Способ образования полигедральных олигомерных силсесквиоксанов (варианты)

Иллюстрации

Показать все

Изобретение относится к способу прямого получения полигедральных олигомерных силсесквиоксанов (POSS), в которых используется действие оснований, способных или воздействовать на кремний или любое соединение, которое может взаимодействовать с растворителем (например, ROH, Н2О и т.д.) и образует гидроксид [ОН]-; алкоксид [RO]- и т.д. Первый способ использует подобные основания для эффективного перераспределения кремний-кислородного каркаса в полимерных силсесквиоксанах [RsiO1,5], где ∝=1-1000000 или выше в POSS наноструктуры формулы [(RsiO1,5)n]∑# гомолептические [(RXSiO1,0)n]∑# функционализированные гомолептические [(RsiO1,5)m(R'SiO1,5)n]∑# гетеролептические и [(RsiO1,5)m(RXSiO1,5)n]∑# функционализированные гетеролептические наноструктуры. Второй способ использует основания для помощи в образовании POSS наноструктур формул [(RsiO1,5)n]//# гомолептических и [(RsiO1,5)m(R'SiO1,5)n]∑# гетеролептических и [(RsiO1,5)m(RXSiO1,0)n]∑# функционализированных гетеролептических наноструктур из силанов RSiX3 и линейных или циклических силсесквиоксанов формулы RX2Si-(OSiRX)m-OSiRX2, где m=0-10, X=OH, Cl, Br, I, алкоксид OR, ацетат OOCR, пероксид OOR, амин NR2, изоцианат NCO и R. Третий способ использует основания для избирательного открытия кольца кремний-кислород-кремниевых связей (Si-O-Si) в POSS-структурах для образования видов POSS с не полностью конденсированными наноструктурами. Эти способы обеспечивают стереохимический контроль над X. Три способа в результате дают новые виды POSS, которые могут подвергаться дополнительной химической обработке для превращения в POSS частицы, пригодные для полимеризации, прививки, или других желательных химических реакций. 7 н. и 48 з.п. ф-лы.

Реферат

Обоснование изобретения

В описании раскрывается способ, который позволяет избирательно манипулировать кремний-кислородными каркасами в ячеистых молекулах полигедральных олигомерных силсесквиоксанов (POSS). Селективное манипулирование каркасами POSS соединений является желательным, так как они пригодны в качестве таких видов химических соединений, которые могут далее быть превращены или включены в широкое разнообразие химического исходного сырья, пригодного для получения каталитических подложек, мономеров, полимеров, и в качестве солюбилизированных форм окиси кремния, которые могут использоваться для замены тонкоизмельченных и осажденных окисей кремния или для биологического применения и для модификаций поверхностей. Когда они включаются в полимерный материал, POSS могут придать новые свойства или улучшить тепловые, механические и физические свойства обычных полимерных материалов.

Разнообразные каркасы POSS могут быть получены в синтетически приемлемых количествах посредством гидролитической конденсации алкил- или арилтрихлорсиланов. В большинстве случаев, однако реакции гидролитической конденсации трифункциональных кремнийорганических мономеров позволяют получить комплексные полимерные смолы и POSS-молекулы, которые не подходят для использования в полимеризации или графт-реакциях (в реакциях привитой сополимеризации), так как они не обладают желательным типом или степенью реактивной функциональности. В связи с тем, что многие структурно хорошо определенные силсесквиоксановые смолы [RSiO1,5] и POSS молекулы гомолептической формулы [(RSiO1,5)n]# (где R = включает, не ограничиваясь ими, алифатические, ароматические, олефиновые или алкокси группы, и n=1-14) могут быть получены с выходом от хорошего до превосходного из легко доступных кремний-органических мономеров, существует важный стимул для развития методики, с помощью которой возможно превращение этих видов POSS в системы, несущие функциональные группы, которые более желательны для полимеризации, прививки, катализа или совместимости с обычными органическими смолами. Примеры таких желательных функциональных групп включают, не ограничиваясь ими: силаны, кремнийгалогениды, силанолы, силиламины, органические галогениды, спирты, алкоксиды, амины, цианаты, нитрилы, олефины, эпоксиды, органические кислоты, сложные эфиры и олефины с прямой цепью.

