Способ определения технического состояния двигателя внутреннего сгорания и экспертная система для его осуществления

Иллюстрации

Показать все

Изобретение относится к измерительной технике, в частности, к определению технического состояния путем измерения параметров, отражающих давление в цилиндрах поршневых двигателей внутреннего сгорания (ДВС) в эксплуатационных условиях. Предложенное техническое решение позволяет в эксплуатационных условиях упростить и значительно снизить трудоемкость экспертизы технического состояния двигателя путем косвенного определения параметров индикаторных диаграмм цилиндров и других показателей технического состояния ДВС и его составных элементов за счет исключения разборочно-сборочных операций, выполнения ряда измерений и вычислительных операций при различных режимах работы ДВС по выявлению изменения структурных параметров, являющихся причиной изменения параметров функционирования двигателя и его составных элементов (локализации неисправностей). Предлагаемый способ и экспертная система для определения технического состояния двигателя и его составных элементов могут использоваться как для исследования рабочего процесса двигателя внутреннего сгорания и автоматизации управления его работой, так и для проведения экспертизы технического состояния ДВС и его составных элементов в производственных и эксплуатационных условиях при предварительном обучении экспертной системы. Способ и экспертная система позволяют оперативно и точно получить объективное экспертное заключение о техническом состоянии двигателя и его составных элементов. Экспертная система обеспечивает оперативное измерение, обработку и регистрацию больших массивов данных - множества последовательно чередующихся индикаторных диаграмм давлений, АЧХ и ФЧХ ДВС и его составных элементов, а также спектров, с использованием различных физических процессов, с визуализацией промежуточных и результирующих данных, с возможностью выхода на ЭВМ и вывода результатов обработки на любое устройство вывода. Она позволяет путем создания баз данных и баз знаний неограниченного объема использовать накопленный интеллектуальный потенциал разработчиков, исследователей, диагностов, эксплуатационников для проведения объективной экспертизы ДВС и его составных элементов. 2 н. и 46 з.п.ф-лы, 7 ил.

Реферат

Предлагаемое изобретение относится к измерительной технике, в частности, к определению технического состояния путем измерения параметров, отражающих давление в цилиндрах поршневых двигателей внутреннего сгорания (ДВС) в эксплуатационных условиях.

Известен способ определения технического состояния цилиндров ДВС /1/, при котором запускают двигатель, устанавливают заданный режим испытаний, измеряют величину давления во внутреннем объеме двигателя, регистрируют измеренные сигналы, выделяют амплитуды гармонических колебаний измеренного сигнала, определяют отношение амплитуд гармонических колебаний измеренных сигналов, сравнивают их с эталонным значением и по результатам сравнения производят оценку технического состояния цилиндра двигателя.

Недостатком известного способа является низкая точность классификации технического состояния ввиду невозможности оперативного использования знаний об изменении измеряемого процесса в зонах нормального, допустимого и предельного состояний двигателя, а также невозможности выявления причины изменения параметров функционирования (локализации неисправностей).

