Машина с вращающимся поршнем

Иллюстрации

Показать все

Изобретение касается машин с вращающимся поршнем. Техническим результатом является повышение эффективности работы машины. Сущность изобретения заключается в том, что корпус (10) образует призматическую камеру (12), поперечный разрез которой является овалом нечетного порядка, который составлен попеременно из дуг (34, 36, 38) с первым, меньшим, радиусом кривизны и дуг (40, 42, 44) со вторым, большим, радиусом кривизны, которые переходят непрерывно и дифференцируемо одна в другую. При этом образуются соответствующие цилиндрические части внутренней поверхности камеры. В камере (12) находится вращающийся поршень (60), поперечный разрез которого образует овал, который имеет порядок на 1 меньше, чем порядок камеры (12). На вращающемся поршне (60) образованы противолежащие друг другу части боковой поверхности, из которых соответственно одна вращается в части внутренней поверхности равного ей радиуса кривизны, а вторая прилегает к противоположной части внутренней поверхности так, что может скользить по ней. Вращающийся поршень (60) разделяет камеру (12) в любом положении на два рабочих пространства (78, 80). На срединной плоскости поршня определены фиксируемые на короткое время мгновенные оси вращения (112, 114) вращающегося поршня (60). В рабочие пространства периодически вводится рабочий агент для привода вращающегося поршня (60) в движение. Вращающийся поршень (60) вращается в каждой фазе движения в одной из противолежащих частей своей боковой поверхности (70) в соответствующей части внутренней боковой поверхности (62) камеры вокруг соответствующей мгновенной оси вращения (112) и скользит противоположной частью своей боковой поверхности (72) по соответствующей противоположной части внутренней боковой поверхности (54) камеры (12), пока не придет в крайнее положение (т.е. до упора). Затем, для осуществления следующей фазы движения, мгновенная ось вращения перепрыгивает из прежнего положения во второе возможное относительно поршня положение (114) и фиксируется в нем на короткое время. Ведомый или ведущий вал (102) находится в зацеплении с вращающимся поршнем (60). Чтобы предотвратить кинематическую неоднозначность мгновенной оси вращения в крайнем положении, мгновенная ось вращения механически фиксируется в каждом крайнем положении на некоторое время. 2 н. и 18 з.п. ф-лы, 79 ил.

Реферат

Область техники

Изобретение относится к машине с вращающимся поршнем, содержащей корпус с призматической камерой, поперечный разрез которой образует овал нечетного порядка, состоящий из чередующихся дуг первого, меньшего, и второго, большего, радиусов кривизны, которые непрерывно и дифференцируемо переходят одна в другую и образуют при этом соответственно первые и вторые цилиндрические части внутренней стенки камеры; призматический вращающийся поршень, боковая поверхность которого имеет диаметрально противоположные цилиндрические части, которые имеют первый радиус кривизны и одна из которых располагается с возможностью вращения в соответствующей первой цилиндрической части внутренней стенки камеры, а другая прилегает к противоположной части внутренней стенки камеры, так что вращающийся поршень в любом положении делит камеру на два рабочих пространства, объемы которых при вращении поршня попеременно увеличиваются и уменьшаются, причем цилиндрические части боковой поверхности вращающегося поршня определяют срединную плоскость, в которой расположены мгновенные оси вращения вращающегося поршня, проходящие вдоль осей цилиндрических частей его боковой поверхности; средства для периодического впуска рабочего тела в рабочие пространства и выпуска его оттуда, причем на каждом участке движения вращающийся поршень первой из диаметрально противоположных частей своей боковой поверхности поворачивается в первой части внутренней стенки камеры, вращаясь вокруг соответствующей мгновенной оси вращения, проходящей вдоль оси цилиндрической поверхности первой части внутренней стенки камеры, а второй частью скользит вдоль противоположной второй части внутренней стенки камеры к следующей по направлению вращения первой части внутренней стенки камеры, где он достигает крайнего положения участка движения, после чего мгновенная ось вращения поршня скачком переходит в измененное положение, определяемое упомянутой следующей частью внутренней стенки и соответствующее другой оси вращения поршня, для последующего участка движения вращающегося поршня; и средства сцепления ведущего или ведомого вала с вращающимся поршнем.

