Способ получения алкоксидов четвертичного аммония
Иллюстрации
Показать всеИзобретение относится к способу получения алкоксидов четвертичного аммония, которые могут применяться в качестве катализаторов в различных реакциях, протекающих в межфазных условиях, в качестве реагентов дегидрохлорирования полихлоралканов, а так же при синтезе простых эфиров взаимодействием с моногалоидпроизводными. Способ включает электролиз четвертичных аммониевых солей формулы [R1R2R3R4N]+Cl-, где R1,R2,R3,R4 - алкилС1-С4, R3,R4 - -СН2-СН=СН2, -СН2-CCl=СН2, -СН2-СН=CHCl, R4 - бензил, взятых в виде 40÷70 вес.% растворов в осушенных спиртах формулы ROH, где R - алкилС1-С4, -СН2-CCl=СН2, -СН2-СН=CHCl, бензил, в двух- или трехкамерных электролизерах с ионообменными мембранами, при температуре 20÷40°С и катодной плотности тока 30÷50 мА/см2, при этом в катодное пространство электролизера помещают 1-3% спиртового раствора соответствующего алкоксида четвертичного аммония. Способ позволяет упростить получение алкоксидов четвертичного аммония за счет исключения использования щелочных металлов или гидроокисей металлов, а также в значительной степени снизить опасность процесса. 2 табл., 2 ил.
Реферат
Настоящее изобретение относится к органическому синтезу, в частности к способу получения алкоксидов триалкилбензил, тетраалкил, диалкилдипропенил и диалкил-β или γ-хлорпропенил аммония (АТАБА).
Этот тип органических соединений может применяться в качестве катализаторов в различных реакциях, протекающих в межфазных условиях, в качестве реагентов дегидрохлорирования полихлоралканов, а так же при синтезе простых эфиров взаимодействием с моногалоидопроизводными (Шаванов С.С., Толстиков Г.А. и др. Синтез и свойства алкоксидов триэтилбензиламмония. Реакционная способность в реакциях отщепления и нуклеофильного замещения // Журнал органической химии - 1990, - Т.26, - Вып.4, - с.750-756).
Известен способ получения АТАБА, основанный на взаимодействии четвертичных аммониевых солей (ЧАС) с алкоголятами щелочных металлов, получаемых взаимодействием щелочных металлов с осушенными спиртами (Авт. свид. СССР №1038338, МКИ С 07 С 87/30. Алкоксиды и ароксиды производных триалкиларалкил /алкил/ аммония в качестве катализатора для дегидрогалоидирования галоидуглеводородов / Шаванов С.С., Толстиков Г.А., Шутенкова Т.В., Рафиков С.Р. Бюллетень Изобретения №32, 1983)
[R1R2R3R4N]+Cl-+RONa→[R1R2R3R4N]+OR-+NaCl.
К недостаткам этого способа можно отнести необходимость работы со щелочными металлами, что не безопасно, а также необходимость отделения образующегося в результате реакции NaCl.
Наиболее близким к заявляемому, т.е. прототипом, является способ получения алкоксидов четвертичного аммония путем электролиза четвертичных аммониевых солей формулы [R1R2R3R4N]+X-, где R1R2R3R4 - могут быть одинаковыми или различными и представлять собой необязательно линейную или разветвленную алкильную фенильную, бензильную группу, а X- может представлять собой Cl-, Br-, I-. Процесс представляет собой электролиз 1-40 вес.% растворов [R1R2R3R4N]+X- в спиртах формулы ROH, где R - алкил C1-C4, помещенный в катодную камеру двухкамерного электролизера с анионообменной мембраной, а в анодную помещают раствор галогенида щелочного металла или галоидной кислоты. Электролиз ведут при плотности тока 1-1000 мА/см2 и температуре 10-45°С (WO 91/15615 от 17.10.1991).
К недостаткам способа прототипа относится необходимость выделения алкоксида из смеси этого алкоксида и четвертичной аммониевой соли. Это обусловлено тем, что спиртовый раствор четвертичной аммониевой соли помещают в катодное пространство двухкамерного электролизера с анионообменной мембраной. При этом, в электрическом поле происходит перенос ионов Cl- из катодной камеры в анодную и дальнейшее разложение их на аноде с получением газообразного хлора. Поскольку полное извлечение ионов хлора из четвертичной аммониевой соли и их перенос в анодную камеру электролизера практически невозможен, то в катодной камере будет накапливаться смесь, содержащая алкоксид и четвертичную аммониевую соль.
