Прозрачная и гибкая композиция пропиленовых полимеров и изделие, полученное из нее

Изобретение относится как к термопластичной эластомерной композиции пропиленовых полимеров, так и к изделиям, полученным из нее литьем под давлением. Композиция имеет значение скорости течения расплава MFR (2), определенное в соответствии со способом ISO method 1133 при 230°С и нагрузке 2,16 кг, в диапазоне от 3 до 30 г/10 мин, и содержит А) от 50 до 90 мас.% одного или нескольких пропиленовых, имеющих содержание фракции, нерастворимой в ксилоле при комнатной температуре, не менее чем 85 мас.%, выбираемых из группы, состоящей из статистических сополимеров пропилена и этилена, содержащих от 1 до 7 мас.% этилена, сополимеров пропилена-C4-C8 α-олефина, содержащих 2-10 мас.% C4-C8 α-олефинов, сополимеров пропилена, этилена и C4-C8 α-олефина, содержащих 0,5-5 мас.% этилена и 2-6 мас.% C4-C8 α-олефинов и В) 10-50% сополимера пропилена, содержащего от 8 до 40 мас.% этилена и необязательно 1-10 мас.% C4-C8, α-олефина. При этом упомянутое значение скорости течения расплава композиции MFR (2) получают путем проведения деструкции композиции-предшественника, содержащей те же самые сополимеры А) и В) в упомянутых выше пропорциях, но отличающейся значением скорости течения расплава MFR (1) в диапазоне от 0,1 до 5 г/10 мин, при соотношении MFR (2) и MPR (1)) в диапазоне от 1,5 до 20. Полученные из композиции изделия отличаются хорошей гибкостью, хорошим сопротивлением ударным нагрузкам даже при низкой температуре, хорошими оптическими свойствами, в частности прозрачностью, и низким уровнем выделения химических соединений, т.е. пригодны для использования в контакте с пищевыми продуктами. 3 н. и 3 з.п. ф-лы, 2 табл.

Реферат

Настоящее изобретение относится как к термопластичным эластомерным композициям пропиленовых полимеров, так и к изделиям, полученным из них.

Композиции, описанные далее в настоящем документе, в особенности пригодны для изготовления пленок и изделий, получаемых по методу литья под давлением. В частности, упомянутые изделия отличаются хорошей гибкостью, хорошим сопротивлением ударным нагрузкам даже при низкой температуре, хорошими оптическими свойствами, в частности прозрачностью, и низким уровнем выделения химических соединений. Таким образом, упомянутые изделия в особенности пригодны для использования в контакте с пищевыми продуктами.

Из предшествующего уровня техники хорошо известно, что для получения мягких сополимеров желательно высокое содержание фракции, растворимой в ксилоле. Однако высокие значения содержания фракции, растворимой в ксилоле, в результате становятся причиной появления больших количеств фракций, экстрагируемых гексаном, так что мягкий сополимер в результате становится неподходящим для использования в сфере упаковки продуктов питания. Преимущество композиций настоящего изобретения заключается в том, что им присущи низкие значения содержания фракций, экстрагируемых в гексане, при относительно высоких значениях содержания фракции, растворимой в ксилоле.

Поэтому композициям настоящего изобретения свойственен в особенности ценный баланс содержаний фракции, растворимой в ксилоле, и фракции, экстрагируемой в гексане. Композиции при желаемой текучести отличаются низкими значениями модуля упругости при изгибе, а также низким содержанием фракций, экстрагируемых в гексане.

