Аморфный диоксид кремния

Настоящее изобретение раскрывает аморфный диоксид кремния, подходящий для использования в зубной композиции, имеющий среднемассовый размер частиц в пределах от 3 до 15 мкм, при этом частицы, имеющие размер ниже 20 мкм, составляют, по крайней мере, 90% по массе всех частиц; величину стирания дентина (RDA), определенную в радиоактивном тесте с использованием водной суспензии порошка диоксида кремния, составляющую 100-220; степень очистки от пелликулы (PCR) при введении в зубную композицию при 10 мас.% диоксида кремния, составляющую более чем 85; отношение PCR к RDA в пределах от 0,4:1 до менее чем 1:1; и величину истирания пластика (PAV) в пределах от 11 до 19. Диоксид кремния, обладающий вышеуказанными свойствами, получают путем осаждения. Указанный диоксид кремния, полученный в соответствии с настоящим изобретением, является также полезным в качестве антиадгезива в пластиках. 5 н. и 27 з.п. ф-лы, 4 табл.

Реферат

Настоящее изобретение относится к аморфному диоксиду кремния и, в частности, к аморфному диоксиду кремния, подходящему для использования в зубных композициях.

В течение многих лет аморфные диоксиды кремния использовались в качестве эффективных, приемлемых абразивов в зубных композициях. Желательно, чтобы диоксиды кремния были эффективными при удалении пелликулярной пленки с зубов, но при этом, предпочтительно, чтобы повреждение зуба было минимальным. Недавно был получен ряд диоксидов кремния, которые обеспечивают хорошую очистку и относительно небольшое стирание зуба, как было измерено с помощью стандартного теста, известного как радиоактивный тест на стирание дентина (RDA). Такие диоксиды кремния описаны, например, в WO 97/02211 и WO 96/09809. Вообще говоря, хотя диоксиды кремния обладают хорошими очищающими свойствами по сравнению с их абразивными свойствами, однако они имеют низкую величину RDA. Следовательно, для получения средства для чистки зубов, обладающего хорошими очищающими свойствами, необходимо включать в средство для чистки зубов относительно высокие количества диоксида кремния (примерно 25-35% по массе). Использование относительно больших количеств диоксида кремния в средстве для чистки зубов является неэкономичным и может быть проблематичным для реологических свойств зубной пасты из-за эффектов заполнения пространства пористых частиц. Поэтому желательно получить диоксид кремния, который обладает хорошими очищающими свойствами при его относительно небольшом содержании (загрузке) (примерно 20% или менее) в средстве для чистки зубов.

В соответствии с настоящим изобретением, аморфный диоксид кремния, подходящий для использования в зубной композиции, имеет среднемассовый размер частиц в пределах от 3 до 15 мкм, при этом частицы, имеющие размер ниже 20 мкм, составляют, по крайней мере, 90% по массе всех частиц; величину стирания дентина, определенную в радиоактивном тесте с использованием водной суспензии порошка диоксида кремния, составляющую 100-220; степень очистки от пелликулы (PCR) при введении в зубную композицию при 10 мас.% указанного диоксида кремния, составляющую более чем 85; отношение PCR к RDA в пределах от 0,4:1 до менее чем 1:1; и величину истирания пластика (PAV) в пределах от 11 до 19.

Диоксиды кремния настоящего изобретения обладают сочетанием свойств, заметно отличающихся от свойств известных диоксидов кремния, пригодных для зубных композиций. Они обладают особенно эффективной способностью очищать, что продемонстрировано относительно высокими PCR-величинами, наблюдаемыми при стандартных значениях RDA в средствах для чистки зубов, содержащих относительно небольшое количество диоксида кремния. Хотя отношение PCR к RDA продукта настоящего изобретения составляет менее 1, однако, его величина RDA превышает величину RDA известных диоксидов кремния с более высоким отношением PCR и RDA и, по сравнению с этими продуктами, может достигаться более высокое значение PCR при том же самом количестве диоксида кремния. Кроме того, ни в одной из ранее опубликованных работ не рассматривалась взаимосвязь RDA с PAV для этих продуктов. Так, например, в ЕР 0535943 описано отношение RDA к PAV, в котором величина RDA 117 эквивалентна величине PAV 16, а величина RDA 195 эквивалентна величине PAV 26. Для этой модели можно ожидать, что заявленная здесь величина PAV 11-19 должна соответствовать RDA примерно 80-140. Диоксиды кремния настоящего изобретения также отличаются от диоксидов кремния, описанных в ЕР 0535943, и от аналогичных диоксидов кремния, описанных в ЕР 0666832, благодаря своим превосходным очищающим свойствам. Было показано, что при тестировании зубной композиции с содержанием диоксида кремния 10% по массе диоксиды кремния, полученные, как описано в ЕР 0535943 или ЕР 0666832, давали PCR менее чем 85.