Согласно математическому определению овалом называется замкнутая, плоская, неаналитическая, выпуклая фигура, состоящая из непрерывно и гладко (дифференцируемо) сочлененных дуг окружностей. Т.е. линия контура овала непрерывна и дифференцируема везде, в том числе и в точках сочленения, в которых сочленяющиеся дуги имеют общую первую производную и, тем самым, общую касательную. А вторая производная, т.е. кривизна, испытывает скачок. В нашем случае овалы состоят из регулярно чередующихся дуг окружностей, соответственно меньшего (первого) и большего (второго) радиусов. Порядок овала определяется числом пар чередующихся дуг окружностей большего и меньшего радиусов. Овал второго порядка, или "биовал", выглядит подобно эллипсу, с двумя диаметрально противоположными дугами меньшего радиуса, соединенными двумя дугами большего радиуса.

Изобретение относится к машине с вращающимся поршнем, в корпусе которой имеется призматическая камера цилиндрической симметрии с поперечным сечением в форме овала нечетного порядка, например овала третьего порядка. Внутренние стенки камеры состоят из гладко сопряженных, чередующихся цилиндрических участков поверхности соответственно первого (меньшего) и второго (большего) радиусов кривизны. В такой цилиндрической камере с сечением в форме третьего (пятого, седьмого и более высоких порядков) порядка подвижно помещен вращающийся поршень с сечением в форме (желательно, но не обязательно правильного) овала, причем порядок овала поршня на единицу меньше порядка овала камеры. Поперечное сечение поршня имеет (в основном) симметрию второго порядка, даже если это сечение является овалом более высокого порядка. Таким образом, поршень имеет две (и не более) плоскости симметрии, параллельные образующей цилиндра камеры, одну проходящую через максимальный диаметр его поперечного сечения, а другую через минимальный. Поршень имеет две диаметрально противолежащие цилиндрические поверхности, обе с радиусом кривизны, соответствующим первому (малому) радиусу кривизны овального сечения камеры. Если поперечное сечение поршня действительно является биовалом в строгом смысле, то второй (больший) радиус кривизны (боковой) цилиндрической поверхности поршня равен большему радиусу кривизны триовала, образующему в этом случае поперечное сечение камеры.

Во время движения поршня между двумя "крайними" положениями поршень прилегает первым цилиндрическим участком поверхности первого (малого) радиуса кривизны - прилегает, вращаясь вокруг линии центров этой кривизны, - к соответствующему участку внутренней цилиндрической поверхности камеры того же (малого) радиуса кривизны. Другим, диаметрально противолежащим участком цилиндрической поверхности того же (малого) радиуса кривизны поршень скользит по противоположному (удаленному) цилиндрическому участку поверхности камеры соответственно второго (большего) радиуса кривизны; причем центры кривизны участка цилиндрической поверхности камеры меньшего радиуса и противоположного ему участка цилиндрической поверхности камеры большего радиуса совпадают. Таким образом, поршень разделяет камеру на два рабочих пространства, такие, что одно из них при вращении поршня увеличивается, а другое уменьшается. Поршень же вращается при этом вокруг мгновенной оси вращения, совпадающей на этом участке движения с общей линией центров кривизны двух участков поверхности камеры, того, в котором вращается поршень одним "концом", и того, по которому он скользит другим. Таким образом, мгновенная ось вращения поршня однозначно определена относительно поршня во время вращения между двумя крайними положениями поршня. Вращение вокруг этой мгновенной оси продолжается до тех пор, пока поршень не достигнет следующего крайнего положения. В крайнем положении поршня оба его диаметрально противолежащих участка цилиндрической поверхности меньшего радиуса кривизны прилегают к двум соответствующим участкам цилиндрической поверхности камеры той же кривизны меньшего радиуса, а участок поверхности поршня, находящийся между участками цилиндрической поверхности меньшего радиуса кривизны, прилегает в случае камеры симметрии третьего порядка к участку внутренней поверхности камеры соответственно большего радиуса кривизны.

Дальнейшее вращение в ту же сторону вокруг только что описанной мгновенной оси вращения невозможно. В этом крайнем положении происходит прыжок мгновенной оси вращения в ее диаметрально противоположное положение относительно поршня. После чего все движение повторяется уже на следующем участке вокруг мгновенной оси вращения в ее новом положении, которое совпадает с линией центров кривизны второго участка цилиндрической поверхности поршня с кривизной меньшего радиуса. Таким образом, также и это новое положение мгновенной оси вращения однозначно определено по отношению к поршню. На этом новом участке движения поршня в камере поршень вращается вторым участком цилиндрической поверхности меньшего радиуса в соответствующем участке внутренней поверхности камеры меньшего радиуса кривизны и скользит первым участком поверхности меньшего радиуса кривизны по противолежащему мгновенной оси вращения участку внутренней поверхности камеры большего радиуса кривизны.