Известен способ определения технического состояния ДВС /2/, выбранный прототипом предлагаемого способа и заключающийся в том, что многократно разгоняют двигатель без нагрузки от минимальной частоты вращения холостого хода до максимальной, непрерывно измеряют средние значения в цикле работы двигателя угловой скорости, углового ускорения и динамической мощности, при достижении двигателем заданной заранее частоты вращения измеряют амплитудный спектр динамической мощности, находят среднее значение этого спектра мощности по множеству разгонов, аналогично измеряют амплитудные спектры динамической мощности при достижении двигателем частот вращения максимального крутящего момента, номинальной, начала срабатывания регулятора скорости, максимальной холостого хода и промежуточных, получают зависимость этих спектров от частоты вращения, аналогично получают зависимость амплитудных спектров динамической мощности при многократных выбегах двигателя без подачи топлива от максимальной частоты вращения до минимальной. Сравнивают полученные зависимости спектров динамической мощности в разгоне и выбеге и их числовые показатели с эталонными, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, а также с предварительно полученными зависимостями изменения этих величин при изменении состояния двигателя от нормального до допустимого и предельного и по степени их близости классифицируют состояние двигателя, сравнивают амплитуды гармоник амплитудного спектра динамической мощности, кратные частотам переколебаний регулятора (0,2-0,3 - гармоникам частоты вращения), измеренного при частоте начала срабатывания регулятора, с предварительно полученными эталонным значением и значениями этих амплитуд при изменении состояния регулятора скорости от нормального до допустимого и предельного и по степени их близости классифицируют состояние регулятора скорости, в стационарном режиме полной нагрузки при заданной заранее частоте вращения коленчатого вала, непрерывно измеряют угловые скорость, ускорение и амплитудные спектры мгновенных значений углового ускорения коленчатого вала, усредняют спектры по множеству циклов работы двигателя, измеряют под нагрузкой эти спектры при частотах вращения максимального крутящего момента, номинальной, начала срабатывания регулятора скорости и промежуточных, получают зависимость спектров от частоты вращения, прокручивают двигатель. Аналогично получают зависимость спектров мгновенных значений ускорений от частоты вращения, сравнивают полученные зависимости амплитудных спектров с эталонными, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, а также с предварительно полученными зависимостями изменения этих величин при изменении состояния двигателя от нормального до допустимого и предельного и по степени их близости классифицируют состояние двигателя, причем по изменению формы зависимости спектров от частоты вращения судят об изменении угла опережения подачи топлива, по изменению амплитуд гармоник этих спектров судят о различных неисправностях: по амплитуде гармоники, кратной первой гармонике частоты вращения, - о дисбалансе, по амплитуде гармоники, кратной второй гармонике частоты вращения, - о неуравновешенных силах второго порядка, по амплитудам гармоник, кратных третьей и четвертой гармоникам частоты вращения, под нагрузкой, - о средней по цилиндрам индикаторной диаграмме, при прокрутке - о степени герметичности цилиндров; по разности амплитуд гармоник, кратных частотам ƒkцϕцчв (где k - номера гармонических составляющих, ƒц - частота цикла работы двигателя, ϕц - угол поворота коленчатого вала за цикл работы двигателя, ϕчв - угол чередования вспышек между соседними группами из двух и более цилиндров, причем число таких групп в цикле четное), измеренных при полной нагрузке и прокрутке, - о неравномерности работы цилиндров, по амплитудам гармоник, кратных пятой-восьмой гармоникам частоты вращения, - о механических потерях в цилиндропоршневых группах, по амплитудам гармоник спектров, кратных частотам переколебаний регулятора, измеренных на регуляторной ветви, - о состоянии регулятора и системы автоматического регулирования скорости в целом. В стационарном режиме полной нагрузки двигателя, форсированного газотурбонаддувом, при заданной заранее частоте вращения коленчатого вала непрерывно измеряют угловые скорость, ускорение и амплитудные спектры мгновенных значений углового ускорения ротора турбокомпрессора, усредняют спектры по множеству циклов работы двигателя, измеряют под нагрузкой эти спектры при частотах вращения максимального крутящего момента, номинальной и промежуточных, получают зависимость спектров от частоты вращения коленчатого вала, сравнивают полученную зависимость с эталонной, измеренной предварительно и соотнесенной с давлениями в цилиндрах исправного нормального двигателя, а также с предварительно полученными зависимостями изменения этих величин при изменении состояния двигателя от нормального до допустимого и предельного и по степени их близости классифицируют состояние двигателя. Причем по изменению формы зависимости спектров от частоты вращения судят об изменении угла опережения подачи топлива, по изменению амплитуд гармоник этих спектров судят о различных неисправностях: по амплитудам гармоник, кратных третьей и четвертой гармоникам частоты вращения коленчатого вала, - об индикаторной диаграмме, по амплитудам гармоник, кратных частотам ƒkцϕцчв, - о неравномерности работы цилиндров. Аналогично получают зависимости средних значений амплитудных спектров динамической мощности от частоты вращения по множеству разгонов и выбегов без нагрузки на рабочем такте каждого цилиндра по отдельности, сравнивают полученные зависимости с эталонными и с предварительно полученными зависимостями изменения этих величин при изменении состояния цилиндров двигателя от нормального до допустимого и предельного и по степени их близости классифицируют состояние отдельных цилиндров, аналогично получают зависимости средних значений амплитудных спектров мгновенных значений углового ускорения коленчатого вала от частоты вращения в стационарном режиме полной нагрузки и при прокрутке по множеству циклов работы двигателя на рабочем такте каждого цилиндра по отдельности, сравнивают полученные зависимости с эталонными, измеренными предварительно, и с предварительно полученными зависимостями изменения этих величин при изменении состояния цилиндров двигателя от нормального до допустимого и предельного и по степени их близости классифицируют состояние отдельных цилиндров. Причем по изменению амплитуд гармоник этих спектров судят о различных неисправностях: по амплитудам гармоник, кратных третьей и четвертой гармоникам частоты вращения, под нагрузкой - об индикаторной диаграмме, а при прокрутке - о степени герметичности каждого цилиндра по отдельности, по амплитудам гармоник, кратных пятой-восьмой гармоникам частоты вращения, - о механических потерях в цилиндропоршневой группе каждого цилиндра по отдельности. Аналогично получают зависимость среднего значения амплитудных спектров мгновенных значений углового ускорения ротора турбокомпрессора от частоты вращения в стационарном режиме полной нагрузки по множеству циклов работы двигателя, форсированного газотурбонаддувом, на рабочем такте каждого цилиндра по отдельности, сравнивают полученные зависимости с эталонными, измеренными предварительно, и с предварительно полученными зависимостями изменения этих величин при изменении состояния цилиндров двигателя от нормального до допустимого и предельного и по степени их близости классифицируют состояние отдельных цилиндров.