Предыдущий уровень техники в области силсесквиоксанов включает описание процессов для химических манипуляций органическими функциональными группами (заместителями, определенными R), содержащимися на кремний-кислородном каркасе полигедральных олигомерных силсесквиоксанов. Хотя эти способы весьма пригодны для различных органических функциональных групп (заместителей), содержащихся на POSS молекулах, они не всегда дают возможность дешевого производства, а также они не обладают способностью избирательно расщеплять и/или проводить манипуляции с кремний-кислородными каркасами таких соединений. Так, эти способы неприменимы для трансформации множества легко доступных и дешевых силанов, силикатов, полисилсесквиоксанов (aka Т-смол или силоксанов Т-типа) или POSS-систем.

Из уровня техники известно, что основания (например, NaOH, КОН и др.) могут использоваться как для катализа полимеризации POSS в слегка связанную в сеть смолы, или для превращения избранных полисилсесквиоксановых смол в структуры гомолептических полигедральных олигомерных силсесквиоксанов. Недавно Marsmann и др. было показано, что различные основания могут использоваться для перераспределения более мелких гомолептических POSS-ячеек в гомолептические ячейки большего размера. Хотя в литературе описан случай обработки силсесквиоксанов и POSS-систем основаниями, в предыдущем уровне техники не использовались селективные манипуляции с кремний-кислородными каркасами с последовательным контролируемым получением фрагментов POSS, гомолептических наноструктур POSS, гетеролептических наноструктур POSS и функционализированных гетеролептических наноструктур POSS. Кроме того, предыдущий уровень техники не обеспечивает способ получения систем POSS, подходящих для функционализации и последующей полимеризации или графт-реакций. Этот недостаток в предыдущем уровне техники отражает тот факт, что изобретение основанных на POSS реагентов, мономеров и полимерной технологии разработано только недавно и, следовательно, говорит о том, что данный уровень техники является вчерашним днем. Таким образом, в предшествующем уровне техники не предполагаются композиции POSS и способы, пригодные для этих типов систем, желательные для POSS мономер/полимерных методик. Кроме того, в предшествующем уровне не демонстрируется действие оснований на исходное сырье в виде силанов, силикатов или силсесквиоксанов, подходящее для получения дешевых систем POSS с высокой степенью чистоты.

В отличие от того, что известно из уровня техники (Brown et al. and Marsmann et al.), предложенный здесь способ дает возможность специфических разработок дешевых систем с высокой степенью чистоты POSS, несущих функциональные группы и пригодных в качестве химические реагентов, способных к образованию производных, а также как исходное сырье.

Краткое изложение сущности изобретения

Данное изобретение предлагает три способа, которые позволяют манипулировать и разрабатывать POSS-соединения соединение с POSS-наноструктурами (далее также называемые просто «POSS-соединения») из легко доступного и дешевого кремнийсодержащего сырья. Примеры этого дешевого сырья включают, не ограничиваясь ими: полисилсесквиоксаны [RSiO1,5], гомолептические полигедральные олигомерные силсесквиоксаны (POSS) [(RSiO1,5)n]∑#, функционализированные гомолептические POSS [(RSiO1,5)m(RXSiO1,0)n]∑#, гетеролептические POSS [(RSiO1,5)m(RSiO1,5)n]∑#, функционализированные гетеролептические POSS [(RSiO1,5)m(RXSiO1,0)n]∑# и полигедральные олигомерные силикаты [(XSiO1,5)n]∑# и POSS-фрагменты [(RXSiO1,5)n].

Определения формул, описывающих наноструктуры POSS

Для объяснения способа настоящего изобретения и химической композиции даны следующие определения для формул, изображающих ячейки наноструктур.

Полисилсесквиоксаны являются веществами, представленными формулой [RSiO1,5], где ∞ = степень полимеризации внутри вещества, и R=органический заместитель (Н, циклические или неразеветвленные алифатические или ароматические группы, которые могут дополнительно содержать реакционноспособные функциональные группы, такие как спирты, сложные эфиры, амины, кетоны, олефины, простые эфиры или галогениды). Полисилсесквиоксаны могут быть или гомолептическими или гетеролептическими. Гомолептические системы содержат только один вид R-группы, тогда как гетеролептические системы содержат более одного вида R-групп.

Композиции наноструктур POSS представлены формулами:

[(RSiO1,5)n]∑# для гомолептических композиций;

[(RSiO1,5)m(RSiO1,5)n]∑# для гетеролептических композиций;

[(RSiO1,5)m(RXSiO1,0)n]∑# для функционализированных гетеролептических композиций;

[(XSiO1,5)∑# для гомолептических силикатных композиций.