В такой машине с вращающимся поршнем поршень вращается в одном и том же направлении, но вокруг соответственно разных мгновенных осей вращения, так что мгновенная ось вращения "прыжком" меняет свое положение в крайнем положении поршня. Относительно поршня мгновенная ось вращения находится попеременно в двух положениях, а именно поочередно совпадает с линиями центров кривизны двух наиболее удаленных друг от друга участков боковой цилиндрической поверхности поршня меньшего радиуса кривизны. Относительно же корпуса и образованной в нем камеры мгновенная ось вращения поршня прыгает последовательно между вершинами правильного дугового многоугольника, образованными линиями центров кривизны участков внутренней боковой цилиндрической поверхности камеры меньшего радиуса кривизны.

На каждом участке движения между крайними положениями объем одного рабочего пространства растет до максимума, в то время как объем соответственно другого рабочего пространства уменьшается до минимума. В идеальном случае, когда поперечное сечение поршня тоже является овалом, объем одного рабочего пространства растет практически от нуля до максимума, а другого уменьшается от максимума до практически нуля. Такая машина с вращающимся поршнем может использоваться как двухтактный или четырехтактный двигатель внутреннего сгорания, причем как с циклом Отто, так и с циклом Дизеля. Также она может использоваться как пневматический или гидравлический мотор или же как насос и компрессор.

Уровень техники

Машины с вращающимся поршнем такого рода в принципе известны.

Патентами US 3967594 и US 3006901 защищены варианты машин с вращающимся поршнем с овальным поршнем и овальной камерой. При этом поршень в обоих US-вариантах является в поперечном сечении биовальным. Этот биовальный поршень движется в триовальной камере. В этих известных машинах с вращающимся поршнем предусмотрены весьма сложные устройства для передачи энергии вращения поршня на вал или вала на поршень.

Патент DE 19920289 С1 тоже описывает машину с вращающимся поршнем, в корпусе которой устроена призматическая камера триовального сечения с контуром, образованным непрерывно и дифференцируемо сочлененными дугами окружностей попеременно первого (меньшего) и второго (большего) радиусов кривизны. В камере находится подвижный поршень биовального сечения, контур которого образован непрерывно и дифференцируемо сочлененными дугами окружностей попеременно первого (меньшего) и второго (большего) радиусов кривизны, тех же, что у контура поперечного сечения камеры. Биовальный поршень совершает в камере вышеописанное циклическое движение с прыгающей мгновенной осью вращения. Движение поршня при этом передается на вал очень простым образом: вал съема или передачи мощности помещен в центр симметрии триовальной камеры так, что его ось совпадает с линией пересечения плоскостей симметрии камеры. Вал имеет зубчатое колесо. Поршень же имеет овальное сквозное отверстие с вогнутыми зубчатыми рейками, представляющими собой устройство внутреннего зубчатого оснащения сквозного овального отверстия поршня. Длинная ось контура овального сквозного отверстия в поршне совпадает с короткой осью контура поперечного сечения поршня. Зубчатое колесо вала находится в зацеплении с внутренним зубчатым оснащением отверстия в поршне.

Описание изобретения

В основе изобретения лежит осознание рассмотренных ниже обстоятельств.

В моменты времени, когда мгновенная ось вращения поршня после завершения поршнем одного участка движения и перед началом следующего скачком переходит из одного положения в другое, в работе известных машин с вращающимся поршнем могут возникать проблемы. А именно, в этот момент кинематика (кинематическая цепь) машины находится в "разомкнутом" состоянии. Если в этот момент на поршень из рабочего пространства подействует сила, направленная поперек плоскости, соединяющей обе возможных мгновенных оси вращения, например, вследствие воспламенения топливной смеси в рабочем пространстве минимального объема, эта сила может выдавить вращающийся поршень в поперечном направлении в другое, сужающееся и имеющее форму треугольника рабочее пространство и заклинить вращающийся поршень в этом пространстве. В этом случае имеет место уже не вращательное движение поршня вокруг новой мгновенной оси вращения, а поступательное перемещение обеих осей на заклинивание поршня. В особенности эта опасность существует при движении поршня с небольшой скоростью, когда кинетической энергии его вращения недостаточно для поддержания поршня в состоянии вращения в момент скачкообразной смены осей вращения.

В основу изобретения положена задача обеспечения в машине с вращающимся поршнем указанного в начале описания типа надежного и безукоризненно четкого перехода с одной мгновенной оси вращения на другую, т.е. перехода мгновенной оси вращения в измененное положение, при смене одного участка движения поршня другим.

В соответствии с настоящим изобретением эта задача решается за счет выполнения машины с фиксирующими средствами, обеспечивающими при достижении мгновенной осью вращения упомянутого измененного положения временную фиксацию этой оси для последующего участка движения вращающегося поршня.