Недостатками известного способа является сложность, вызванная необходимостью выполнения ряда измерений и вычислительных операций при различных режимах работы ДВС и связанная с этим низкая точность классификации технического состояния ввиду трудности оперативного выявления изменения структурных параметров, являющихся причиной изменения параметров функционирования двигателя (локализации неисправностей).

Известна экспертная система для определения технического состояния двигателей внутреннего сгорания /3/, содержащая датчики давления в цилиндрах с усилителями и аналого-цифровыми преобразователями, датчик угловых меток с отметчиком оборота, блок управления, пороговый триггер, блок ручного управления, приемник, электронно-вычислительную машину, цифровой индикатор, блок вывода, генератор тактовых импульсов, распределитель тактов, задатчик алгоритмов обработки, формирователь команд обработки, коммутатор, вычислительный блок, схему формирования импульсов коррекции, причем выходы датчика угловых меток подключены соответственно к первому и второму входам блока управления, третий вход которого соединен через пороговый триггер с выходом одного из усилителей. Четвертый вход блока управления соединен с блоком ручного управления, пятый вход подключен через приемник к электронно-вычислительной машине, первый выход блока управления подключен к первому входу цифрового индикатора и первому входу блока вывода, выход которого связан с электронно-вычислительной машиной, а второй выход блока управления соединен с управляющими входами аналого-цифровых преобразователей. Третий выход блока управления соединен с первым входом вычислительного блока, четвертый выход подключен к корректирующим входам усилителей через схему формирования импульсов коррекции и к первому входу формирователя команд обработки, второй вход которого соединен через задатчик алгоритмов обработки с выходом приемника, а третий вход - с первым входом вычислительного блока, второй выход блока управления соединен с первым входом распределителя тактов, второй вход которого подключен к выходу генератора тактовых импульсов, а выход распределителя тактов соединен с четвертым входом формирователя команд обработки и управляющим входом коммутатора, остальные входы которого подключены к выходам аналого-цифровых преобразователей, причем выход коммутатора соединен с вторыми входами блока вывода и вычислительного блока, третий вход которого подключен к выходу формирователя команд обработки, а четвертый вход - к первому выходу блока управления, второй выход вычислительного блока соединен с вторым входом блока цифрового индикатора и третьим входом блока вывода. Кроме того, вычислительный блок содержит схему выбора экстремума, измеритель периода, цифровой дифференциатор, блок вычислений среднего индикаторного давления и блок регистров параметров, причем третий вход вычислительного блока является первым управляющим входом блока регистров и первым входом схемы выбора экстремума, цифрового дифференциатора, измерителя периода и блока вычисления среднего индикаторного давления, выходы которых, а также первый и второй входы вычислительного блока подсоединены к информационным входам блока регистров, при этом второй вход вычислительного блока является вторым входом схемы выбора экстремума, цифрового дифференциатора и блока вычисления среднего индикаторного давления, третьим входом которых является выход блоков регистров, четвертый вход блока вычисления среднего индикаторного давления является первым входом вычислительного блока, а выход цифрового дифференциатора соединен с четвертым входом схемы выбора экстремума, второй выход который является первым выходом вычислительного блока, второй выход и четвертый вход которого являются соответственно выходом и вторым управляющим входом блока регистров. Кроме того, система содержит датчик угловых меток-зубьев, формирователь импульсов зубьев, элемент ИЛИ цикла, датчик впрыска топлива, усилитель впрыска, второй пороговый триггер, двойной цифровой дифференциатор, цифровой дискриминатор знака, измеритель экстремума ускорений, запоминающее устройство ускорений, арифметическое устройство, генератор функций, блок идентификации, задатчик моделей процессов, блок классификации состояний, задатчик