Во всех вышеприведенных формулах R такой же, как определено выше, и Х включает, не ограничиваясь ими, ОН, Cl, Br, I, алкоксид (OR), ацетат (OOCR), пероксид (OOR), амин (NR2), изоцианат (NCO) и R. Символы m и n относятся к стехиометрии композиции. Символ ∑ указывает, что композиция образует наноструктуру, и символ # относится к числу атомов кремния, содержащихся в наноструктуре. Число # обычно представляет собой сумму m+n. Следует отметить, что ∑# не надо путать с множителем для определения стехиометрии, так как он главным образом описывает общие наноструктурные характеристики POSS-систем (такие как размер ячеек).

POSS-фрагменты определяются как структурные подкомпоненты, которые могут быть собраны в POSS-наноструктуры и представлены формулой [(RSiO1,5)m(RXSiO1,0)n]. Следует обратить внимание на то, что символ ∑# отсутствует, так как эти фрагменты не являются полигедральными наноструктурами.

Пример полисилсесквиоксановой смолы [RSiO1,5].

Примеры гомолептических POSS-структур [(RSiOi1,5)]∑#

Пример гетеролептической POSS-структуры [(RsiO1,5)m(R'SiO1,5)n]∑#

Пример функционализированной гомолептической POSS-структуры [(RsiO1,5)m(RXSiO1,0)n]∑#

Пример функционализированной гетеролептической POSS-структуры [(RsiO1,5)m(R'SiO1,5)n(RXSiO1,0)p]∑#

Пример полигедральной олигомерной силикатной структуры [(XSiO1,5)n]∑#

Примеры фрагментов: RSiX3 (1), [(RXSiO0,5)n] (2), [(RXSiO1,0)n] (3), [(RSiO1,5)m[RXSiO1,0)n] (4)

Схема 1. Примеры обычных силсесквиоксанов, силикатов, POSS-наноструктур и фрагментов.

Общие варианты способа, применимые ко всем процессам

Для химического способа типично, что существует ряд переменных, которые могут использоваться для контроля чистоты, избирательности (селективности), скорости и механизма любого процесса. Переменные, влияющие на процесс превращения полисилсесквиоксанов [(RSiO1,5)] в соединения с POSS-структурами [(RSiO1,5)n]∑#, [(RSiO1,5)m(RSiO1,5)n]∑#, [(RSiO1,5)m(RXSiO1,0)n]∑#, [(RSiO1,5)m(RSiO1,5)n(RXSiO1,0)p]∑#, включают, не ограничиваясь ими, следующие: химический класс оснований, размер кремний-кислородного кольца, вид композиции [RSiO1,5] (силсесквиоксан), [RSiO1,5)n(R2SiO)n]∑# (силсесквиоксан-силоксан), [(RSiO1,5)m(XsiO1,5)n]∑# (силсесквиоксан-силикат), влияние органических заместителей, температура процесса, рабочий растворитель, температура процесса, стехиометрия основания и присутствие катализатора. Каждая из этих переменных кратко обсуждается ниже.

Промотеры со-реагентов

Для промотирования или повышения эффективности оснований, используемых в процессе, могут использоваться специфические химические агенты. Конкретно, смеси нуклеофильного основания, которые действуют одновременно, во-первых, для солюбилизации силсесквиоксанов и, во-вторых, для промотирования образования соединений с POSS-наноструктурой. Примеры таких систем могут включать, не ограничиваясь ими, KOR, где OR представляет собой алкоксид, RMgX, который включает все обычные реактивы Гриньяра, или алкалигалогениды, такие как LiI, или любую из множества солевых сред, полученных путем плавления или слияния. Таким же образом показано, что со-основания, такие как [Ме3Sn][ОН] и [Me4Sb][ОН], промотируют химическое преобразование POSS-систем хотя не используются как со-реагенты в образовании ячейки POSS. Альтернативно, электрофильные промотеры, такие как соединения цинка (то есть ZnI2, ZnBr2, ZnCl2, ZnF2 и т.д.), соединения алюминия (то есть Al2H6, LiAlH4, AlI3, AlBr3, AlCl3, AlF3, и т.д.), соединения бора, включая те (то есть RB(OH)2, BI3, BBr3, BCl3, BF3 и т.д.), которые известны как играющие важную роль в солюбилизации и полимеризации с раскрытием кольца циклических оксидов кремния и в раскрытии кольца полигедральных олигомерных силсесквиоксанов.