Таким образом замыкается кинематика машины. При этом вращающийся поршень при переходе от одного участка движения к следующему гарантированно совершает вращательное движение вокруг новой мгновенной оси вращения, а его поступательное смещение в поперечном направлении исключается. После того, как рассмотренным выше образом обеспечена возможность продолжения вращения поршня, поршень может быть расфиксирован. Расфиксировать вращающийся поршень следует как можно раньше, чтобы избежать дополнительных потерь на трение и нежелательного износа средств фиксации.

В любом случае, фиксирующие средства должны освободить вращающийся поршень до достижения им крайнего положения следующего участка движения, в котором снова происходит скачкообразный переход мгновенной оси вращения.

Для подобной фиксации на торцевой поверхности вращающегося поршня в местах возможных мгновенных осей вращения могут быть предусмотрены соединительные структуры, а со стороны корпуса на осях первых цилиндрических частей внутренней стенки могут быть установлены подвижные в осевом направлении штифты с дополнительными (ответными) соединительными структурами, вводимыми в контакт с соединительными структурами вращающегося поршня для фиксации соответствующей мгновенной оси вращения. При этом соединительные структуры со стороны поршня могут быть образованы коническими углублениями, выполненными в торцевой поверхности вращающегося поршня, а соединительные структуры со стороны штифтов образованы коническими головками, вводимыми в конические углубления для сцепления с ними. При помощи конических структур осуществляется центрирование штифта и вращающегося поршня относительно друг друга.

Подвижные штифты могут управляться электрическими исполнительными механизмами, например силовыми электромагнитами, возбуждаемыми в заданные моменты прохождения вращающимся поршнем участка его движения. Это конструктивно простое решение, поскольку позволяет использовать стандартные детали. Благодаря электрическому управлению достигается удобство регулирования моментов срабатывания фиксирующих средств и возможность учета временнóй характеристики машины стандартными средствами электрического или электронного управления блоками. Электрические исполнительные элементы могут управляться измерительными средствами, реагирующими на фазу вращательного движения ведущего или ведомого вала.

Для приложения или снятия крутящего момента можно использовать простое решение, аналогичное раскрытому в патенте DE 19920289 С1, согласно которому через камеру проходит расположенный по центру камеры ведущий или ведомый вал с шестерней, а вращающийся поршень имеет продолговатый в поперечном сечении вырез, более длинная ось которого проходит перпендикулярно срединной плоскости вращающегося поршня, и который имеет внутренние зубья, находящиеся в зацеплении с шестерней вала.

Форма этого выреза определяется формой вращающегося поршня и диаметром шестерни вала. Боковые кромки этого выреза являются дугами окружностей с центрами в точках связанных с поршнем мгновенных осей вращения. Эти дуги по краям соединяются дугами, радиусы примерно соответствуют радиусу шестерни вала. За оборот вращающегося поршня ось вала выписывает в нем траекторию в форме "двуугольника", т.е. кривой с двумя изогнутыми в противоположные стороны дугами, образующими два угла.

Если бы радиусы сопрягающих дуг выреза на конце были меньше радиуса шестерни вала, то шестерня не смогла бы заходить в них или ее заклинило бы между дугами с центрами в мгновенных осях вращения. Если бы радиусы сопрягающих дуг выреза на конце были значительно больше радиуса шестерни вала, то привод непрерывного действия был бы неработоспособен. Ведь вал в переходный момент между циклами движения должен сразу переходить с одной из двух дуг с центрами на мгновенных осях вращения на другую. В случае сплошного внутреннего и вогнутого зубчатого венца, выполненного по кромкам выреза, при таком переходе могут возникнуть проблемы кинематического плана.

Поэтому в другом варианте осуществления изобретения предусматривается выполнение внутренних зубьев по обе стороны от более длинной оси выреза в виде противолежащих вогнутых зубчатых реек, а внутренних зубьев на концах выреза - в виде невогнутых зубчатых реек. При этом зубчатые рейки на концах выреза могут быть выполнены прямолинейными или же выпуклыми.

Неожиданно выяснилось, что такое выполнение зубьев на концах выреза позволяет решить кинематические проблемы, возникающие в известных решениях.

Для достижения высокого КПД ход вращающегося поршня в овальной камере должен быть как можно более легким, чтобы трение и износ были незначительными. Однако, с другой стороны, необходимо гарантировать надежное уплотнение между рабочими пространствами. Негерметичность уплотнения также уменьшает КПД.