функций изменения параметров, причем выход первого порогового триггера соединен с первым входом элемента ИЛИ цикла, выход которого соединен с третьим входом блока управления. Датчик впрыска через последовательно соединенные усилитель впрыска и второй пороговый триггер подключен к второму входу элемента ИЛИ цикла, а датчик угловых меток-зубьев через формирователь импульсов зубьев соединен с шестым входом блока управления, пятый выход которого соединен с входом двойного цифрового дифференциатора, выход которого связан с первыми входами цифрового дискриминатора знака, измерителя экстремума ускорений и запоминающего устройства ускорений, выход цифрового дискриминатора знака подключен к седьмому входу блока управления, а выходы измерителя экстремума ускорений и запоминающего устройства ускорений соединены соответственно с первым и вторым входами арифметического устройства, вторые входы цифрового дискриминатора знака, измерителя экстремума ускорений, запоминающего устройства ускорений, третий вход арифметического устройства, первые входы генератора функций, блоков идентификации и классификации состояний соединены с первым выходом блока управления, а третьи входы измерителя экстремумов ускорений, запоминающего устройства ускорений, четвертый вход арифметического устройства, вторые входы генератора функций, блоков идентификации и классификации состояний, а также первые входы задатчика моделей процессов и задатчика функций изменения параметров соединены с выходом формирователя команд обработки, причем пятый вход арифметического устройства соединен с выходом генератора функций, а выход - с вторыми входами вычислительного блока и блока вывода. Третий вход блока идентификации, а также вторые входы задатчика моделей процессов и задатчика функций изменения параметров соединены с выходом вычислительного блока, четвертый вход - с выходом задатчика моделей процессов, а выход - с третьим входом блока классификации состояний, четвертый вход которого соединен с выходом задатчика функций изменения параметров, а выход - с четвертым входом блока вывода, причем шестой выход блока управления соединен с вторым управляющим входом коммутатора. Блок управления содержит формирователи сигналов угловых меток, оборота, начала цикла и команд управления, счетчик текущего угла, избирательный блок, делитель периода и первый элемент И, причем к первому входу первого элемента И подключен первый выход формирователя команд управления, третий и четвертый входы которого являются соответственно четвертым и пятым входами блока управления, первый вход которого является входом формирователя сигналов угловых меток, а второй вход является входом формирователя сигналов оборота, при этом второй вход формирователя сигналов начала цикла является третьим входом блока управления, а выход подключен через счетчик текущего угла к входу избирательного блока и первому входу формирователя команд управления, причем выход счетчика текущего угла является третьим выходом блока управления, выход делителя периода соединен с третьим входом формирователя сигналов начала цикла, вторым входом счетчика текущего угла, вторым входом формирователя команд управления и вторым входом первого элемента И, первый вход которого подсоединен к первому выходу формирователя команд управления, а выход первого элемента И является вторым выходом блока управления, первым и четвертым выходами которого являются соответственно второй выход формирователя команд управления и выход избирательного блока. Кроме того, в блоке управления имеется два элемента ИЛИ и второй элемент И, причем выход формирователя сигналов угловых меток соединен с первым входом первого элемента ИЛИ, выход которого подключен к входу делителя периода и первому входу второго элемента И, второй вход которого соединен с третьим выходом формирователя команд управления, причем выход формирователя сигналов оборота связан с первым входом второго элемента ИЛИ, выход которого подключен к первому входу формирователя сигналов начала цикла, выход второго элемента И и третий выход формирователя команд обработки являются соответственно пятым и шестым выходами блока управления, а вторые входы первого и второго элементов ИЛИ являются соответственно шестым и седьмым входами блока управления.