Химические основания

Цель оснований состоит в расщеплении связей кремний-кислород-кремний (Si-O-Si) в различных силсесквиоксановых структурах. Определенный вид основания, его гидратная оболочка, концентрация и взаимодействие с растворителем играют важную роль в эффективности основания для расщепления связей кремний-кислород. Правильное понимание и контроль условий делает возможным избирательное расщепление и/или сборку силсесквиоксанов, силикатов, POSS, а также систем POSS-фрагментов желательным образом. Основания также могут способствовать сборке POSS-фрагментов.

Существует широкий интервал оснований, которые могут использоваться в этом процессе, и они включают, не ограничиваясь ими: гидроксид [ОН]-, органические алкоксиды [RO]-, карбоксилаты [RCOO]-, амиды [RNH]-, карбоксамиды [RC(O)NR]-, карбанионы [R]-, карбонат [СО3]-2, сульфат [SO4]-2, фосфат [PO4]-3, бифосфат [HPO4]-2, фосфорные илиды [R4P]-, нитрат [NO3]-, борат [В(ОН)4]-, цианат [OCN]-, фторат [F]-, гипохлорит [OCl]-, силикат [SiO4]-4, станат [SnO4]-4, оксиды основных металлов (например, Al2O3, CaO, ZnO и т.д.), амины R3N и оксиды аминов R3NO и металлоорганические соединения (например, RLi, R2Zn, R2Mg, RMgX и т.д.). Кроме того, представленный здесь способ не ограничен вышеприведенными основаниями; напротив, может использоваться любой реагент, который обеспечивает рН в интервале от 7,1 до 14.

Альтернативно, для проведения процесса также могут использоваться смеси оснований. Одно преимущество такого подхода состоит в том, что каждое из оснований в данной смеси может выполнять несколько функций. Например, в смешанной системе оснований одно основание может использоваться для расщепления связей кремний-кислород или связей кремний-Х, тогда как второе основание используется для объединения POSS-структуры. Так, среди нескольких видов оснований может существовать синергизм, и это может быть использовано для получения преимуществ и более тонкого проведения этих процессов.

Размер кремний-кислородного кольца, вид кольца и размер ячейки

Процессы, обсуждаемые в этом описании, не ограничиваются образованием специфического размера ячеек POSS (например, ∑# в [(RSiO1,5)n]∑#). Также процессы не ограничены специфическим типом силсесквиоксанов (то есть смол, ячеек или фрагментов). Они могут проводиться для получения ячеек POSS, содержащих от четырех до восемнадцати атомов кремния в кремний-кислородном каркасе. Однако уже отмечалось, что размер кремний-кислородного кольца внутри таких POSS-структур не влияет на скорость, с которой может происходить открытие кольца кремний-кислородной ячейки. Например, оказывается, что кольца, содержащие три атома кремния и три атома кислорода, как в формуле 1, открываются быстрее, чем большие кольца, содержащие 4 атома кремния и 4 атома кислорода. Оказывается, что относительная скорость открытия POSS кремний-кислородных колец шестичленного кольца с тремя атомами кремния > восьмичленных колец с четырьмя атомами кремния > десятичленных колец с пятью атомами кремния > двенадцатичленных колец с шестью атомами кремния. Селективный процесс открытия кольца, таким образом, может контролироваться посредством использования соответствующего основания и знания этой информации, позволяющей пользователю данного способа контролировать избирательное образование молекул POSS.

Влияние органических заместителей, рабочих растворителей и температуры процесса

Способы, описанные в этом раскрытии, не ограничиваются соединениями с POSS-структурами, несущими специфические органические группы (обозначенные, как R), присоединенные к атому кремния кремний-кислородной кольцевой системы. Они способны быть источником силсесквиоксанов, несущих широкое разнообразие органических групп (R = как определено ранее) и функциональных групп (X = как определено ранее). Органический заместитель R не имеет большого влияния на растворимость как конечного продукта, так и исходного POSS-материала. Исходя из этого, предполагается, что различная растворимость стартовых силсесквиоксанов и POSS-продуктов может использоваться для облегчения разделения и очистки конечных продуктов реакции. В настоящее время авторы заявки не обнаружили каких-либо ограничений данного процесса, с точки зрения вида используемого растворителя, и процесс может проводиться в обычных растворителях, включающих, не ограничиваясь ими, кетоны, эфиры, диметилсульфоксид, CCl4, CHCl3, СН2Cl2, фторированные растворители, ароматические вещества (галогенированные и негалогенированные), алифатические вещества (галогенированные и негалогенированные). Другие процессы могут проводиться в сверхкритических жидкостях, включающих, не ограничиваясь ими, CO2, Н2O и пропан. Различные виды растворителей, концентрации POSS и рабочей температуры можно использовать обычным образом с тем, чтобы приспособить специфический процесс открытия ячейки к доступному оборудованию. Предпочтительными растворителями для этого процесса являются ТГФ, МИК и толуол. Во многих случаях растворитель является интегральным компонентом процесса, который дает возможность основаниям действовать в специфической силсесквиоксановой системе, следовательно, растворитель оказывает большое влияние на степень ионизации основания, используемого в этих процессах.