По этой причине в диаметрально противоположных цилиндрических частях боковой поверхности вращающегося поршня целесообразно выполнить продольные пазы, в которые помещены уплотнительные планки, образующие уплотнение между рабочими пространствами и прилегающие к внутренней поверхности камеры. Эти пазы при помощи клапанного устройства, управляемого разностью давлений в рабочих пространствах, при возникновении большой разности давлений могут сообщаться с тем рабочим пространством, в котором давление больше. При этом клапанное устройство может иметь канал, выполненный во вращающемся поршне, соединяющий граничащие с вращающимся поршнем рабочие пространства, этот канал на обоих концах отделен от рабочих пространств втулочными элементами с соединительными отверстиями, и в нем подвижно установлен золотник, имеющий с обеих сторон участки уменьшенного диаметра, причем в конечных положениях золотника соответствующий участок уменьшенного диаметра входит в соединительное отверстие соседнего с ним втулочного элемента.

Если разность давлений в рабочих пространствах мала, то уплотнительные планки могут прижиматься к внутренней стенке овальной камеры с меньшей силой. Это уменьшает потери на трение и повышает КПД. Если возникает большая разность давлений, то давление из того рабочего пространства, где оно выше, подводится к уплотнительным планкам. Уплотнительные планки сильнее прилегают к внутренней стенке камеры. Под действием более высокого давления золотник в канале вращающегося поршня смещается в сторону рабочего пространства с более низким давления. Там соединительный канал запирается участком золотника с уменьшенным диаметром. В этом случае в канале присутствует более высокое давление, действующее в пазах под уплотнительными планками.

Для повышения эффективности уплотнения при незначительном давлении прижима уплотнительные планки могут иметь выпуклый профиль, подогнанный по радиусу кривизны к одной из цилиндрических частей внутренней стенки камеры. При этом предпочтительно, чтобы в обеих диаметрально противоположных цилиндрических частях боковой поверхности вращающегося поршня были предусмотрены пары параллельных пазов и уплотнительных планок, и в каждой паре одна уплотнительная планка имеет выпуклый профиль с первым радиусом кривизны, а другая уплотнительная планка каждой пары - выпуклый профиль со вторым радиусом кривизны. В этом случае, профиль каждой из двух уплотнительных планок всегда будет согласован с радиусом кривизны соответствующей части внутренней стенки камеры.

Другое, наиболее предпочтительное решение состоит в том, чтобы поделить профиль уплотнительных планок на (воображаемые) полоски, причем радиус кривизны по меньшей мере одной из полосок соответствует меньшему радиусу кривизны первых частей внутренней стенки камеры, а радиус кривизны по меньшей мере одной другой полоски соответствует большему радиусу кривизны вторых частей внутренней стенки. При этом у каждой уплотнительной планки две внешние полоски профиля могут иметь меньший, а находящаяся между ними внутренняя полоска - больший радиус кривизны.

Предлагаемая в изобретении машина с вращающимся поршнем в другом ее варианте содержит корпус с призматической камерой, поперечный разрез которой образует овал нечетного порядка, состоящий из чередующихся дуг первого, меньшего, и второго, большего, радиусов кривизны, которые непрерывно и дифференцируемо переходят одна в другую и образуют при этом соответственно первые и вторые цилиндрические части внутренней стенки камеры; призматический вращающийся поршень, боковая поверхность которого имеет диаметрально противоположные цилиндрические части, которые имеют первый радиус кривизны и одна из которых располагается с возможностью вращения в соответствующей первой цилиндрической части внутренней стенки камеры, а другая прилегает к противоположной части внутренней стенки камеры, так что вращающийся поршень в любом положении делит камеру на два рабочих пространства, объемы которых при вращении поршня попеременно увеличиваются и уменьшаются, причем цилиндрические части боковой поверхности вращающегося поршня определяют срединную плоскость, в которой расположены мгновенные оси вращения поршней, проходящие вдоль осей цилиндрических частей боковой поверхности; средства периодического впуска рабочего тела в рабочие пространства и выпуска его оттуда для приведения вращающегося поршня в движение, причем на каждом участке движения вращающийся поршень первой из диаметрально противоположных частей своей боковой поверхности поворачивается в первой части внутренней стенки камеры, вращаясь вокруг соответствующей мгновенной оси вращения, проходящей вдоль оси цилиндрической поверхности первой части внутренней стенки камеры, а второй частью скользит вдоль противоположной второй части внутренней стенки камеры к следующей по направлению вращения первой части внутренней стенки камеры, где он достигает крайнего положения участка движения, после чего мгновенная ось вращения скачком переходит в измененное положение, определяемое упомянутой следующей частью внутренней стенки и соответствующее другой оси вращения поршня, для последующего участка движения вращающегося поршня; средства сцепления вала с вращающимся поршнем.