Недостатком известной системы является сложность и связанная с этим низкая точность, при экспертизе двигателя в эксплуатационных условиях, вызванная необходимостью иметь в своем составе генератор функций с параметрами, которые должны оперативно изменяться в соответствии с изменением текущего значения частоты вращения коленчатого вала, а также иметь устройство ввода измерительной информации с датчиков в ЭВМ, управляющее, вычислительное и запоминающее устройства, которые обеспечивали бы оперативное получение информации о состоянии двигателя при проведении ряда измерений, осуществляемых на различных режимах его работы.

Известна экспертная система для определения технического состояния двигателей внутреннего сгорания /2/, являющаяся прототипом, содержащая датчики давления в цилиндрах с усилителями и аналого-цифровыми преобразователями, датчик угловых меток с отметчиком оборота, блок управления, первый и второй пороговые триггеры, блок ручного управления, приемник, электронно-вычислительную машину, цифровой индикатор, блок вывода, генератор тактовых импульсов, распределитель тактов, задатчик алгоритмов обработки, формирователь команд обработки, коммутатор, вычислительный блок, схему формирования импульсов коррекции, элемент ИЛИ цикла, датчик впрыска топлива, усилитель впрыска, датчик угловых меток-зубьев, формирователь импульсов зубьев, двойной цифровой дифференциатор, цифровой дискриминатор знака, измеритель динамической мощности, блок инерционных констант, анализатор спектра, алгебраический сумматор-усреднитель, блок идентификации, блок классификаций состояний, задатчик моделей процесса, задатчик функций изменения параметров, регистратор скоростных характеристик, датчик угловых меток ротора турбокомпрессора, формирователь импульсов ротора, селектор частоты вращения, причем выходы датчика угловых меток с отметчиком оборота подключены соответственно к первому и второму входам блока управления, четвертый вход которого соединен с блоком ручного управления, пятый вход подключен через приемник к электронно-вычислительной машине, первый выход блока управления подключен к первому входу цифрового индикатора и первому входу блока вывода, выход которого связан с электронно-вычислительной машиной. Второй выход блока управления соединен с управляющими входами аналого-цифровых преобразователей, причем выходы датчиков давлений в цилиндрах через усилители связаны с соответствующими информационными входами аналого-цифровых преобразователей, третий выход блока управления соединен с первым входом вычислительного блока, четвертый выход подключен к корректирующим входам усилителей через схему формирования импульсов коррекции и к первому входу формирователя команд обработки, второй вход которого соединен через задатчик алгоритмов обработки с выходом приемника, а третий вход - с первым выходом вычислительного блока, второй выход блока управления соединен с первым входом распределителя тактов, второй вход которого подключен к выходу генератора тактовых импульсов, а выход распределителя тактов соединен с четвертым входом формирователя команд обработки и первым управляющим входом коммутатора, остальные входы которого подключены к выходам аналого-цифровых преобразователей, причем выход коммутатора соединен с вторыми входами блока вывода и вычислительного блока, третий вход которого подключен к выходу формирователя команд обработки, а четвертый вход - к первому выходу блока управления, второй выход вычислительного блока соединен с вторым входом блока цифрового индикатора и третьим входом блока вывода. Вход первого порогового триггера соединен с выходом одного из усилителей, а выход - с первым входом элемента ИЛИ цикла, выход которого соединен с третьим входом блока управления. Датчик впрыска через последовательно соединенные усилитель впрыска и второй пороговый триггер подключен к второму входу элемента ИЛИ цикла, а датчик угловых меток-зубьев через формирователь импульсов зубьев соединен с шестым входом блока управления, пятый выход которого соединен с входом двойного цифрового дифференциатора, выход которого связан с первыми входами цифрового дискриминатора знака, измерителя динамической мощности и анализатора спектра, выход цифрового дискриминатора знака подключен к седьмому входу блока управления, вторые входы измерителя динамической мощности, цифрового дискриминатора знака, анализатора спектра, алгебраического сумматора-усреднителя, регистратора скоростных характеристик, первые входы блоков идентификации и классификации состояний, а также вход блока инерционных констант соединены с первым выходом блока управления, а вторые входы блоков идентификации и классификации состояний, первые входы задатчика моделей процессов и задатчика функций изменения параметров, а также третьи входы анализатора спектра, алгебраического сумматора-усреднителя, регистратора скоростных характеристик соединены с выходом формирователя команд обработки. Третьи входы блока идентификации и цифрового индикатора, пятый вход блока вывода, а также вторые входы задатчика моделей процессов и задатчика функций изменения параметров соединены с выходом регистратора скоростных характеристик, четвертый вход - с выходом задатчика моделей процессов, а выход - с третьим входом блока классификации состояний, четвертый вход которого соединен с выходом задатчика функций изменения параметров, а выход - с четвертым входом блока вывода, причем шестой выход блока управления соединен с вторым управляющим входом коммутатора, третий вход измерителя динамической мощности связан с выходом блока инерционных констант, четвертый вход - с выходом формирователя команд обработки, а выход - с четвертым входом анализатора спектра, выход которого, в свою очередь, соединен с первым входом алгебраического сумматора-усреднителя, выход которого соединен с первым входом регистратора скоростных характеристик, четвертый вход которого связан с третьим выходом вычислительного блока, причем восьмой вход блока управления соединен через формирователь импульсов с датчиком частоты вращения ротора турбокомпрессора, а пятый вход анализатора спектра - с третьим выходом вычислительного блока.