Величины стирания пластика соответствуют количеству царапин, образующихся на поверхности под действием диоксида кремния, и поэтому они являются показателями возможного повреждения зубов. Диоксиды кремния настоящего изобретения имеют умеренные величины PAV, но высокие PCR, что указывает на хорошую степень очистки без чрезмерного повреждения зуба. В противоположность этому, диоксиды кремния, полученные в соответствии с ЕР 0236070, имеют PAV в пределах 23-35 (и величины RDA в пределах от 150 до 300), но их очищающие свойства аналогичны свойствам диоксидов кремния настоящего изобретения. Однако значительно более высокие величины PAV, указанные в ЕР 0236070, являются показателями значительно большего количества царапин (повреждений) поверхностей зубов.

Аморфный диоксид кремния настоящего изобретения, предпочтительно, обладает способностью к поглощению масла, определенной с использованием льняного масла, составляющей 70-150 см3/100 г, более предпочтительно, от 75 до 130 см3/100 г.

Кроме того, аморфный диоксид кремния, предпочтительно, имеет площадь поверхности, определяемую методом БЭТ, в пределах 10-450 м2г-1, более предпочтительно, 50-300 м2г-1.

Среднемассовый размер частиц диоксида кремния настоящего изобретения определяют с использованием устройства Malvern Mastersizer®, и предпочтительный материал имеет среднемассовый размер частиц в пределах 5-10 мкм. Распределение частиц по размеру и, следовательно, доля частиц, имеющих размер ниже любого конкретного значения, могут быть определены аналогичным методом. Для аморфного диоксида кремния настоящего изобретения, по крайней мере, 90% частиц по массе, предпочтительно, имеют размер ниже 17 мкм.

В конкретном варианте осуществления изобретения, среднемассовый размер частиц диоксида кремния составляет 3-7 мкм, где частицы, имеющие размер ниже 16 мкм, предпочтительно, ниже 12 мкм, составляют, по крайней мере, 90%. Такие диоксиды кремния могут быть эффективно использованы в качестве очищающего бустера в зубной композиции.

Абразивное стирание дентина в радиоактивном тесте (RDA) для диоксида кремния настоящего изобретения имеет величину в пределах 100-220. Обычно, RDA имеет величину в пределах 120-200, и чаще RDA превышает 140. В основном, диоксиды кремния настоящего изобретения, имеющие величину PAV выше 15, будут иметь величину RDA выше 120, и диоксиды кремния, имеющие величину PAV выше 17, будут иметь величину RDA выше 140.

Величина PCR (измеренная в зубной композиции при концентрация 10% по массе) для аморфного диоксида кремния настоящего изобретения составляет более чем 85, предпочтительно, более чем 90, и более предпочтительно, более чем 95. Отношение PCR:RDA, предпочтительно, составляет от 0,5:1 до 0,9:1.

Аморфный диоксид кремния настоящего изобретения предпочтительно имеет величину рН, измеренную с использованием 5% масс. суспензии, в пределах 5-8, более предпочтительно, в пределах 6-7,5.

Количество воды, присутствующей в аморфном диоксиде кремния, подходящем для использования в зубной композиции, как было измерено по потере при прокаливании при 1000°С, обычно составляет до 25 мас.%, предпочтительно, до 15 мас.%. Обычно потеря массы при прокаливании при 1000°С составляет более 4 мас.%.

Предпочтительные аморфные диоксиды кремния настоящего изобретения имеют содержание связанной воды в пределах 3,8-5,8% по массе. Связанную воду определяют по разности между потерей влаги, измеряемой при 105°С, и потерей при прокаливании при 1000°С, и этот параметр характеризует основную структуру диоксида кремния. Предпочтительно, содержание связанной воды находится в пределах 4,0-5,5% по массе, более предпочтительно, в пределах 4,0-5,0% по массе.

Насыпная объемная плотность предпочтительных диоксидов кремния настоящего изобретения находится в пределах 200-400 г/дм3.

Предпочтительные диоксиды кремния настоящего изобретения также имеют объем пор внутри частиц, определенный по внедрению ртути, составляющий менее чем 1,0 см3/г. Обычно объем пор внутри частиц составляет более чем 0,1 см3/г.

Кроме того, предпочтительно, средний диаметр пор, который представляет собой параметр, рассчитанный исходя из предположения о цилиндрической форме пор и вычисляемый по следующему уравнению:

4000 × объем пор (см3г-1)
Средний диаметр пор (нм)=--------------------------
площадь поверхности (м2г-1)

находится в пределах 5-45 нм. Более предпочтительные диоксиды кремния настоящего изобретения имеют средний диаметр пор в пределах 10-30 нм, особенно предпочтительные диоксиды кремния имеют средний диаметр пор в пределах 12-25 нм.

