обеспечивающий диффузионное испарение, содержащий гидрофобный материал, имеющий одинаковую протяженность с пористым внутренним слоем, содержащим гидрофильный материал, причем внутренний слой образует полость, через которую может проходить жидкость. В одном варианте осуществления трубчатая конструкция образована из гидрофобной пористой трубки, в которой внутренняя поверхность трубки была химически обработана для придания ей гидрофильности, в результате чего образуется внутренний слой.

Согласно изобретению охлаждающая рубашка для контейнера содержит корпус рубашки, имеющий наружный слой, содержащий гидрофобный пористый материал, и внутренний слой, имеющий одинаковую протяженность с наружным слоем и сообщающийся по текучей среде с наружным слоем, причем внутренний слой приспособлен для удерживания летучей жидкости, при этом корпус рубашки имеет форму, обеспечивающую возможность контакта внутреннего слоя, по меньшей мере, с частью контейнера.

В предпочтительных вариантах осуществления контейнеры и охлаждающие рубашки могут дополнительно содержать восстанавливаемый наружный слой или наружный слой одноразового использования, расположенный непосредственно рядом или в контакте со слоем, обеспечивающим диффузионное испарение, содержащий осушитель, абсорбирующий материал или другое вещество, которое абсорбирует или адсорбирует влагу или другую текучую среду, образующуюся в результате диффузионного испарения.

Согласно изобретению охлаждающий предмет одежды содержит, по меньшей мере, два слоя: наружный слой, содержащий материал, обеспечивающий диффузионное испарение, содержащий гидрофобный ламинат, обеспечивающий диффузионное испарение; возможный средний слой, имеющий тонкий опорный, образующий барьер для жидкостей слой для слоя, обеспечивающего диффузионное испарение, и внутренний слой; причем наружный слой сообщается по текучей среде с массой жидкого холодоносителя, и внутренний слой находится в тепловом контакте с пользователем предмета одежды. Пользователь предмета одежды охлаждается за счет диффузионного испарения жидкого холодоносителя через материал наружного слоя, обеспечивающий диффузионное испарение. В предпочтительном варианте осуществления охлаждающий предмет одежды включен или встроен в предмет форменной одежды, такой как защитный предмет одежды или костюм. Предмет одежды может дополнительно содержать трубку, сообщающуюся по текучей среде с массой жидкого холодоносителя, которая позволяет носителю предмета одежды орально потреблять жидкий холодоноситель, предпочтительно воду. Для удобства пользователя трубка может быть гибкой, выполненной из, по меньшей мере, одного гибкого материала и, по меньшей мере, одного жесткого материала. В предпочтительном варианте осуществления предмет одежды дополнительно содержит восстанавливаемый наружный слой или наружный слой одноразового применения, содержащий осушитель или абсорбирующий материал, который абсорбирует влагу или другую текучую среду, образующуюся в результате диффузионного испарения.

В предпочтительных вариантах осуществления также может иметь место один или несколько из нижеприведенных признаков: предмет одежды находится в тепловом контакте или за счет прямого контакта с кожей или за счет контакта через кусок ткани или материала, причем ткань или материал носит пользователь предмета одежды, и/или указанная ткань или материал представляет собой часть самого предмета одежды; наружный слой собран в складки для увеличения площади поверхности для диффузионного испарения; средний слой представляет собой барьер для потенциально опасных биологических или химических материалов; и внутренний слой содержит зоны с узором или змеевидные зоны, образованные термосваркой.

В соответствующем варианте осуществления предмет одежды может дополнительно содержать резервуар или сообщаться по текучей среде с резервуаром, в котором содержится дополнительный жидкий холодоноситель. Холодоноситель может подаваться в полые пространства, образованные между матрицей, обеспечивающей диффузионное испарение, и средним слоем из резервуара под действием силы тяжести или за счет впитывания. Предпочтительные жидкие холодоносители содержат воду, спирты и их смеси.

В соответствующих вариантах осуществления также предусмотрены контейнеры, такие как бутылки или ранцы, содержащие материал, обеспечивающий диффузионное испарение, как описано ниже.

На фиг.1А и 1 В изображена бутылка на виде в плане и на виде с пространственным разделением элементов, в которой по существу плоская пористая матрица может быть обернута вокруг корпуса бутылки или насажена на корпус бутылки подобно цилиндру.

На фиг.2 изображен выполненный с частичным пространственным разделением элементов вид многослойной конструкции согласно одному варианту осуществления, содержащей тонкую мембрану, расположенную в виде слоя между двумя макропористыми слоями.