Способ I: образование POSS-соединения из полимерных силсесквиоксанов

Имеющиеся в настоящее время способы получения POSS-молекул из катализируемой кислотой конденсации алкил-трихлорсиланов (RSiCl3) являются неэффективными, так как образуются смеси разновидностей POSS-ячеек - гомолептических (POSS) [(RSiO1,5)n]∑#, функционализированных гомолептических POSS [(RSiO1,5)m(RXSiO1,0)n]∑#, гетеролептических POSS [(RSiO1,5)m(RSiO1,0)n]∑#, функционализированных гетеролептических POSS [(RSiO1,5)m(RXSiO1,0)n]∑# и полимерных силсесквиоксанов [RSiO1,5). В некоторых случаях нежелательные полимерные силсесквиоксаны получают с выходом 75%. Из этого следует, что желательно разрабатывать способ, который может эффективно превращать [(RSiO1,5)] в желательные POSS-наноструктуры или в POSS-фрагменты [(RXSiO1,5)n]. Такой способ служит не только для снижения количества вредных отходов, получаемых в подобных реакциях, но также снижает затраты на получение POSS-систем.

Разрабатываемый способ использует основания (как отмечалось ранее), в частности гидроксидные основания (например, гидроксид натрия, гидроксид калия, гидроксид лития, бензилтриметиламмония гидроксид, тетраметиламмония гидроксид и т.д.) для превращения полимерных силсесквиоксанов [RSiO1,5] в гомолептические (POSS) [(RSiO1,5)n]∑# функционализированные гомолептические POSS [(RSiO1,5)m(RXSiO1,0)n]∑#, гетеролептические POSS [(RSiO1,5)m(R'SiO1,5)n]∑# и функционализированные гетеролептические POSS [(RSiO1,5)m(R'XSiO1,0)n]∑#.

В данном способе полимерные силсесквиоксаны [RsiO1,5] растворяют или суспендируют в растворителе с технической степенью чистоты, таком как ацетон или метилизобутилкетон (МИК), и последовательное добавление водного или спиртового раствора проводят при перемешивании. Достаточное количество основания следует добавить к реакционной смеси так, чтобы получить щелочной раствор (рН 7,1-14). Реакционную смесь перемешивают при комнатной температуре в течение 3 часов с последующим нагреванием до кипячения с обратным холодильником в течение еще 3-12 часов. В течение этого времени желаемые POSS ячейки в основном осаждаются из реакционной среды, благодаря их нерастворимости в реакционной среде. Это осаждение помогает в выделении желаемых продуктов и является гарантией того, что продукты (такие как функционализированные виды POSS-соединений) не будут подвергаться дальнейшей реакции. В некоторых случаях желательно снизить объем растворителя путем дистилляции или с помощью пониженного давления для увеличения выхода продукта или для выделения растворимых POSS-продуктов. Желаемый POSS-продукт собирается фильтрацией или декантированием и может быть очищен путем исчерпывающего промывания водой.

Авторы заявки обнаружили, что гидроксидные [ОН]- основания являются высокоэффективными при концентрациях 1-10 эквивалентов (предпочтительное соотношение 2-5 эквивалентов на атом кремния) на моль кремния для превращения алифатических и ароматических полисилсесквиоксанов [RSiO1,5] в гомолептические (POSS) [(RSiO1,5)n]∑#, функционализированные гомолептические POSS [(RSiO1,5)m(RXSiO1,0)n]∑#, гетеролептические POSS [(RSiO1,5)m(RSiO1,5)n]∑#, и функционализированные гетеролептические POSS [(RSiO1,5)m(RXSiO1,0)n]∑#. Гидроксильные основания особенно эффективны для получения POSS вида [(RSiO1,5)m(RXSiO1,0)n]∑#. Авторы заявки обнаружили, что более мягкие (не очень сильные) основания, такие как ацетат и карбонат, более эффективны при превращении структур [RSiO1,5], несущих винильные или аллильные группы. Также признано, что использование со-реагентов может применяться для промотирования образования POSS-соединений по этому способу.

Схема 2. Иллюстрация способа I, где полимерные силсесквиоксановые смолы превращают в POSS-фрагменты и наноструктуры.