Таким образом, настоящее изобретение предлагает композиции пропиленовых полимеров, отличающиеся значением скорости течения расплава (MFR) в диапазоне от 3 до 30 г/10 мин, предпочтительно от 3 до 20 г/10 мин, наиболее предпочтительно от 3 до 15 г/10 мин, содержащие (в массовых процентах):

А) от 50 до 90%, предпочтительно от 60 до 85% одного или нескольких пропиленовых сополимеров, имеющих содержание фракции, нерастворимой в ксилоле при комнатной температуре (приблизительно 23°C), не менее чем 85%, предпочтительно не менее чем 90%, выбираемых из группы, состоящей из (А1) статистических сополимеров пропилена с этиленом, содержащих от 1 до 7%, предпочтительно от 1,5 до 6% этилена; (А2) сополимеров пропилена с одним или несколькими С48 α-олефинами, содержащих 2-10% С48 α-олефинов; (А3) сополимеров пропилена с этиленом и одним либо несколькими С48 α-олефинами, содержащих 0,5-5% этилена и 2-6% С48 α-олефинов; и

В) от 10 до 50%, предпочтительно от 15 до 40% сополимера пропилена, содержащего от 8 до 40%, предпочтительно от 8 до 30%, наиболее предпочтительно от 10 до 28% этилена и необязательно 1-10% С48 α-олефина;

при этом упомянутое значение MFR (MFR (2)) получают в результате проведения деструкции композиции-предшественника, содержащей те же самые сополимеры (А) и (В) в упомянутых выше пропорциях, но имеющей значение MFR (MFR (1)) в диапазоне от 0,1 до 5 г/10 мин, предпочтительно от 0,5 до 4 г/10 мин, при соотношении MFR (2) и MFR (1) в диапазоне от 1,5 до 20, предпочтительно от 2 до 15.

Из приведенных выше определений очевидно, что термин «сополимер» включает полимеры, содержащие более одного типа сомономеров.

С410 α-олефины, которые могут присутствовать в упомянутых пропиленовом полимере или полимерной композиции в качестве сомономеров, описываются формулой CH2=CHR, где R представляет собой алкильный радикал, линейный или разветвленный, имеющий 2-8 атомов углерода, или арильный радикал, такой, как С610 арильный радикал (в частности, фенильный). Примерами упомянутых С410 α-олефинов являются 1-бутен, 1-пентен, 1-гексен, 4-метил-1-пентен и 1-октен. В особенности предпочтителен 1-бутен.

Как уже упоминалось выше, у полимерных композиций-предшественников, получаемых в процессе полимеризации, значение MFR находится в диапазоне от 0,1 до 5 г/10 мин, предпочтительно от 0,5 до 4 при измерении в соответствии со способом ISO method 1133 (230°С, 2,16 кг). Для того, чтобы получить требуемые значения MFR, измеренные в соответствии с упомянутым способом, упомянутые композиции после этого подвергают обработке, приводящей к химической деструкции полимерных цепей (легкий крекинг), в соответствии со способами, хорошо известными на современном уровне техники. Химическую деструкцию полимера проводят в присутствии свободно-радикальных инициаторов, таких, как пероксиды. Примерами инициаторов - радикалов, которые можно использовать для данной цели, являются 2,5-диметил-2,5-ди(трет-бутилпероксид)гексан и дикумилпероксид.

Обработку, приводящую к деструкции, проводят при использовании подходящих количеств свободно-радикальных инициаторов, и предпочтительно она происходит в инертной атмосфере, такой, как азотная. Для реализации данного способа можно воспользоваться способами, аппаратурой и рабочими условиями, известными на современном уровне техники.

Наиболее предпочтительные композиции пропиленовых полимеров настоящего изобретения содержат от более 60 до 85% (мас.) сополимера (А) и от 15 до менее 40% (мас.) сополимера (В).

Упомянутые композиции пропиленовых полимеров обычно характеризуются модулем упругости при изгибе, меньшим, чем 500 МПа, предпочтительно меньшим, чем 450 МПа, наиболее предпочтительно меньшим, чем 400 МПа.

В композиции пропиленового полимера настоящего изобретения содержание фракции, экстрагируемой в гексане, предпочтительно меньше 5,5% (мас.), в частности меньше 4,5% (мас.) в соответствии со способом, описанным далее в настоящем документе.