Во втором аспекте, настоящее изобретение относится к зубной композиции, содержащей аморфный диоксид кремния, имеющий среднемассовый размер частиц в пределах от 3 до 15 мкм, при этом частицы, имеющие размер ниже 20 мкм, составляют, по крайней мере, 90% по массе частиц; величину стирания дентина (RDA), определенную в радиоактивном тесте с использованием водной суспензии порошка диоксида кремния, составляющую 100-220; степень очистки от пелликулы (PCR) при введении в зубную композицию при 10 мас.% указанного диоксида кремния, составляющую более 85; отношение PCR к RDA в пределах от 0,4:1 до менее чем 1:1; и величину истирания пластика (PAV) в пределах от 11 до 19, и орально приемлемый носитель.

Зубная композиция может быть представлена в любой форме, подходящей для зубной композиции, такой как паста, гель, крем или жидкость.

В основном, количество аморфного диоксида кремния, присутствующего в указанной зубной композиции, составляет 0,1-25 мас.%, но это количество в определенной степени зависит от конкретной функции данного диоксида кремния. При использовании в традиционной композиции в качестве главного абразива присутствующее количество, предпочтительно, находится в пределах 0,5-25 мас.%, более предпочтительно, в пределах 1-20 мас.%, и аморфные диоксиды кремния настоящего изобретения являются особенно полезными, когда используются в зубной композиции в количестве, составляющем 1-15 мас.%, поскольку такие зубные композиции обеспечивают хорошие очищающие свойства и обладают приемлемыми абразивными свойствами. Когда диоксид кремния настоящего изобретения используется в качестве очищающего бустера, имеющего частицы относительно небольшого размера, как описано выше, то он, предпочтительно, присутствует в количестве, составляющем от 0,1 до 6 мас.%.

Особенно предпочтительная зубная композиция настоящего изобретения содержит смесь первого аморфного диоксида кремния, представляющего собой аморфный диоксид кремния настоящего изобретения, второго аморфного диоксида кремния, имеющего более низкую RDA-величину, чем указанный первый аморфный диоксид кремния, и орально приемлемого носителя. Предпочтительно, второй аморфный диоксид кремния имеет величину RDA в пределах от 40 до 130, и наиболее предпочтительно, величина RDA второго диоксида кремния составляет 70-110. Примером подходящего второго диоксида кремния является продукт, имеющийся в продаже под торговым знаком Sorbosil AC35 и поставляемый фирмой INEOS Silicas Limited, Warrington, UK, и этот диоксид кремния обычно имеет RDA 105. Было неожиданно обнаружено, что такие композиции обладают лучшими очищающими свойствами, чем композиции, содержащие только один первый диоксид кремния, а величина RDA указанной композиции аналогична величине RDA композиции, содержащей только первый диоксид кремния.

Когда зубная композиция содержит указанную смесь диоксидов кремния, то первый аморфный диоксид кремния, предпочтительно, присутствует в количестве от 1 до 15% по массе композиции, а второй аморфный диоксид кремния, предпочтительно, присутствует в количестве от 4 до 20% по массе указанной композиции. Более предпочтительно, второй диоксид кремния присутствует в количестве, составляющем от 5 до 15% по массе указанной композиции.

Альтернативная зубная композиция настоящего изобретения содержит первый диоксид кремния, который представляет собой аморфный диоксид кремния настоящего изобретения и имеет средний размер частиц в пределах 3-7 мкм, при этом частицы, имеющие размер ниже 16 мкм (бустерный диоксид кремния), составляют, по крайней мере, 90% по массе всех частиц, и второй диоксид кремния (главный диоксид кремния). В этой композиции главным диоксидом кремния может быть диоксид кремния настоящего изобретения, имеющий средний размер частиц, превышающий размер частиц бустерного диоксида кремния. Альтернативно, указанный бустерный диоксид кремния может быть использован в комбинации с любым стандартным диоксидом кремния, который является полезным в зубных композициях. В основном, в таких композициях бустерный диоксид кремния присутствует в количестве от 0,1 до 6% по массе указанной зубной композиции и, предпочтительно, в пределах 0,5-4% по массе указанной зубной композиции, и главный диоксид кремния присутствует в количестве от 4 до 25% по массе указанной зубной композиции. Предпочтительно, главный диоксид кремния присутствует в количестве от 7 до 19% по массе указанной зубной композиции.