На фиг.3А, 3В, 3С и 3D изображен вид в плане и вид с местным разрезом вариантов осуществления, в которых опорные выступы увеличивают жесткость пористой матрицы.

На фиг.4 изображен контейнер, содержащий наружный пористый изолирующий слой. Этот слой уменьшает непосредственный радиационный нагрев внутренней поверхности бутылки, но тем не менее обеспечивает возможность потока при диффузионном испарении и потери скрытой теплоты.

На фиг.5 изображен один вариант осуществления контейнера, содержащего собранную в складки матрицу, которая служит в качестве средства увеличения площади эффективной охлаждающей поверхности контейнера. Это создает возможность получения большей площади поверхности контейнера и уменьшения времени охлаждения жидкости в контейнере.

На фиг.6А и 6В изображен один вариант осуществления контейнера на виде в плане и виде с местным разрезом, содержащего регулируемую гильзу для ограничения величины потока при диффузионном испарении и потерь жидкости из контейнера. Эта гильза предпочтительно также уменьшает непосредственный радиационный нагрев внутренней поверхности бутылки, но тем не менее обеспечивает возможность потока при диффузионном испарении и потери скрытой теплоты.

На фиг.7 изображено поперечное сечение двухслойной гильзы, обеспечивающей диффузионное испарение, содержащей губчатый или подобный губке материал, который может быть использован вместе с контейнером.

На фиг.8 изображен вид с местным разрезом другого варианта осуществления охлаждающей рубашки, обеспечивающей диффузионное испарение, которая используется на центральном корпусе, содержащем жидкость, такую как газированный напиток.

На фиг.9 изображен график зависимости охлаждения от времени, относящийся к равновесному состоянию при охлаждении за счет диффузионного испарения при использовании различных пористых матриц.

На фиг.10 изображен один вариант осуществления чашки для питья, охлаждаемой за счет диффузионного испарения.

На фиг.11А, 11В и 11С изображен один вариант осуществления контейнера для хранения, охлаждаемого за счет диффузионного испарения (например, охладителя), имеющего оболочку корпуса, обеспечивающую диффузионное испарение, и крышку, обеспечивающую диффузионное испарение.

На фиг.12 изображен предпочтительный резервуар для выдачи жидкости, содержащий матрицу, обеспечивающую диффузионное испарение.

На фиг.13 изображен один вариант осуществления гидратного ранца, содержащего выполненный со складками, охлаждаемый за счет диффузионного испарения резервуар, заполненный жидкостью.

На фиг.14 изображен охлаждаемый за счет диффузионного испарения пакет для питья в возможном пористом закрепляемом ремнями держателе из ткани. Кроме того, показана смачиваемая изнутри, охлаждаемая за счет диффузионного испарения трубка, которая может быть использована для питья или выдачи с немедленным охлаждением вместе с показанным пакетом или с другими контейнерами.

На фиг.15 изображена куртка, охлаждаемая за счет диффузионного испарения, в соответствии с одним вариантом осуществления.

На фигурах изображены предпочтительные варианты осуществления, и предусмотрено, что они представлены просто в качестве примеров и показывают определенные варианты осуществления. С этой целью ряд фигур содержит возможные признаки, которые необязательно должны быть включены в какой-либо конкретный вариант осуществления изобретения, и форму, тип или определенную конфигурацию показанного контейнера или укупорочного средства не следует рассматривать как ограничивающие изобретение.

Раскрыты контейнеры и оболочки, в которых используется охлаждение за счет диффузионного испарения для охлаждения жидкости или предмета, находящегося в таком контейнере или оболочке. В предпочтительных вариантах осуществления контейнеры состоят из пористых вентилирующих материалов, также называемых пористыми матрицами. В одном варианте осуществления контейнер образует часть охлаждающего предмета одежды, обеспечивающего диффузионное испарение.