Содержание фракции, растворимой в ксилоле, в композициях пропиленовых полимеров, соответствующих настоящему изобретению, предпочтительно находится в диапазоне от 18 до 45% (мас.), наиболее предпочтительно от 22 до 35% (мас.). Содержание этилена в упомянутой фракции предпочтительно варьируется в диапазоне от 18 до 30% (мас.), более предпочтительно от 20 до 38% (мас.), при этом наиболее предпочтительным диапазоном является диапазон от 20 до 25% (мас.).

Обычно массовое соотношение между содержанием фракции, растворимой в ксилоле, и содержанием фракции, экстрагируемой гексаном, превышает 4.

Композиции пропиленовых полимеров настоящего изобретения обычно характеризуются величиной мутности менее 20%, предпочтительно менее 18% при измерении для пленок либо пластинок в соответствии со способом, описанным далее в настоящем документе.

Кроме этого, настоящее изобретение также относится к эффективному и недорогому способу получения упомянутых композиций пропиленовых полимеров. Способ включает следующие стадии:

1) получение ранее упомянутой композиции-предшественника в результате полимеризации мономеров, по меньшей мере, в две последовательные стадии, где сополимеры (А) и (В) получают на независимых последовательных стадиях, проводя реакцию на каждой стадии в присутствии полимера, полученного на предшествующей стадии, и катализатора, использованного на ней, и дозируя регулятор степени полимеризации (предпочтительно водород) в таких количествах, чтобы получить значение MFR (1) для композиции-предшественника в диапазоне от 0,1 до 5 г/10 мин, предпочтительно от 0,5 до 4 г/10 мин; и

2) декструкция композиции-предшественника, полученной на стадии 1), с тем, чтобы получить значения MFR (2) для конечной композиции в диапазоне от 3 до 20 г/10 мин, предпочтительно от 3 до 15 г/10 мин, при соотношении деструкции, выраженном через соотношение MFR (2) и MFR (1), в диапазоне от 1,5 до 20, предпочтительно от 2 до 15.

Такой предпочтительный способ чрезвычайно удобен, поскольку он позволяет обходиться без раздельного получения компонентов (то есть, сополимеров) композиции-предшественника и раздельного проведения обработок, приводящих к деструкции.

Из предшествующего описания должно быть ясно, что в композиции-предшественнике содержание сомономеров и относительное количество сополимеров (А) и (В) являются теми же самыми, что и в конечной композиции (после деструкции). При обработке, приводящей к деструкции, имеет место увеличение значения MFR для композиции от MFR (1) до MFR (2), при этом упомянутые значения соотношения между двумя величинами MFR, а именно MFR (2)/MFR (1), находятся в диапазоне от 1,5 до 20, предпочтительно от 2 до 15.

Композиции настоящего изобретения можно получить в результате полимеризации в две или более стадии полимеризации. Такую полимеризацию проводят в присутствии стереоспецифических катализаторов Циглера-Натта. Существенным компонентом упомянутых катализаторов является твердый компонент катализатора, содержащий соединение титана, имеющее, по меньшей мере, одну связь титан-галоген, и электронодонорное соединение, при этом оба соединения наносят на галогенид магния в активной форме. Еще одним существенным компонентом (сокатализатором) является алюминийорганическое соединение, такое, как алюминийалкильное соединение.

Необязательно добавляют внешний донор.

Катализаторы, обычно используемые в способе изобретения, дают возможность получить полипропилен со значением уровня нерастворимости в ксилоле при комнатной температуре, превышающим 90%, предпочтительно превышающим 95%.

Катализаторы, обладающие упомянутыми выше характеристиками, хорошо известны в патентной литературе; в особенности полезны катализаторы, описанные в патенте США 4399054 и Европейском патенте 45977. Другие примеры можно найти в патенте США 4472524.