Вода, обычно присутствующая в качестве компонента зубных композиций настоящего изобретения, в основном, присутствует в количестве от примерно 1 до примерно 90 мас.%, предпочтительно, от примерно 10 до примерно 60 мас.%, более предпочтительно, от примерно 15 до примерно 50 мас.%. В прозрачных пастах содержание воды, предпочтительно, составляет от примерно 1 до примерно 20 мас.%, и более предпочтительно, 5-15 мас.%.

Для получения бесцветной (или прозрачной) пасты подходящий диоксид кремния настоящего изобретения должен иметь максимальную прозрачность с пропусканием света, по крайней мере, 70% при показателе преломления в пределах от 1,435 до 1,445.

Если указанной зубной композицией является зубная паста или крем, то она содержит, по крайней мере, один увлажнитель, например полиол, такой как глицерин, сорбитный сироп, полиэтиленгликоль, лактит, ксилит или гидрогенизированный кукурузный сироп. Общее количество увлажнителя, предпочтительно, составляет от примерно 10 до примерно 85% по массе указанной композиции.

Зубная композиция настоящего изобретения может включать одно или несколько поверхностно-активных веществ, предпочтительно, выбранных из анионных, неионных, амфотерных и цвиттерионных поверхностно-активных веществ и их смесей, которые являются подходящими для орального использования. Количество поверхностно-активного вещества, присутствующего в композиции настоящего изобретения, обычно составляет от примерно 0,1 до примерно 3 мас.% (в расчете на 100%-ную активность).

Подходящие анионные поверхностно-активные вещества могут включать мыла, алкилсульфаты, сульфаты алкиловых эфиров, алкарилсульфонаты, алканоилизетионаты, алканоилтаураты, алкилсукцинаты, алкилсульфосукцинаты, N-алкоилсаркозинаты, алкилфосфаты, фосфаты алкиловых эфиров, карбоксилаты алкиловых эфиров и сульфонаты альфа-олефинов, в частности их натриевые, магниевые, аммониевые и моно-, ди- и триэтаноламиновые соли. Алкильные и ацильные группы обычно содержат от 8 до 18 атомов углерода и могут быть насыщенными. Сульфаты алкиловых эфиров, фосфаты алкиловых эфиров и карбоксилаты алкиловых эфиров могут содержать от 1 до 10 этиленоксидных или пропиленоксидных звеньев на молекулу и предпочтительно 2-3 этиленоксидных звеньев на молекулу. Примеры предпочтительных анионных поверхностно-активных веществ включают лаурилсульфат натрия, додецилбензолсульфонат натрия, лауроилсаркозинат натрия и натрийсульфонат моноглицерида кокосового масла.

Неионные поверхностно-активные вещества, которые могут быть подходящими для использования в зубной композиции настоящего изобретения, включают сложные эфиры сорбитана и полиглицерина с жирными кислотами, а также блоксополимеры этиленоксида/пропиленоксида.

Подходящие амфотерные поверхностно-активные вещества включают бетаины, такие как кокоамидопропилбетаин и сульфобетаины.

Для придания композиции требуемых физических свойств (например, в зависимости от того, является ли она пастой, кремом или жидкостью) и для того, чтобы аморфный диоксид кремния настоящего изобретения оставался стабильно диспергируемым в данной композиции, зубные композиции настоящего изобретения предпочтительно включают один или несколько загустителей и/или суспендирующих агентов.

Особенно предпочтительным способом загущения зубных композиций настоящего изобретения является включение загущающего диоксида кремния в комбинации с полимерным суспендирующим или загущающим агентом. Подходящие хорошо известные полимерные суспендирующие или загущающие агенты, которые могут быть использованы отдельно или в комбинации с загущающим диоксидом кремния, включают полиакриловую кислоту, сополимеры и сшитые полимеры акриловой кислоты, сополимеры акриловой кислоты и гидрофобного мономера, сополимеры мономеров, содержащих карбоновую кислоту, и сложные эфиры акриловой кислоты, сшитые сополимеры акриловой кислоты и сложных эфиров акриловой кислоты, сложные эфиры этиленгликоля или сложные эфиры полиэтиленгликоля (например, их эфиры жирных кислот), гетерополисахаридные смолы, такие как ксантановая и гуаровая камеди, и производные целлюлозы, такие как натрийкарбоксиметилцеллюлоза. Особенно подходящими суспендирующими или загущающими агентами являются ксантановая камедь и натрийкарбоксиметилцеллюлоза. Эти загустители (которые могут быть использованы отдельно или в виде смесей двух или нескольких вышеуказанных материалов) могут присутствовать в композиции в общем количестве от примерно 0,1 до примерно 5 мас.%. При использовании загустителей на основе диоксида кремния они предпочтительно присутствуют в количестве от 0,1 до 5,0 мас.%. Загустители на основе диоксида кремния, такие как диоксид кремния, имеющийся в продаже под торговым наименованием Sorbosil TC15, поставляемый фирмой INEOS Silicas Limited, Warrington, UK, содержатся, если они присутствуют, в количестве от примерно 0,1 до примерно 15 мас.%, предпочтительно, от примерно 1 до примерно 10% по массе указанной композиции.