Блок управления содержит формирователи сигналов угловых меток, сигналов оборота, сигналов начала цикла и команд управления, счетчик текущего угла, избирательный блок, делитель периода, первый, второй и третий элементы И, с первого по четвертый элементы ИЛИ, причем первый вход блока управления является входом формирователя сигналов угловых меток, выход которого соединен с первым входом первого элемента ИЛИ, второй вход которого является шестым входом блока управления, а выход соединен с входом делителя периода, второй вход блока управления является входом формирователя сигналов оборота, выход которого соединен с первым входом второго элемента ИЛИ, второй вход которого является седьмым входом блока управления, а выход соединен с первым входом формирователя сигналов начала цикла, второй вход которого является третьим входом блока управления, а выход формирователя сигналов начала цикла подключен через счетчик текущего угла к входу избирательного блока и первому входу формирователя команд управления, причем выход счетчика текущего угла является третьим выходом блока управления. Выход делителя периода соединен с третьим входом формирователя сигналов начала цикла, вторым входом счетчика текущего угла и вторым входом формирователя команд управления, третий и четвертый входы которого являются соответственно четвертым и пятым входами блока управления, а первый выход формирователя команд управления подключен к первому входу первого элемента И, второй вход которого подсоединен к выходу делителя периода. Выход первого элемента И является вторым выходом блока управления, первым и четвертым выходами которого являются соответственно второй выход формирователя команд управления и выход избирательного блока. Первый вход второго элемента И соединен с выходом первого элемента ИЛИ, выход второго элемента И соединен с первым входом третьего элемента ИЛИ, выход которого является пятым выходом блока управления, а второй вход связан с выходом третьего элемента И, первый вход которого соединен с первым входом четвертого элемента ИЛИ и с четвертым выходом формирователя команд управления, а второй вход является восьмым входом блока управления, причем вторые входы второго элемента И и четвертого элемента ИЛИ связаны с третьим выходом формирователя команд управления, выход четвертого элемента ИЛИ является шестым выходом блока управления.