Для вышеприведенной реакционной схемы полимерные силсесквиоксановые полимерные смолы превращают либо в POSS-фрагменты, либо в разновидности имеющих наноструктуру ячеек POSS в зависимости от вида основания и применяемых условий. Превращение полисилсесквиоксанов [RSiO1,5] в POSS-соединения (гомолептические [(RSiO1,5)n]∑#, функционализированные гомолептические [(RSiO1,5)m(RXSiO1,0)n]∑#, гетеролептические [(RSiO1,5)m(RSiO1,5)n]∑#, и функционализированные гетеролептические [(RSiO1,5)m(RXSiO1,0)n]∑#) или в POSS-фрагменты [(RXSiO1,5)n] могут селективно контролироваться посредством проведения обсужденных выше вариантов способа. Процесс может проводиться с использованием полисилсесквиоксановой смолы, которая может содержать только один вид группы R для получения гомолептических [(RSiO1,5)n]∑# продуктов. Альтернативно процесс может проводиться с использованием полисилсесквиоксановых смол, содержащих более одного вида R-групп, или со смесью полисилсесквиоксанов, в которой каждый содержит различные R-группы для получения гетеролептических [(RSiO1,5)m(RSiO1,5)n]∑# продуктов. Для вышеприведенной схемы реакции, в которой полисилсесквиоксановая смола заменяет смеси гомолептических POSS-ячеек (то есть R одной POSS-ячейки ≠ R второй POSS-ячейки), процесс эффективно превращает смеси гомолептически замещенных POSS-ячеек в гетеролептические POSS-ячейки (функционализированные и нефункционализированные), которые содержат статистическое распределение различных R-групп на ячейку. В большинстве случаев POSS-фрагменты и различные гомо- и гетеролептические наноструктурные виды POSS могут отделяться один от другого посредством кристаллизации или экстракции и использованием разницы в растворимости между продуктами реакции и исходным силсесквиоксаном.

Цель основания в этом процессе состоит в расщеплении кремний-кислородных связей в стартовом (исходном) силсесквиоксане, что таким образом позволяет осуществлять перераспределение, а также помогает образованию различных POSS-фрагментов, гомолептических и гетеролептических видов. Сила основания и взаимодействия основание-растворитель-силсесквиоксан являются критическими факторами, которые осуществляют контроль над видом полученного в этих реакциях продукта. Например, увеличение основности среды позволяет получить POSS-фрагменты, в то время как менее щелочные условия в соединении с отсутствием воды способствуют образованию нефункционализированных видов POSS. Благоприятные условия для получения функционализированных POSS-соединений обеспечивают проведение процесса при среднем рН с недостаточным количеством воды в течение более коротких периодов времени.

Способ II: Реакции между POSS-соединениями и фрагментами силсесквиоксан/силоксан

В разработанном способе используются основания (как определено ранее) для превращения фрагментов [(RSiO1,5)m(RXSiO1,0)n]∑# в гомолептические POSS-соединения формулы [(RSiO1,5)n]∑#, гетеролептические POSS-соединения формулы [(RSiO1,5)m(R'SiO1,5)n]∑#, функционализированные гомолептические POSS-соединения формулы [(RSiO1,5)m(RXSiO1,0)n]∑#, функционализированные гетеролептические POSS-соединения формулы [(RSiO1,5)m(R'SiO1,5)n(RXSiO1,0)p]∑#, и наращенные POSS-фрагменты, а также для превращения функционализированных POSS-соединений [(RSiO1,5)m(RXSiO1,0)n]∑# в альтернативные функционализированные POSS-соединения [(RSiO1,5)m(RXSiO1,0)n]∑#. В этом способе POSS-фрагменты растворяют или суспендируют в ацетоне, бензоле или спиртовом растворителе, после чего при перемешивании добавляют раствор основания. В общем используемые условия реакции в этом способе мягче, чем использующиеся в способе I, и можно использовать как гидроксидное, так и негидроксидное основание, в то время как молярное соотношение основания относительно кремния составляет 1:10 (предпочтительно 1:1 или 1:2).

Схема 3. POSS-фрагменты, превращенные в POSS-ячейки

Задача оснований в этом процессе состоит в расщеплении кремний-кислородных связей в стартовых POSS-фрагментах. Основания также могут помогать в сборке POSS-структур из фрагментов. Ряд различных оснований (как определено ранее) можно использовать для превращения POSS-фрагментов в POSS-соединения. Реакция образования сети приводит к сборке POSS-фрагментов в POSS-наноструктуры, имеющие или гомолептическое, или гетеролептическое строение. Кроме того, полученные в результате POSS ячейки могут содержать функциональные группы (т.е. [(RSiO1,5)m(RXSiO1,0)n]∑#).