Изобретение решает техническую задачу упрощения способа получения АТАБА, исключающего необходимость выделения алкоксида из его смеси с четвертичной аммониевой солью. Кроме того, показана возможность осуществления данного способа в трехкамерном электролизере при уточненной катодной плотности тока (30-50 мА/см2) и при температуре 20-40°С.
Поставленная задача достигается тем, что алкоксиды четвертичного аммония получают электролизом четвертичных аммониевых солей, взятых в виде 40-70 вес.% осушенных спиртовых растворов, в двухкамерных или трехкамерных электролизерах с ионообменными мембранами при плотности тока 30÷50 мА/см2 и температуре 20÷40°С.
Для предотвращения образования гидроксидов четвертичного аммония при приготовлении спиртовых растворов четвертичных аммониевых солей используются осушенные спирты ROH (содержание воды не более 0,1%), где R - алкил C1-C4, -СН2-CCl=СН2, -СН2-СН=CHCl, бензил.
Сущность изобретения заключается в следующем. В анодную камеру 1 трехкамерного электролизера (см. фиг.1), отделенную анионообменной мембраной А, помещают 1-3% спиртовый раствор соответствующей ЧАС. В катодную камеру 2, отделенную катионообменной мембраной К, помещают 1-3% спиртовый раствор соответствующего АТАБА. В среднюю камеру 3 помещают 40-70% (преимущественно 60%) спиртовый раствор ЧАС. В спиртовом растворе происходит диссоциация молекул ЧАС
[R1R2R3R4N]+Cl-→R1R2R3R4N++Cl-
с образованием катионов R1R2R3R4N+ и анионов Cl-
где R1R2R3,R4 - алкил C1-C4;
R3R4 - -СН2-СН=СН2, -СН-CCl=СН2, -СН2-СН=CHCl;
R4 - бензил.
В электрическом поле, создаваемом в электролизере при подаче напряжения на электроды, происходит перенос катионов R1R2R3R4N+ из средней камеры через катионообменную мембрану в катодную камеру электролизера и анионов Cl- через анионообменную мембрану в анодную камеру электролизера. В катодной камере происходит разложение спирта с выделением газообразного водорода и образованием соответствующих анионов
2ROH+2e→H2+2RO-
где R - алкил C1-C4, -CH-CCl=CH2, -СН2-СН=CHCl, бензил, которые, взаимодействуя с катионами R1R2R3R4N+, приводят к образованию соответствующего алкоксида
R1R2R3R4N++RO-→[R1R2R3R4N]+OR-.
В анодной камере происходит разложение анионов хлора, переносимых в нее из средней камеры через анионообменную мембрану
2Cl--2е→Cl2.
Концентрация ЧАС в средней камере электролизера поддерживается постоянной при добавлении в нее кристаллической ЧАС.
При получении АТАБА в двухкамерном электролизере с катионообменной мембраной (см. фиг.2) анодная камера 1 заполняется 40÷70% (преимущественно 60%) спиртовым раствором ЧАС. В катодную камеру 2 помещают 1÷3% раствор соответствующего АТАБА.
В электрическом поле происходит перенос катионов R1R2R3R4N+ из анодной в катодную камеру, в которой происходит образование соответствующих алкоксидов. Процесс проводят при 20÷40°С до достижения концентрации АТАБА в катодной камере до 25÷30%. При необходимости получения более концентрированных растворов АТАБА растворитель упаривают в вакууме при температуре 30÷50°С.
Пример 1
В анодную камеру трехкамерного электролизера, отделенную анионообменной мембраной марки МА-40, заливают 70 мл 3% метанольного раствора [(C2H5)3CH2C6H5N]+Cl-. В катодную камеру, отделенную катионообменной мембраной марки МК-40, заливают 70 мл 2% метанольного раствора [(C2H5)3CH2C6H5N]+OCH3 -. В среднюю камеру заливают 70 мл 60% метанольного раствора [(C2H5)3CH2C6H5N]+Cl-. Во время электролиза для поддержания концентрации [(C2H5)3CH2C6H5N]+Cl- в средней камере в нее добавляют кристаллическую ЧАС. В качестве электродов используют титановые пластины, покрытые окисью рутения. Процесс проводят при температуре 20°С, силе тока 0,5 А, катодной плотности тока 40 мА/см2. По истечении 6 часов в катодной камере электролизера получают 31,7% метанольный раствор алкоксида. Масса образовавшегося в результате электролиза [(С2H5)3СН2С6H5N]+OCH3 - составляет 24,1 г, выход по току - 96,4%, выход по веществу - 99,5%.