Отличие этого варианта состоит в том, что камера машины является в поперечном разрезе овалом нечетного порядка (2n+1)>3, где n - натуральное число, вращающийся поршень в поперечном разрезе является овалом четного порядка 2n, где n - натуральное число, в частности овалом 4-го или 6-го порядка, причем поршень имеет две диаметрально противоположные главные вершины с двумя диаметрально противоположными цилиндрическими частями его боковой поверхности, а возможные мгновенные оси вращения поршня находятся в его срединной плоскости, соединяющей главные вершины.

Преимущество этого варианта машины заключается в возможности применения овала более высокого, чем у поршня, порядка без увеличения количества возможных (связанных с поршнем) мгновенных осей вращения.

Машины с камерами и вращающимися поршнями более высокого порядка позволяют реализовать приводы, способные на исключительно низких оборотах развивать столь же исключительно высокие крутящие моменты и характеризующиеся высокой точностью установки ведомого вала.

В другом частном варианте осуществления изобретения камера сгорания имеет поперечное сечение в форме фигуры постоянной высоты, а поршень имеет форму, соответствующую форме камеры сгорания, при которой поршень является зеркально-симметричным относительно срединной плоскости, причем срединная плоскость проходит через два центра кривизны камеры сгорания, находящихся на максимальном расстоянии друг от друга, а боковая поверхность поршня, находящегося в крайнем положении участка движения, полностью прилегает с одной стороны срединной плоскости к внутренней стенке образующейся при этом меньшей части камеры сгорания. Благодаря этому можно достичь максимально возможного и геометрически неограниченного коэффициента сжатия.

Примеры конструкции изобретения объяснены ниже, со ссылками на приведенные чертежи.

Краткое описание чертежей

Фиг.1 показывает биовальный вращающийся поршень, который вращается в треховальной камере корпуса.

Фиг.2 показывает четыреховальный вращающийся поршень, который вращается в пятиовальной камере корпуса.

Фиг.3 показывает шестиовальный вращающийся поршень, который вращается в семиовальной камере корпуса.

Фиг.4 показывает для конструкции, приведенной на фиг.1, сингулярную траекторию возможных осей вращения вращающегося поршня относительно корпуса, а также траекторию оси ведущего или ведомого вала относительно вращающегося поршня.

Фиг.5 показывает для конструкции, приведенной на фиг.1, кинематику системы силовой передачи с прямыми зубчатыми рейками (зубчатыми линейками).

Фиг.6 показывает для конструкции, приведенной на фиг.1, кинематику системы силовой передачи с выпуклыми зубчатыми рейками (зубчатыми секторами) вскоре после прохождения поршнем крайнего положения.

Фиг.7.1-7.12 показывают для конструкции, приведенной на фиг.1, фазы движения вращающегося поршня.

Фиг.8 показывает для конструкции, приведенной на фиг.2, сингулярную траекторию возможных осей вращения вращающегося поршня относительно корпуса, а также траекторию оси ведущего или ведомого вала относительно вращающегося поршня.

Фиг.9 показывает аналогично фиг.5 для конструкции, приведенной на фиг.2, кинематику системы силовой передачи с прямыми зубчатыми рейками.

Фиг.10 показывает аналогично фиг.6 для конструкции, приведенной на фиг.2, кинематику системы силовой передачи с выпуклыми зубчатыми рейками (зубчатыми секторами) вскоре после прохождения поршнем крайнего положения.

Фиг.11.1-11.20 показывают аналогично фиг.7.1-7.12 для конструкции, приведенной на фиг.2, фазы движения вращающегося поршня.

Фиг.12 показывает аналогично фиг.4 для конструкции, приведенной на фиг.3, сингулярную траекторию возможных осей вращения вращающегося поршня относительно корпуса, а также траекторию оси ведущего или ведомого вала относительно вращающегося поршня.

Фиг.13 показывает аналогично фиг.5 для конструкции, приведенной на фиг.3, кинематику системы силовой передачи с прямыми зубчатыми рейками.

Фиг.14 показывает аналогично фиг.6 для конструкции, приведенной на фиг.3, кинематику системы силовой передачи с выпуклыми зубчатыми рейками (зубчатыми секторами) вскоре после прохождения поршнем крайнего положения.

Фиг.15.1-15.28 показывают аналогично фиг.7.1-7.12 для конструкции, приведенной на фиг.3, фазы движения вращающегося поршня.