В большинстве случаев зубные композиции настоящего изобретения содержат хелатообразующие агенты, такие как винная кислота, лимонная кислота, цитраты щелочных металлов, растворимые пирофосфаты, такие как пирофосфаты щелочных металлов, и полимерные поликарбоксилаты.

В зубной композиции могут присутствовать один или несколько других компонентов, обычно имеющихся в зубных композициях, и такие компоненты включают ароматизаторы, такие как перечная мята, мята курчавая; искусственные подсластители; отдушки или вещества, освежающие дыхание; перламутровые добавки; пероксисоединения, такие как пероксид водорода или перуксусная кислота; замутнители; пигменты и красители; консерванты; увлажнители; фторидсодержащие соединения; средства против кариеса и против образования налета; средства против зубного камня; противоаллергические средства; терапевтические средства, такие как цитрат цинка, триклозан (Ciba Geigy); белки; ферменты; соли; пищевая сода и рН-регулирующие агенты.

Зубные композиции настоящего изобретения могут быть изготовлены стандартными методами для получения таких композиций. Пасты и кремы могут быть получены традиционными методами, например, с использованием вакуумных систем смешивания с высоким сдвиговым усилием.

Предпочтительно, аморфным диоксидом кремния настоящего изобретения является осажденный диоксид кремния, и в третьем аспекте, настоящее изобретение относится к способу получения аморфного диоксида кремния, включающему стадии:

(а) введения количества водного раствора силиката щелочного металла, имеющего молярное отношение SiO22О, где М означает щелочной металл, в пределах от 2,0:1 до 3,4:1, и первого количества минеральной кислоты в водную реакционную смесь с сообщением реакционной смеси высоких сдвиговых усилий с помощью поточного миксера, где раствор силиката щелочного металла и минеральная кислота подаются со скоростью, позволяющей поддерживать рН реакционной смеси, по существу, при постоянном значении в пределах от примерно 9 до примерно 11, и где концентрация диоксида кремния после добавления первого количества минеральной кислоты составляет от примерно 5,5 до примерно 7,5% по массе указанной реакционной смеси, температура реакционной смеси во время введения силиката щелочного металла и минеральной кислоты находится в пределах от примерно 60°С до примерно 80°С, и период введения указанного силиката щелочного металла и минеральной кислоты составляет от 40 до 80 минут, в присутствии водорастворимого электролита, где указанный электролит присутствует в таком количестве, что массовое отношение электролита к диоксиду кремния составляет от примерно 0,1:1 до 0,25:1;

(b) повышения температуры указанной реакционной смеси до 90-100°С;

(с) поддержания реакционной смеси при этой температуре в течение 5-30 минут;

(d) добавления к указанной реакционной смеси второго количества минеральной кислоты в течение 5-20 минут, где указанное второе количество является достаточным для доведения рН реакционной смеси до значения 3-5;

(е) фильтрования полученного таким образом диоксида кремния из реакционной смеси, промывки и сушки распылением диоксида кремния, и

(f) измельчения высушенного диоксида кремния до требуемого распределения частиц по размерам.

Необязательно стадия старения может быть включена во время добавления второго количества минеральной кислоты [стадия (d)], где добавление кислоты временно прекращают при рН 5-6, и реакционную смесь выдерживают в течение 5-30 минут при рН 5-6 и при температуре в пределах от 90°С до 100°С, после чего продолжают второе добавление минеральной кислоты.

В способе настоящего изобретения силикатом щелочного металла может быть любой силикат щелочного металла, но обычно предпочтительным является легко доступный силикат натрия. Силикат натрия предпочтительно имеет массовое отношение SiO2:Na2О в пределах 3,2:1-3,4:1 и концентрацию, выраженную на основе SiO2, в пределах от 14 до 20 мас.%. Минеральной кислотой, предпочтительной для использования в способе настоящего изобретения, является серная кислота, используемая в концентрации от 15 до 20 мас.%.

Важно, чтобы во время введения силиката и кислоты реакционная смесь подвергалась воздействию высоких сдвиговых усилий. Одним из подходящих способов приложения такого сдвигового усилия является пропускание смеси через поточный смеситель Сильверсона (Silverson) в процессе всего периода прохождения реакции, причем такой смеситель Сильверсона оснащен внутренним ситом с квадратными отверстиями, обеспечивающими большие сдвиговые усилия, или дезинтегрирующей головкой, как определено производителем.