Пример 2
В анодную камеру двухкамерного электролизера с катионообменной мембраной марки МК-40 заливают 70 мл 60% метанольного раствора [(C2H5)3CH2C6H5N]+Cl-. В катодную камеру заливают 70 мл 2% метанольного раствора [(C2H5)3CH2C6H5N]+OCH3 -. Во время электролиза для поддержания концентрации [(С2Н5)3СН2С6Н5N]+Cl- в анодной камере в нее добавляют кристаллическую ЧАС. В качестве электродов используют титановые пластины, покрытые окисью рутения. Процесс проводят при температуре 30°С, силе тока 0,5 А, катодной плотности тока 40 мА/см2. По истечении 6 часов в катодной камере получают 32,1% метанольный раствор метоксида триэтилбензиламмония. Масса образовавшегося в результате электролиза [(C2H5)3CH2C6H5N]+OCH3 - составляет 24,3 г, выход по току - 97,3%, выход по веществу - 99,7%.
Пример 3
В анодную камеру двухкамерного электролизера с катионообменной мембраной марки МК-40 заливают 70 мл 60% метанольного раствора [(С2Н5)3СН2С6Н5N]+Cl-. В катодную камеру заливают 70 мл 2% метанольного раствора [(C2H5)3CH2C6H5N]+OCH3 -. Во время электролиза для поддержания концентрации [(С2Н5)3СН2С6Н5N]+Cl- в анодной камере в нее добавляют кристаллическую ЧАС. В качестве электродов используют титановые пластины, покрытые окисью рутения. Процесс проводят при температуре 40°С, в течение 6 часов при различных катодных плотностях тока. Результаты опытов представлены в таблице 1.
Таблица 1 | ||||
Сила тока, А | Плотность тока, мА/см2 | Концентрация алкоксида, % | Масса полученного алкоксида, г | Выход по току, % |
0,3 | 24 | 19,3 | 13,24 | 88,4 |
0,4 | 32 | 25,2 | 18,69 | 93,6 |
0,5 | 40 | 30,6 | 24,41 | 97,8 |
0,6 | 48 | 34,5 | 29,15 | 97,3 |
0,7 | 56 | 36,1 | 31,35 | 89,7 |
Из результатов, приведенных в таблице 1 видно, что выход по току зависит от катодной плотности тока. Максимальный выход по току достигается при катодной плотности тока 40 мА/см.
Пример 4
В анодную камеру двухкамерного электролизера с катионообменной мембраной марки МК-40 заливают 70 мл 60% метанольного раствора [(С2Н5)3СН2С6Н5N]+Cl-. В катодную камеру заливают 70 мл 2% метанольного раствора [(С2Н5)3СН2С6Н5N]+OCH3 -. Во время электролиза для поддержания концентрации [(С2Н5)3СН2С6Н5N]+Cl- в анодной камере в нее добавляют кристаллическую ЧАС. В качестве электродов используют титановые пластины, покрытые окисью рутения. Процесс проводят при температуре 25°С, силе тока 0,5 А, катодной плотности тока 40 мА/см2 в течение 6 часов.
Пример 5
В анодную камеру двухкамерного электролизера с катионообменной мембраной марки МК-40 заливают 70 мл 60% метанольного раствора [(СН3)2(СН2-CH=СН2)2N]+Cl-. В катодную камеру заливают 70 мл 2% метанольного раствора [(СН3)2(СН2-CH=СН2)2N]+OCH3 -. Во время электролиза для поддержания концентрации [(СН3)2(СН2-CH=СН2)2N]+Cl- в анодной камере в нее добавляют кристаллическую ЧАС. В качестве электродов используют титановые пластины, покрытые окисью рутения. Процесс проводят при температуре 25°С, силе тока 0,5 А, катодной плотности тока 40 мА/см2 в течение 6 часов. Кроме указанных, проводят опыты со спиртовыми растворами других четвертичных аммониевых солей. Результаты опытов и структура полученных алкоксидов приведены в таблице 2.