Фиг.16 схематически показывает конструктивное выполнение фиксирующих средств для временной фиксации мгновенной оси вращения в крайнем положении поршня при переходе от одной фазы движения к другой.

Фиг.17 показывает схематически управление золотником для автоматического регулирования усилия прижима уплотнительных планок к внутренней стенке корпуса.

Фиг.18 показывает схематически расположение уплотнительных планок с профилями двух радиусов кривизны, малого и большого, поочередно плотно прилегающих соответственно к участкам внутренней боковой поверхности рабочей камеры с кривизной тех же радиусов, малого и большого.

Фиг.19А и 19Б показывают конструкцию пар уплотнительных планок, поверхность каждой из которых состоит из двух продольных полосок соответственно большей и меньшей кривизны - всего четыре полоски. При этом внешняя пара полосок имеет кривизну меньшего радиуса, соответствующего меньшему радиусу кривизны части боковой поверхности камеры, а внутренняя пара полосок имеет кривизну большего радиуса, соответствующего большему радиусу кривизны ответной части боковой поверхности камеры. Поэтому такая пара уплотнительных планок осуществляет надежное уплотнение по поверхности в любом положении поршня.

Фиг.20 показывает машину с вращающимся поршнем, приведенную на фиг.1, с клапанным устройством для управления давлением уплотнительных планок на стенки камеры в зависимости от разности давлений в соседних рабочих пространствах.

Предпочтительные примеры использования изобретения

На фиг.1 корпус машины с вращающимся поршнем помечен цифрой 30. Этот корпус 30 образует призматическую камеру 32. Поперечный разрез этой камеры является овалом третьего порядка. Контур поперечного разреза состоит из трех дуг 34, 36, 38 с одинаковым для всех трех дуг, относительно малым радиусом кривизны и трех дуг 40, 42, 44 с одинаковым для всех трех дуг, относительно большим радиусом кривизны. Дуги с малыми 34, 36, 38 и большими 40, 42, 44 радиусами кривизны чередуются друг с другом. Например, к дуге 34 с малым радиусом кривизны по направлению часовой стрелки на фиг.1 примыкает дуга 40 с большим радиусом кривизны. За ней снова следует дуга 36 с малым радиусом кривизны и т.д. Дуги примыкают друг к другу непрерывно и гладко (дифференцируемо). В соответствии с этим внутренняя стенка камеры состоит из цилиндрических частей, а именно из трех цилиндрических частей внутренней стенки 46, 48, 50 и соответствующих им дуг 34, 36, 38, которые указаны здесь как "первые" части внутренней стенки, и трех цилиндрических частей внутренней стенки 52, 54, 56, которые указаны здесь как "вторые" части внутренней стенки. Можно видеть, что овал и вместе с ним камера 32 обладают симметрией третьего порядка. Имеются три плоскости симметрии с угловым смещением 120°. Плоскости симметрии пересекаются в центральной оси 58.

В камере 32 установлен вращающийся поршень 60. Вращающийся поршень 60 является призматическим. Поперечный разрез вращающегося поршня 60 - это овал второго порядка. Этот овал состоит из двух дуг 62 и 64 с относительно малым радиусом кривизны и двух дуг 66 и 68 с относительно большим радиусом кривизны. Малые и большие радиусы кривизны овального сечения вращающегося поршня 60 соответствуют малым и большим радиусам кривизны овального сечения камеры 32. Здесь также чередуются дуги с малыми и большими радиусами кривизны. Чередующиеся дуги 62, 66, 64, 68 примыкают друг к другу непрерывно и гладко. Соответственно этим дугам боковая поверхность призматического вращающегося поршня 60 имеет цилиндрические части 70 и 72 с относительно малым радиусом кривизны и цилиндрические части 74 и 76 с относительно большим радиусом кривизны. Цилиндрические части 70 и 72 боковой поверхности лежат диаметрально противоположно друг другу.

Вращающийся поршень имеет симметрию второго порядка: первая плоскость симметрии проходит сквозь оси диаметрально противоположных цилиндрических частей 70 и 72 боковой поверхности с малым радиусом кривизны. Вторая плоскость симметрии проходит перпендикулярно первой через оси цилиндрических частей 74 и 76 боковой поверхности с большим радиусом кривизны.