В качестве водорастворимых электролитов могут быть использованы различные соединения. Обычно электролитом является соль щелочного металла, такая как хлорид или сульфат, и предпочтительными электролитами являются хлорид натрия и сульфат натрия, при этом наиболее предпочтительным является хлорид натрия.

После получения диоксида кремния в способе настоящего изобретения его отделяют от реакционной смеси и промывают для удаления солей. Обычно его промывают до тех пор, пока содержание любой остаточной соли не будет составлять ниже 2% по массе относительно сухого диоксида кремния.

Сухой диоксид кремния измельчают до получения соответствующего распределения частиц по размеру. Такое измельчение может быть осуществлено с использованием мельницы, такой как ротационная ударная мельница с воздушным классификатором. Если желательно получить частицы, имеющие небольшой средний размер, как в случае описанного выше диоксида кремния, используемого в качестве бустерного диоксида кремния, то измельчение, предпочтительно, осуществляют с использованием струйной мельницы или микронайзера с интегральным воздушным классификатором.

Было также обнаружено, что диоксид кремния, обладающий вышеупомянутыми свойствами или полученный способом, описанным выше, может быть полезным в качестве антиадгезива в полимерных пленках. Указанный диоксид кремния вводят в полимерные пленки, и его присутствие позволяет легко отделять пленки друг от друга. Этот эффект известен как "антиадгезивность".

В соответствии с этим, в четвертом аспекте настоящее изобретение относится к применению аморфного диоксида кремния, имеющего среднемассовый размер частиц в пределах от 3 до 15 мкм, где частицы, имеющие размер ниже 20 мкм, составляют, по крайней мере, 90% по массе всех частиц; величину стирания дентина (RDA), определенную в радиоактивном тесте с использованием водной суспензии порошка диоксида кремния и составляющую 100-220; степень очистки от пелликулы (PCR) при введении в зубную композицию при 10 мас.% указанного диоксида кремния более чем 85; отношение PCR к RDA в пределах от 0,4:1 до менее чем 1:1; и величину истирания пластика (PAV) в пределах от 11 до 19, в качестве антиадгезива в полимерной композиции.

Параметры, которые характеризуют диоксид кремния настоящего изобретения, в основном, связаны со свойствами диоксидов кремния, подходящих для использования в зубных композициях. Однако считается, что эти параметры определяют характерную структуру диоксида кремния, и было неожиданно обнаружено, что диоксид кремния, характеризующийся этими параметрами, также является наиболее подходящим для использования в качестве антиадгезива в полимерных пленках.

Диоксиды кремния, используемые в четвертом аспекте настоящего изобретения, предпочтительно, имеют содержание связанной воды в пределах от 3,8 до 5,8% по массе. Они также, предпочтительно, имеют насыпную объемную плотность в пределах от 200 до 400 г/дм3. Кроме того, предпочтительно, чтобы они имели средний диаметр пор в пределах от 5 до 45 нм.

Настоящее изобретение относится к способу получения аморфного диоксида кремния, который может быть охарактеризован среднемассовым размером частиц в пределах от 3 до 15 мкм, где частицы, имеющие размер ниже 20 мкм, составляют, по крайней мере, 90% по массе всех частиц; содержанием связанной воды в пределах от 3,8 до 5,8% по массе; насыпной объемной плотностью в пределах от 200 до 400 г/дм3; и средним диаметром пор в пределах от 5 до 45 нм, и который может быть использован в качестве антиадгезива в пластиковых пленках. Следовательно, в пятом аспекте настоящее изобретение относится к применению аморфного диоксида кремния, имеющего среднемассовый размер частиц в пределах от 3 до 15 мкм, где частицы, имеющие размер ниже 20 мкм, составляют, по крайней мере, 90% по массе всех частиц; содержание связанной воды в пределах от 3,8 до 5,8% по массе; насыпную объемную плотность в пределах от 200 до 400 г/дм3; и средний диаметр пор в пределах от 5 до 45 нм, в качестве антиадгезива для полимерной композиции.

Описанный выше способ получения диоксида кремния представляет собой способ "осаждения", и полученный таким образом диоксид кремния обладает хорошими оптическими свойствами, ассоциированными с указанным диоксидом кремния. Эти свойства обычно превосходят свойства силикагелей, которые часто используются в качестве антиадгезивов. Указанный диоксид кремния также обладает очень хорошими антиадгезивными свойствами. Включение диоксида кремния в полиолефиновые пленки позволяет получать пленки с аналогичными свойствами (снижение адгезионной прочности пленки) при равной загрузке в таких силикагелях, обычно используемых в качестве антиадгезивов. Кроме того, структура диоксида кремния настоящего изобретения минимизирует адсорбцию агента скольжения, что позволяет использовать такие добавки с большей эффективностью.