Когда используется смесь POSS-фрагментов, они статистически встраиваются в POSS-структуры, и их окончательное строение основывается на стехиометрии исходных POSS-фрагментов. В некоторых случаях статистическое распределение степени замещения между этими группами регулируется изоморфизмом, в результате почти идентичной топологической формы R-группы (например, винил или этил). Изоморфное регулирование часто наблюдается для близкородственных R-групп (например, аллильных и пропильных и т.д.). Однако эта тенденция не всегда сохраняется благодаря другим факторам, таким как скорость реакции, добавление реагента или разница растворимости между различными POSS-фрагментами и продуктами. Например, взаимодействие 1 эквивалента этилундеконоатSi(ОМе)3 или винилSi(ОМе)3 с 7 эквивалентами MeSi(ОМе)3, что приводит к получению молекулы формулы 2 композиции [(ViSiO1,5)1(MeSiO1,5)7]∑# или [(этилундеконоатSiO1,5)1(MeSiO1,5)7]∑#, несмотря на топологическую несхожесть между группами R.

Во многих случаях желаемые гомо- или гетеролептические разновидности соединений POSS могут быть отделены одно от другого посредством кристаллизации, экстракции или использованием различия в растворимости продуктов и стартовых POSS-фрагментов.

Продолжением этого процесса является действие основания на функционализированные POSS-соединения (т.е. [(RSiO1,5)m(RXSiO1,0)n]∑#). Следует отметить, что эти системы химически сходны с POSS-фрагментами в плане их химического состава. Они, однако, различаются по своей топологии и физическим свойствам, таким как точка плавления, растворимость и летучесть.

Схема 4 иллюстрирует реальные реакции, которые используются в условиях, описанных в способе II, как доказательство того, что основания и условия, описанные в способе II являются эффективными для превращения функционализированных POSS-ячеек (т.е. [(RSiO1,5]m(RXSiO1,0)n]∑#) целевых POSS-соедиений. Также следует отметить, что в большинстве случаев эти процессы приводят к повышению числа функциональных групп (X) на POSS-наноструктуре, в то время как одновременно сохраняется исходное число атомов кремния, содержащихся в каркасе стартовой наноструктуры. Это может быть желательным для разнообразных последовательных манипуляций с синтетическими продуктами или создания производных.

Схема 4. Взаимопревращение POSS-ячеек.

Первый пример в схеме 4 иллюстрирует избирательность расщепления основаниями 6-членных кремний-кислородных колец в присутствии 8-членных кремний-кислородных колец для получения трифункционализированных видов POSS. Эта реакция сопровождается высвобождением большего количества энергии напряжения кольца при расщеплении 6-членного кремний-кислородного кольца, чем при расщеплении 8-членного кремний-кислородного кольца и является термодинамически выгодной. Во втором примере энергия скрученной конформации расщеплением снижается с образованием более открытой структуры.

Последнее видоизменение способа II, которое является чрезвычайно полезным, может также позволить внедрять POSS-фрагменты в существующие наноструктуры POSS и POSS-силикатов. Это очень важный и полезный аспект данного способа, так как он позволяет расширить как POSS, так и POSS-силикатные виды ячеек. Это аналогично процессу образования углерод-углеродных связей в органических системах. Следовательно, этот способ может быть использован для получения больших POSS-наноструктур, а также POSS-наноструктур, имеющих ранее недостижимый размер. Очень важно использование этого способа для получения наноструктур, имеющих нечетное, а также четное число атомов кремния.

Схема 5. силсесквиоксан/силоксановые фрагменты, вставленные в POSS-ячейки

Реакция образования сети в примерах, показанных на схеме 5, представляет собой расщепление Si-O-Si связи в POSS- и POSS-силикатных наноструктурах и встраивание POSS-фрагмента. Эта реакция приводит к расширению кремний-кислородного кольца в продукте с POSS-наноструктурой. Следует обратить внимание на то, что расширение кольца в этих реакциях в некоторых случаях термодинамически благоприятно из-за снижения напряжения кольца в силсесквиоксановом стартовом (исходном) материале. Например, взаимодействие 1 эквивалента винил(ОМе)3 с [((с-С6Н11)SiO1,5)6]∑6 приводит к образованию POSS-молекулы, имеющей структуру [((с-С6Н11) SiO1,5)4(с-С6Н11)(HO)SiO1,0)2(ViSiO1,0)1]∑7.