Пористые матрицы могут быть изготовлены из любого из большого множества материалов, включая пластики, эластомеры, металлы, стекло и керамику, но материалы не ограничены вышеуказанными. Также могут быть использованы комбинации пластиков, эластомеров, стекол или керамики. Комбинации могут быть "тесными", такими как полученные из смешивания двух или более компонентов, которые должны стать совместно спеченными, или могут быть слоистыми, такими как образованные из ламинированных структур, полученных из двух или более материалов. Комбинации различных пластиков, эластомеров, металлов, стекол или керамических материалов также могут быть совместно спечены или изготовлены в виде ламинированных структур, предназначенных для использования в контейнерах, обеспечивающих диффузионное испарение. Предпочтительные пластики для пористых вентилирующих материалов включают термопластичные полимеры, термоотверждающиеся эластомеры и термопластичные эластомеры, но не ограничены вышеуказанными материалами. К предпочтительным термопластичным полимерам относятся полиэтилен низкой плотности (ПЭНП), линейный полиэтилен низкой плотности (LLDPE), полиэтилен средней плотности (MDPE), полиэтилен высокой плотности (HDPE), полиэтилен с ультравысокой молекулярной массой (UHMWPE), полипропилен (РР) и его сополимеры, полиметилпентен (РМР), полибутилентерефталат (РВТ), полиэтилентерефталат (PET), полиэтилентерефталатгликоль модифицированный (PETG), полиэфирэфиркетон (PEEK), сополимер этилена и винилацетата (EVA), полиэтиленвиниловый спирт (EVOH), полиацеталь, полиакрилонитрил (PAN), сополимер акрилонитрила, бутадиена и стирола (ABS), сополимер акрилонитрила, стирола и акрилата (AES), сополимер акрилонитрила, этилена, пропилена и стирола (ASA), полиакрилаты, полиметакрилаты, полиметилметакрилат (РММА), поливинилхлорид (ПВХ), хлорированный поливинилхлорид (CPVC), поливинилдихлорид (PVDC), сополимер тетрафторэтилена и гексафторпропилена (FEP), поливинилфторид (PVF), поливинилиденфторид (PVDF), политетрафторэтилен (ПТФЭ), сложный полиэфир, целллюлозы, сополимер этилена и тетрафторэтилена (ETFE), полиперфторалкоксиэтилен (PFA), найлон 6 (N6), полиамид, полиимид, поликарбонат, полиэфирэфиркетон (PEEK)x/, полистирол (PS), полисульфон и полиэфирсульфон (PES), но предпочтительные термопластичные полимеры не ограничены вышеуказанными. К предпочтительным термоотверждающимся эластомерам относятся сополимер бутадиена и стирола, полибутадиен (BR - бутадиеновый каучук), сополимер этилена и пропилена, сополимер акрилонитрила и бутадиена (NBR - нитрильный каучук), полиизопрен, полихлоропрен, силикон, фторсиликон, уретаны, гидрированный нитрильный каучук (HNBR), полинорборен (PNR), бутилкаучук (IIR - изобутиленизопреновый каучук), включая хлорбутилкаучук (CIIR) и бромбутилкаучук (BIIR), фторэластомеры, такие как Viton® и Kalrez®, Fluorel™ и хлорсульфонированный полиэтилен. К категориям предпочтительных термопластичных эластомеров (ТРЕ) относятся термопластичные олефины (ТРО), включая те, которые промышленно изготавливаются и поставляются на рынок как Dexflex® и Indure®; эластомерные смеси и сплавы поливинилхлоридов, блок-сополимеры стирола (SBC), включая блок-сополимер стирола и бутадиена с чередованием блоков (SBS), блок-сополимер стирола и изопрена с чередованием блоков (SIS), блок-сополимер стирола и этилена/бутилена с чередованием блоков (SEBS) и блок-сополимер стирола, этилена и пропилена с чередованием блоков (SEPS), некоторые промышленно изготавливаемые блок-сополимеры стирола, включая те, которые продаются под товарными знаками Kraton®, Dynaflex® и Chronoprene™; термопластичные вулканизаты (TPV, также известные как динамически вулканизованные сплавы), включая те, которые промышленно изготавливаются и поставляются на рынок под товарными знаками Versalloy®, Santoprene® и Sarlink®; термопластичный полиуретан (TPU), включая те, которые промышленно изготавливаются и поставляются на рынок под товарными знаками ChronoThane®, Versollan™ и Texrin®; термопластичные эластомеры на основе сложных сополиэфиров (СОРЕ), включая те, которые промышленно изготавливаются и поставляются на рынок как Ecdel®; и полиэфирные блок-сополиамиды (СОРА), включая те, которые промышленно изготавливаются и поставляются на рынок под товарным знаком РЕВАХ®. К предпочтительным металлам для пористых материалов относятся нержавеющая сталь, алюминий, цинк, медь и ее сплавы. К предпочтительному стеклу и керамическим материалам для пористых материалов относятся кварц, боросиликат, алюмосиликат, натрийалюмосиликат, предпочтительно в виде спеченных частиц или волокон, полученных из указанных материалов.