Таблица 2 | ||||||
№ п/п | Наименование реагентов | Выход потоку, % | Выход по веществу, % | Конц. АТАБА,% | Структура АТАБА | |
Четвертичные аммониевые соли | Спирты | |||||
1 | [(СН3)3СН2С6Н5N]Cl | СН3ОН | 97,3 | 99,7 | 32,1 | [(СН3)3СН2С6Н5N]ОСН3 |
2 | [(CH3)4N]Cl | СН3ОН | 92,0 | 98,5 | 27,3 | [(СН3)4N]ОСН3 |
3 | [(С2Н5)3СН2С6Н5Н]Cl | СН3ОН | 86,2 | 98,3 | 26,7 | [(С2Н5)3СН2С6Н5N]JCH3 |
4 | [(С2Н5)3С3Н5N]Cl | СН3ОН | 90,4 | 99,4 | 29,1 | [(С2Н5)3С3Н5N]ОСН3 |
5 | [(СН3)2(СН2-СН=СН2)2N]Cl | СН3ОН | 85,2 | 98,0 | 24,2 | [(СН3)2(СН2-СН=СН2)2N]ОСН3 |
6 | [(C4H9)4N]Cl | СН3ОН | 91,2 | 99,1 | 28,3 | [(С4Н9)4N]ОСН3 |
7 | [(С2Н5)3СН2С6Н5N]Cl | С2Н5OH | 88,2 | 99,4 | 30,1 | [С2Н5)3СН2С6Н5N]ОС2Н5 |
8 | [(С2Н5)3СН2С6Н5N]Cl | С4Н9OH | 87,3 | 99,6 | 26,4 | [(С2Н5)3СН2С6Н5N]ОС4Н9 |
9 | [(С2Н5)3СН2С6Н5N]Cl | С3Н6ОН | 85,7 | 99,0 | 25,6 | [(С2Н5)3СН2С6Н5N]ОС3Н6 |
10 | [(С2Н5)3СН2С6Н5N]Cl | i-С3Н7OH | 86,4 | 98,0 | 23,9 | [(С2Н5)3СН2С6Н5N]ОС3Н7 |
11 | [(С2Н5)3СН2С6Н5N]Cl | С6Н5СН2OH | 84,1 | 99,2 | 24,5 | [(С2Н5)3СН2С6Н5N]ОСН2С6Н5 |
12 | [(С2Н5)3СН2С6Н5N]Cl | СН2=CHCl-СН2OH | 91,2 | 98,8 | 25,3 | [(C2H5)3CH2C6H5N]OCH2-CHCl=CH2 |
13 | [(С2Н5)3СН2С6Н5N]Cl | ClCH2=СН-СН2OH | 93,4 | 99,5 | 29,1 | [(С2Н5)3СН2С6Н5N]ОСН2-СН=CHCl |
Результаты, приведенные в таблице 2, показывают, что структура получаемых алкоксидов определяется структурой четвертичной аммониевой соли и спирта. Процесс электролиза протекает с достаточно высокими выходами по току и по веществу. Концентрация получаемых спиртовых растворов алкоксидов колеблется от 23,9 до 32,1%.
Использование предлагаемого способа получения алкоксидов четвертичного аммония по сравнению с существующими имеет следующие преимущества:
а) исключение необходимости отделения алкоксида от получаемой смеси АТАБА и четвертичной аммониевой соли;
б) отсутствие NaCl в целевом продукте исключает необходимость выделения из него этой соли;
в) исключение необходимости работы со щелочными металлами, что повышает безопасность и экологичность процесса.
Способ получения алкоксидов четвертичного аммония путем электролиза четвертичных аммониевых солей в растворах спиртов при температуре 20÷40°С, при катодной плотности тока 30÷50 мА/см2, отличающийся тем, что осуществляют электролиз четвертичных аммониевых солей формулы [R1R2R3R4N]+Cl-, где R1,R2,R3,R4 - алкилС1-С4, R3,R4 - -СН2-СН=СН2, -СН2-CCl=СН2, -СН2-СН=CHCl, R4 - бензил, взятых в виде 40÷70 вес.% растворов в осушенных спиртах формулы ROH, где R - алкилС1-С4, -CH2-CCl=СН2, -СН2-СН=CHCl, бензил, в двух- или трехкамерных электролизерах с ионообменными мембранами, при этом в катодное пространство электролизера помещают 1-3% спиртового раствора соответствующего алкоксида четвертичного аммония.