Для проведения процесса также могут использоваться смеси оснований. Одно преимущество такого подхода состоит в том, что использование сочетания различных видов оснований может служить для выполнения различных функций. Например, одно основание может быть особенно пригодно для расщепления Si-X групп, тогда как второе основание может участвовать в объединении POSS-фрагментов в POSS-наноструктуры. Также можно ожидать синергические эффекты между различными видами оснований.

Особенно важно использование смеси POSS-фрагментов (т.е., где R одного фрагмента ≠ R другого фрагмента) или POSS-фрагментов, имеющих более одного вида групп R. Использование смеси фрагментов или фрагментов, имеющих смешанные группы R, обеспечивает гетеролептические виды POSS [(RSiO1.5)m(RSiO1,5)n]∑#, которые содержат более одного вида групп R. В целом полученные продукты с POSS-наноструктурой содержат статистическую смесь R, которые определены стехиометрией стартовых фрагментов. В результате возможны многочисленные изомеры.

Способ III: Избирательное открытие, функционализация и перегруппировка POSS-соединений

В этом способе используются основания (как было определено ранее) и соединения с POSS-наноструктурами, имеющими гомолептическое [(RSiO1,5)n]∑# и гетеролептическое [(RSiO1,5)m(RSiO1,5)n]∑#, строение.

Способ обеспечивает превращение с низкими затратами легко образующихся нефункционализированных POSS-соединений в более желательные функционализированные POSS-соединения системы вида [(RSiO1,5)m(RXSiO1,0)n]∑#. POSS-соединения типа [(RSiO1,5)m(RXSiO1,0) n]∑#, могут использоваться как самостоятельные химические реагенты или далее образовывать производные для обеспечения множества других POSS-соединений. Этот способ обеспечивает совершенно новый путь синтеза для получения очень важных и полезных не полностью конденсированных трисиланоловых реагентов [(RSiO1,5)4(RXSiO1,0)3]∑7, в частности, где Х=ОН.

Гомолептические POSS-соединения [(RSiO1,5)n]∑# легко превращаются в POSS-соединения, имеющие формулу [(RSiO1,5)m(RXSiO1,0)n]∑#, a также POSS-фрагменты, имеющие формулу RSiX3, [(RXSiO0,5)n], [(RXSiO1,0)n] или [(RSiO1,5)m(RXSiO1,0)n] посредством использования оснований, как показано на схеме 6. Следует обратить внимание на то, что не показаны все геометрические и стереохимические изомеры для каждого продукта.

Схема 6. Иллюстрация процесса III

Кроме того, в качестве варианта этого способа можно взаимопреобразовывать POSS-наноструктуры различных размеров. Например, при соответствующем добавлении основания [(RSiO1,5)6]∑6 может быть или расщеплен на более мелкие POSS-фрагменты (например, [RSiX3], [(RXSiO0,5)n], [(RXSiO1,0)n] или [(RSiO1,5)m(RXSiO1,0)n] или функционализирован в гетеролептические POSS наноструктуры такого же вида (например, [(RSiO1,5)4(RXSiO1,0)2]∑6) или большие (например, [(RSiO1,5)4(RXSiO1,0)3]∑7), как показано на схеме 6.

Схема 7. Иллюстрация способа III.

В качестве варианта вышеприведенного найдено, что в этом способе можно использовать смеси и распределения POSS-ячеек, а также полигедральные олигомерные силикатные частицы (например, [((СН3)3SiO)SiO1,5)6]∑6, [((СН3)4NO)SiO1,5)6]∑6, [((СН3)3SiO)SiO1,5)8]∑8, [((СН3)4NO)SiO1,5)8]∑8. В таких случаях основание эффективно превращает ячейки нескольких размеров в функционализированные и не функционализированные гетеролептические POSS-наноструктуры, как показано на схеме 7. Схема 7 представляет собой совершенно новый путь синтеза для получения очень полезных не полностью конденсированных трисиланоловых реагентов [(RSiO1,5)4(RXSiO1,0)3]∑7, в частности где Х=ОН.

Схема 8. Иллюстрация превращения POSS и силикатных наноструктур - способ III.

Последний вариант этого способа представляет избирательное воздействие основания на соединения с гетеролептическими POSS-наноструктурами. POSS-наноструктуры, несущие более одного вида групп R на ячейку [(RSiO1,5)m(RSiO1,5)n]∑#, легко превращаются при использовании