Предпочтительный способ получения макропористого пластика - это получение его с помощью процесса, называемого спеканием, при котором порошкообразные или гранулированные термопластичные полимеры подвергаются воздействию тепла и давления, чтобы обеспечить частичное спекание гранул и образование когезионного макропористого листа или детали. Макропористый материал содержит сетку взаимосвязанных макропор, которые образуют произвольный извилистый канал, проходящий сквозь лист. Как правило, объем пор или пористость макропористого листа в процентах составляет от 30 до 65% в зависимости от условий спекания, хотя она может быть больше или меньше, чем границы приведенного диапазона, в зависимости от конкретного способа, применяемого производителем. Благодаря регулированию химических или физических свойств поверхностное натяжение макропористой матрицы может быть получено с заданным значением для отталкивания или абсорбции жидкостей, но воздух и пары могут легко проходить через нее. Например, в патенте США 3051993, выданном на имя Goldman, полностью включенном в данную заявку путем ссылки, раскрываются детали изготовления макропористого пластика из полиэтилена.

Пористые пластики, включая макропористые пластики, пригодные для изготовления контейнера, охлаждаемого за счет диффузионного испарения, в соответствии с предпочтительными вариантами осуществления, могут быть изготовлены в виде листов или отформованы в соответствии с техническими требованиями и их можно приобрести у ряда поставщиков. Фирма Porex Corporation (Fairburn, Джорджия, США) является одним таким поставщиком и поставляет пористый пластик под товарным знаком POREX®. Пористые пластики, продаваемые под названием POREX®, можно приобрести в листах или отформованными в соответствии с техническими требованиями из любого из термопластичных полимеров, описанных ранее. Средняя пористость таких материалов POREX® может варьироваться приблизительно от 1 до 350 микрон в зависимости от размера используемых полимерных гранул и условий, используемых во время спекания. Фирма GenPore® (Reading, Пенсильвания, США) - это другой производитель пористых пластиковых изделий с размерами пор в диапазоне от 5 до 1000 микрон. Фирма МА Industries Inc. (Peachtree City, Джорджия, США) также производит пористые пластиковые изделия. Фирма Porvair Technology Ltd. (Wrexham, Северный Уэльс, Великобритания) является еще одним производителем пористых продуктов, поставляющим как пористые пластики (с размером пор от 5 до 200 мкм под торговым названием (брэндом) Vyon™) и пористые металлические материалы (под брэндом Sinterflo®).

Базовый размер, толщина и пористость пластика, выбранного для изготовления матрицы, обеспечивающей диффузионное испарение, могут быть определены путем расчета количества пара, которое должно пройти через вентилирующее средство в заданный период времени (скорость потока), и скорости передачи тепла из окружающей среды обратно к жидкости. Плотность потока (скорость потока на единицу площади) для данного макропористого пластика изменяется в зависимости от факторов, включающих размер пор, пористость в процентах и толщину матрицы в поперечном сечении, и, как правило, выражается в единицах объема в единицу времени на единицу площади. Для обеспечения достаточной степени охлаждения за счет диффузионного испарения скорость потока пара через матрицу должна быть такой, чтобы количество термодинамического тепла, отводимого от жидкости исходно при температуре внутри помещения вследствие парообразования превышало бы количество тепла, поглощаемого из окружающей среды. Во время процесса диффузионного испарения температура жидкости в контейнере снижается до тех пор, пока потеря тепла жидкости вследствие испарения жидкого содержимого через матрицу не сравняется с притоком тепла из окружающей среды.

В общеупотребительном значении "Макропористость" обычно относится к общему объему пустот материала или его макроструктуре. Термин "Макропористый" обычно используется для классифицирования отдельных пор материала, которые считаются большими по размеру. Термин "Микропористость", как правило, относится к размерам отдельных пор или распределению размеров пор, которые образуют микроструктуру пористого материала. Термин "Микропористый" обычно используется для классифицирования отдельных пор материала, которые считаются малыми по размеру. Для целей представленного здесь описания размер (диаметр) пор проклассифицирован в соответствии с определениями терминов, выбранными 26 февраля 2002 подкомитетом по макромолекулярной терминологии Международного союза теоретической и прикладной химии (ИЮПАК). Этот стандарт при классификации размеров пор делит их на три категории: микропористые (<0,002 мкм), мезопористые (от 0,002 до 0,050 мкм) и макропористые (>0,050 мкм). Также для целей представленного здесь описания объем пор будет рассмотрен с точки зрения "выраженной в процентах пористости" материала. Как макропористые, так и мезопористые материалы с размерами пор 0,05 мкм или менее могут быть использованы для охлаждения посредством диффузионного испарения. К предпочтительным способам изготовления относятся литье или растягивание мембран из таких материалов.

К предпочтительным пористым материалам относятся те, в которых поры на противоположных поверхностях (которые станут внутренней и наружной поверхностями) соединены друг с другом, так что две стороны сообщаются друг с другом. Тем не менее, такие соединения между сторонами предпо