Вычислительный блок содержит схему выбора экстремума, измеритель периода, цифровой дифференциатор, блок вычисления среднего индикаторного давления, блок регистров параметров и селектор частоты вращения, при этом третий вход вычислительного блока является первым управляющим входом блока регистров и первым входом схемы выбора экстремума, цифрового дифференциатора, измерителя периода и блока вычисления среднего индикаторного давления, выходы которых, а также первый и второй входы вычислительного блока подсоединены к информационным входам блока регистров, при этом второй вход вычислительного блока является вторым входом схемы выбора экстремума, цифрового дифференциатора и блока вычисления среднего индикаторного давления, третьим входом которых является выход блока регистров, причем четвертый вход блока вычисления среднего индикаторного давления является первым входом вычислительного блока, а выход цифрового дифференциатора соединен с четвертым входом схемы выбора экстремума, второй выход которого является первым выходом вычислительного блока, второй выход и четвертый вход которого являются соответственно выходом и вторым управляющим входом блока регистров, причем выход измерителя периода связан с первым входом селектора частоты вращения, второй вход которого соединен с вторым входом блока регистров, а выход является третьим выходом вычислительного блока.

Недостатком известной системы является сложность ее применения в условиях эксплуатации, обусловленная необходимостью использования датчиков давления в цилиндрах двигателя. Это возможно осуществить только установкой взамен штатной специальной головки блока цилиндров с каналами для установки датчиков давления. Кроме того, для известной системы характерна низкая точность и высокая трудоемкость при идентификации измеренных данных и отнесении двигателя к определенному классу состояний, из-за невозможности оперативного выявления изменения структурных параметров, являющихся причиной изменения параметров функционирования двигателя (локализации неисправностей).

Цель заявляемого технического решения - упрощение, снижение трудоемкости и повышение точности классификации при определении технического состояния двигателей внутреннего сгорания в эксплуатационных условиях.

Предложенное техническое решение по сравнению с прототипом позволяет в эксплуатационных условиях упростить и значительно снизить трудоемкость экспертизы технического состояния двигателя путем косвенного определения параметров индикаторных диаграмм цилиндров и других показателей технического состояния ДВС и его составных элементов за счет исключения разборочно-сборочных операций, выполнения ряда измерений и вычислительных операций при различных режимах работы ДВС по выявлению изменения структурных параметров, являющихся причиной изменения параметров функционирования двигателя и его составных элементов (локализации неисправностей).

По сравнению с базовым объектом - индицированием цилиндров по косвенным индикаторным диаграммам трудоемкость определения технического состояния двигателя и его составных элементов снижается в 3-5 раз.

Поставленная цель в способе достигается за счет того, что предварительно при переходе с одного стационарного режима полной нагрузки на другой измеряют средний за цикл двигателя крутящий момент, а также на регуляторном участке скоростной характеристики измеряют перемещение рейки топливного насоса, определяют средние за цикл амплитудные частотные и фазовые частотные характеристики двигателя и центробежного регулятора скорости, а также результирующие амплитудную частотную и фазовую частотную характеристики соединения двигатель-регулятор, затем в стационарном режиме полной нагрузки измеряют амплитудный спектр мгновенных значений крутящего момента двигателя, при появлении гармоники крутящего момента, совпадающей одновременно с частотой пересечения результирующих амплитудной и фазовой частотных характеристик соединения двигатель-регулятор с соответствующими обратной эквивалентной амплитудной и отрицательной, сдвинутой по фазе на 180°, фазовой характеристиками "идеального реле", судят о наличии жесткости работы двигателя, а по значению амплитуды этой гармоники - о степени жесткости при данной частоте вращения, сравнивают полученные при различных частотах вращения значения этих амплитуд с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние двигателя.