Диоксид кремния настоящего изобретения является особенно подходящим для использования в качестве антиадгезива в олефиновых полимерах, таких как полиэтилен и, в частности, полипропилен.

Количество диоксида кремния, вводимого в полимер, обычно составляет от 0,05 до 0,5% по массе полимера и, предпочтительно, в пределах от 0,10 до 0,40% по массе полимера.

Диоксиды кремния настоящего изобретения, которые используются в качестве антиадгезивов, предпочтительно, имеют среднемассовый размер частиц в пределах от 3 до 10 мкм, где частицы, имеющие размер ниже 17 мкм, составляют, по крайней мере, 90% по массе всех частиц. Более предпочтительно, указанные диоксиды кремния имеют среднемассовый размер частицы в пределах от 3 до 7 мкм, где частицы, имеющие размер ниже 16 мкм, предпочтительно, ниже 12 мкм, составляют, по крайней мере, 90% по массе всех частиц.

При использовании диоксидов кремния в качестве антиадгезивов настоящего изобретения, предпочтительно, чтобы указанные диоксиды кремния имели содержание связанной воды в пределах 4,0-5,5% по массе, более предпочтительно, в пределах 4,0-5,0% по массе. Также предпочтительно, чтобы диоксиды кремния, используемые в качестве антиадгезивов настоящего изобретения, имели средний диаметр пор в пределах от 10 до 30 нм, более предпочтительно, чтобы они имели средний диаметр пор в пределах от 12 до 25 нм. В основном, диоксиды кремния, используемые в качестве антиадгезивов настоящего изобретения, имеют объем пор внутри частиц, определенный по включению ртути, в пределах от 0,1 до 1,0 см3 · г-1.

Обычно диоксиды кремния, имеющие относительно низкую потерю влаги, являются предпочтительными в качестве антиадгезивов, и предпочтительно, чтобы диоксиды кремния, используемые в качестве антиадгезивов настоящего изобретения, имели потерю влаги при 105°С до 5,0 мас.%. Более предпочтительными являются диоксиды кремния, у которых потеря влаги при 105°С составляет до 3,0% по массе.

Диоксиды кремния настоящего изобретения могут быть объединены с агентами скольжения, и комбинации, используемые в качестве добавок для полимеров, позволяют получить комбинированные антиадгезивные агенты и агенты скольжения. Агентами скольжения, используемыми в таких комбинациях, могут быть любые стандартные агенты скольжения, такие как амиды ненасыщенных кислот, в частности ненасыщенные С1822-жирные кислоты, и особенно амид олеиновой кислоты и амид эруковой кислоты. Предпочтительные комбинированные антиадгезивные агенты и агенты скольжения содержат от 20 до 80 мас.% амида одной или нескольких ненасыщенных С1822-жирных кислот и 20-80 мас.% диоксида кремния настоящего изобретения.

При использовании в качестве антиадгезивов диоксиды кремния настоящего изобретения смешивают с полимерами любым подходящим способом для получения таких смесей. Так, например, диоксид кремния, полимер и любые другие компоненты конечной композиции, такие как агенты скольжения, пигменты, стабилизаторы и антиоксиданты, объединяют в одночервячном или в двухчервячном экструдере или в закрытом смесителе (типа "Banbury") до тех пор, пока не будет получена гомогенная композиция. Из этой композиции могут быть получены пленки с использованием стандартной технологии получения пленок наливом или экструзией с раздувом. Альтернативно, может быть получена маточная смесь, которая содержит относительно высокую концентрацию диоксида кремния настоящего изобретения и, необязательно, другие ингредиенты, такие как агенты скольжения. Затем эту маточную смесь смешивают с исходным полимером для получения конечной композиции, в которой гомогенно распределен диоксид кремния настоящего изобретения. Маточная смесь обычно содержит от 1 до 50 мас.% диоксида кремния или комбинации его с агентом скольжения, описанным выше.

Аморфные диоксиды кремния настоящего изобретения были охарактеризованы с помощью нижеследующих тестов.