Очевидно, что вращающийся поршень 60 движется в камере 32 так, что его контур в крайних положениях точно повторяет контур соответствующей части боковой поверхности камеры. На фиг.1 цилиндрическая часть 70 боковой поверхности поршня прилегает к цилиндрической части 34 внутренней стенки камеры 32, причем часть 70 боковой поверхности поршня и часть поверхности внутренней стенки 34 имеют одинаковый радиус кривизны. Цилиндрическая часть 72 боковой поверхности поршня прилегает к части 54 внутренней стенки камеры 32, которая лежит напротив части 34 внутренней стенки. Когда вращающийся поршень 60 вращается против часовой стрелки на фиг.1, цилиндрическая часть 70 боковой поверхности вращающегося поршня поворачивается в цилиндрической части 46 внутренней стенки камеры 32. Диаметрально противоположная ей цилиндрическая часть 72 боковой поверхности вращающегося поршня 60 скользит при этом по цилиндрической части 54 внутренней стенки камеры 32.

На фиг.1 вращающийся поршень 60 образует в камере 32 два рабочих пространства 78 и 80, которые взаимно герметизированы вращающимся поршнем 60. При вращении вращающегося поршня 60 против часовой стрелки на фиг.1 рабочее пространство 78, в рассмотренном рабочем такте, увеличивается, а рабочее пространство 80 уменьшается.

Представленная на фиг.1 машина с вращающимся поршнем - это двигатель внутреннего сгорания, у которого горючее поджигается и сгорает в рабочих пространствах 78 и 80. В соответствии с этим в поверхности частей 52, 54, 56 внутренней стенки большего радиуса кривизны предусмотрены впускные клапана 84, 86, 88 для впуска горючего в варианте карбюраторного двигателя (в варианте дизельного двигателя для впуска воздуха, выпускные клапана 90, 92, 94 и свечи зажигания 96, 98, 100 для варианта карбюраторного двигателя (для дизельного двигателя это будут форсунки), которые представляют известную технику и поэтому представлены на фиг.1 только схематически и символически. Свечи зажигания 96, 98, 100 находятся в углублениях рабочих камер 97, 99, 101, которые образованы в цилиндрических частях 52, 54 и соответственно 56 внутренней стенки.

Съем с поршня вращательного движения или приведение поршня во вращение (в случае применения машины в качестве насоса) происходит следующим образом.

Ведомый или ведущий вал 102 проходит по цилиндрической оси симметрии сквозь камеру 32. Ведомый или ведущий вал 102 установлен на подшипниках (на фиг.1 не показано) в крышке корпуса 10. Ось ведомого или ведущего вала 102 совпадает с осью центральной симметрии 58. На ведомый или ведущий вал 102 посажена шестерня 104. Вместо одной шестерни могут также быть использованы известным способом две несколько смещенные с напряжением в угловом направлении по отношению друг к другу шестерни, которые во взаимодействии с ответными зубьями выбирают люфт у входного или выходного вала. Во вращающемся поршне 60 сделан продолговатый вырез 106. Вырез 106 имеет описанные в дальнейшем внутренние зубья. Большая ось выреза проходит перпендикулярно к первой плоскости симметрии вращающегося поршня 60 и лежит в его второй плоскости симметрии. Внутренние зубья состоят из двух вогнутых зубчатых реек 108 и 110, помещенных на длинных противоположных сторонах выреза 106. Центры кривизны зубчатых реек 108 и 110 совпадают с центрами кривизны, т.е. с осями, цилиндрических частей 62 и 64 боковой поверхности поршня. Как поясняется ниже, эти оси определяют связанные с поршнем мгновенные оси вращения 112 и 114 вращающегося поршня 60. В концах выреза 106 предусмотрены линейные зубчатые рейки (зубчатые линейки) 116 и 118. Зубчатые линейки могут также быть заменены выпуклыми зубчатыми рейками.

Номером 120 обозначены уплотнительные планки, которые осуществляют уплотнение между вращающимся поршнем 60 в области цилиндрических частей 70, 72 его боковой поверхности и цилиндрическими частями внутренней стенки камеры 32. Более детально уплотнительные планки 120 будут описаны ниже.

Движение вращающегося поршня 60 в камере 32 поясним на примере схематической фиг.4. Движение вращающегося поршня 60 осуществляется в следующих последовательных, похожих друг на друга фазах движения. При этом вращающийся поршень 60 вращается попеременно вокруг одной из двух мгновенных осей вращения 112 и 114, совпадающих с осями цилиндров соответствующих цилиндрических частей 62 и 64 боковой поверхности.

На фиг.4 вращающийся поршень 60 в самом начале участка движения находится в положении, в котором обе цилиндрические части 70 и 72 боковой поверхности вращающегося поршня находятся каждая наполовину в комплементарных частях 46 и 48 внутренней стенки корпуса. Часть 66 боковой поверхности большего радиуса кривизны прилегает к комплементарной части 52 внутренней стенки. Из это