Предварительно при переходе с одного стационарного режима полной нагрузки на другой измеряют средний за цикл двигателя крутящий момент, а также средние за цикл давления в трубопроводах к форсункам или любой другой косвенный параметр, отражающий цикловую подачу топлива, определяют средние за цикл амплитудные частотные и фазовые частотные характеристики двигателя, амплитудную частотную характеристику топливного насоса, а также результирующие амплитудную частотную и фазовую частотную характеристики соединения двигатель - топливный насос, затем в стационарном режиме полной нагрузки измеряют амплитудный спектр мгновенных значений крутящего момента двигателя, при появлении гармоники крутящего момента, совпадающей одновременно с частотой пересечения результирующих амплитудной и фазовой частотных характеристик соединения двигатель - топливный насос с соответствующими обратной эквивалентной амплитудной и отрицательной, сдвинутой по фазе на 180°, фазовой характеристиками "идеального реле", судят о наличии жесткости работы двигателя, а по значению амплитуды этой гармоники - о степени жесткости при данной частоте вращения, сравнивают полученные при различных частотах вращения значения этих амплитуд с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние двигателя.

Предварительно при переходе двигателя, форсированного газотурбонаддувом, с одного стационарного режима полной нагрузки на другой измеряют средний за цикл двигателя крутящий момент и давление наддува, определяют средние за цикл амплитудные частотные и фазовые частотные характеристики двигателя, турбокомпрессора, а также результирующие амплитудную частотную и фазовую частотную характеристики соединения двигатель-турбокомпрессор, затем в стационарном режиме полной нагрузки измеряют амплитудный спектр мгновенных значений крутящего момента двигателя, при появлении гармоники крутящего момента, совпадающей одновременно с частотой пересечения результирующих амплитудной и фазовой частотных характеристик соединения двигатель-турбокомпрессор с соответствующими обратной эквивалентной амплитудной и отрицательной, сдвинутой по фазе на 180°, фазовой характеристиками "идеального реле", судят о наличии жесткости работы двигателя, а по значению амплитуды этой гармоники - о степени жесткости при данной частоте вращения, сравнивают полученные при различных частотах вращения значения этих амплитуд с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние двигателя.

Предварительно при переходе двигателя, форсированного газотурбонаддувом, с одного стационарного режима полной нагрузки на другой измеряют средний за цикл двигателя крутящий момент, измеряют частоту вращения ротора турбокомпрессора, определяют средние за цикл амплитудные частотные и фазовые частотные характеристики двигателя, турбокомпрессора, а также результирующие амплитудную частотную и фазовую частотную характеристики соединения двигатель-турбокомпрессор, затем в стационарном режиме полной нагрузки измеряют амплитудный спектр мгновенных значений крутящего момента двигателя, при появлении гармоники крутящего момента, совпадающей одновременно с частотой пересечения результирующих амплитудной и фазовой частотных характеристик соединения двигатель-турбокомпрессор с соответствующими обратной эквивалентной амплитудной и отрицательной, сдвинутой по фазе на 180°, фазовой характеристиками "идеального реле", судят о наличии жесткости работы двигателя, а по значению амплитуды этой гармоники - о степени жесткости при данной частоте вращения, сравнивают полученные при различных частотах вращения значения этих амплитуд с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние двигателя.

Предварительно при переходе с одного стационарного режима полной нагрузки на другой измеряют среднюю за цикл угловую скорость вала двигателя, а также на регуляторном участке скоростной характеристики измеряют перемещение рейки топливного насоса, определяют средние за цикл амплитудные частотные и фазовые частотные характеристики двигателя и центробежного регулятора скорости, а также результирующие амплитудную частотную и фазовую частотную характеристики соединения двигатель-регулятор, затем в стационарном режиме полной нагрузки измеряют амплитудный спектр мгновенных значений угловых ускорений коленчатого вала, при появлении гармоники ускорения, совпадающей одновременно с частотой пересечения результирующих амплитудной и фазовой частотных характеристик соединения двигатель-регулятор с соответствующими обратной эквивалентной амплитудной и отрицательной, сдвинутой по фазе на 180°, фазовой характеристиками "идеальног