Поглощение масла

Поглощение масла определяют методом растирания шпателем по методу ASTM (Американское общество по испытанию материалов D 281). Этот тест основан на смешивании льняного масла с диоксидом кремния путем его растирания шпателем на гладкой поверхности до получения пасты типа шпатлевки, которая не разрушается или не отделяется при разрезании шпателем. Затем поглощение масла вычисляют исходя из объема масла (V, см3), используемого для создания таких условий, и массы (W в граммах) диоксида кремния по уравнению:

Поглощение масла = (V·100)/W, т.е. выраженное в см3 масла/100 г диоксида кремния

Площадь поверхности, измеряемая методом БЭТ

Площадь поверхности диоксида кремния измеряют по адсорбции азота стандартным методом Брунауэра, Эммета и Теллера (БЭТ), где применяется многостадийный метод с использованием устройства ASAP 2400, поставляемого Micromeritics, США. Этот метод описан в научной работе S. Brunauer, P.H. Emmett и E. Teller, J. Am. Chem. Soc. 60, 309 (1938). Перед проведением измерения примерно при -196°С образцы дегазируют в вакууме при 270°С в течение 1 часа.

Среднемассовый размер частиц и распределение частиц по размерам, определяемые с использованием классификатора Malvern Mastersizer®

Среднемассовый размер частиц диоксида кремния определяли с использованием классификатора Malvern Mastersizer®, модель S, снабженного линзой 300 RF и устройством для подачи образца MS17. Действие этого прибора, изготавливаемого Malvern Worcestershire, Malvern Instruments, основано на дифракции Фраунгофера (Fraunhofer), где используется Не/Ne-лазер низкой мощности. Перед измерением образец диспергируют путем обработки ультразвуком в воде в течение 5 минут с получением водной суспензии. Классификатор Malvern Mastersizer® позволяет измерять массовое распределение частиц диоксида кремния по размерам. Исходя из данных, полученных на этом приборе, легко вычислить среднемассовый размер частиц (d50) или 50-й процентиль, и процентное содержание материала ниже любого определенного размера (в частности, для настоящего изобретения 20 мкм, 17 мкм, 16 мкм, 12 мкм или 10 мкм).

Радиоактивный тест на стирание дентина (RDA)

Эту процедуру осуществляют в соответствии с методом оценки абразивности средства для чистки зубов, рекомендованным Американской ассоциацией зубных врачей (American Dental Association) (Journal of Dental Research 55(4) 563, 1976). В этой процедуре удаленный у человека зуб облучают потоком нейтронов и подвергают стандартному режиму чистки зубов зубной щеткой. Радиоактивный фосфор 32, удаленный из корневого дентина, используют как показатель стирания зубов тестируемого средства для чистки зубов. Также определяют RDA эталонной суспензии, содержащей 10 г пирофосфата кальция в 50 см3 0,5% водного раствора натрийкарбоксиметилцеллюлозы, и RDA этой смеси произвольно принимают за 100. Тестируемый осажденный диоксид кремния получают в виде суспензии 6,25 г в 50 см3 0,5% водного раствора натрийкарбоксиметилцеллюлозы и подвергают такому же самому режиму чистки зубной щеткой.

Величина истирания пластика (PAV)

Этот тест основан на чистке головкой зубной щетки плексигласовой пластины Perspex®, находящейся в контакте с суспензией диоксида кремния в смеси сорбита/глицерина. Плексиглас (Perspex®) имеет твердость, аналогичную твердости дентина. Поэтому вещество, которое делает царапины на плексигласе, будет, вероятно, делать аналогичное число царапин на дентине. Обычно данная суспензия включает следующие концентрации:

Диоксид кремния2,5 г
Глицерин10,0 г
Сорбитный сироп*23,0 г

* Сироп содержит 70% сорбита/30% воды

Все компоненты взвешивали в химическом стакане и диспергировали в течение 2 минут при 1500 об/мин с использованием простого смесителя. Для этого теста использовали лист, 110 мм × 55 мм × 3 мм, стандартного прозрачного плексигласа, сформованного из акрилового листа PERSPEX, сорта 000, изготовленного INEOS Acrylics Limited.

Этот тест осуществляли с использованием модифицированного измерительного прибора на истирание при мокрой очистке (Wet Scrub Abrasion Tester), изготавливаемого Sheen Instrument. Такой модификацией является замена держателя так, чтобы вместо кисти могла быть использована зубная щетка. Кроме того, к щеточному агрегату, который весит 145 г, подвешивали груз 400 г для усиления давления щетки на лист плексигласа. Зубная щетка имеет плоскую найлоновую головку с множеством ровно обрезанных пучков волокон и с закругленным по концам щетинным полем средней жесткости, например, такую головку, как у имеющихся в продаже и предназначенных для здоровой десны щеток Professional Mentadent P, изготавливаемых Unilever PLC под торговым знаком Gibbs.

Гальванометр калибровали с использованием детектора блеска с отражением под углом 45° Plaspec и со стандартной отражающей пластиной (блеск с 50%-ным отражением). Данные, считываемые с гальванометра, корректировали с учетом до величины 50 в этих условиях. Затем регистрировали данные для нового листа плексигласа PERSPEX с использованием той