Твердые компоненты катализатора, используемые в упомянутых катализаторах, содержат в качестве доноров электронов (внутренних доноров) соединения, выбираемые из группы, состоящей из простых эфиров, кетонов, лактонов, соединений, содержащих атомы N, P и/или S, и сложных эфиров одно- и двухосновных карбоновых кислот. В особенности подходящими электронодонорными соединениями являются простые 1,3-диэфиры, описываемые формулой:

где RI и RII являются одинаковыми или различными и представляют собой С118 алкильные, С318 циклоалкильные или С718 арильные радикалы; RIII и RIV являются одинаковыми или различными и представляют собой С14 алкильные радикалы; или простые 1,3-диэфиры, у которых атом углерода в положении 2 входит в циклическую или полициклическую структуру, образованную из 5, 6, либо 7 атомов углерода, или же 5-n либо 6-n' атомов углерода и, соответственно, n атомов азота и n' гетероатомов, выбираемых из группы, состоящей из N, O, S и Si, где n равен 1 или 2, а n' равен 1, 2 или 3, при этом упомянутая структура содержит две или три ненасыщенности (циклополиенильная структура) и необязательно конденсирована с другими циклическими структурами или же замещена одним или несколькими заместителями, выбираемыми из группы, состоящей из линейных или разветвленных алкильных радикалов, циклоалкильных, арильных, аралкильных, алкарильных радикалов и галогенов, или же конденсирована с другими циклическими структурами и замещена одним или несколькими упомянутыми выше заместителями, которые также могут быть соединены с конденсированными циклическими структурами; при этом один или несколько представителей из упомянутых выше алкильных, циклоалкильных, арильных, аралкильных или алкарильных радикалов и конденсированных циклических структур необязательно содержат один или несколько гетероатомов в качестве заместителей атомов углерода либо водорода, или и тех, и других.

Простые эфиры данного типа описываются в опубликованных Европейских патентных заявках 361493 и 728769. Представительными примерами упомянутых простых диэфиров являются 2-метил-2-изопропил-1,3-диметоксипропан, 2,2-диизобутил-1,3-диметоксипропан, 2-изопропил-2-циклопентил-1,3-диметоксипропан, 2-изопропил-2-изоамил-1,3-диметоксипропан, 9,9-бис(метоксиметил)флуорен.

Другими подходящими электронодонорными соединениями являются сложные эфиры фталевой кислоты, такие, как диизобутил-, диоктил-, дифенил- и бензилбутилфталат.

Получение упомянутых выше компонентов катализатора проводят в соответствии с различными способами.

Например, аддукт MgCl2.nROH (в частности, в виде сфероидальных частиц), где n в общем случае находится в диапазоне от 1 до 3, а ROH представляет собой этанол, бутанол или изобутанол, вводят в реакцию с избытком TiCl4, содержащего электронодонорное соединение. Температура реакции в общем случае находится в диапазоне от 80 до 120°С. После этого твердую фазу выделяют и еще раз вводят в реакцию с TiCl4 в присутствии либо в отсутствие электронодонорного соединения, после чего ее выделяют и промывают аликвотами углеводорода до тех пор, пока не исчезнут все ионы хлора.

В твердом компоненте катализатора соединение титана, в расчете на Ti, в общем случае присутствует в количестве в диапазоне от 0,5 до 10% (мас.). Количество электронодонорного соединения, которое остается фиксированным на твердом компоненте катализатора, в общем случае находится в диапазоне от 5 до 20% (моль.) в расчете на дигалогенид магния.

Соединения титана, которые можно использовать при получении твердого компонента катализатора, представляют собой галогениды и галогеналкоголяты титана. Предпочтительным соединением является тетрахлорид титана.

Реакции, описанные выше, в результате приводят к получению галогенида магния в активной форме. В литературе известны и другие реакции, которые приводят к образованию галогенида магния в активной форме, исходя из соединений магния, отличных от галогенидов, таких, как карбоксилаты магния.

Al-алкильные соединения, используемые в качестве сокатализаторов, включают Al-триалкилы, такие как Al-триэтил, Al-триизобутил, Al-три-н-бутил, и линейные либо циклические Al-алкильные соединения, содержащие два или более атомов Al, соединенных друг с другом при помощи атомов O либо N или же групп SO4 либо SO3.

Al-алкильное соединение в общем случае используют в таком количестве, чтобы соотношение Al/Ti находилось в диапазоне от 1 до 1000.

Электронодонорные соединения, которые можно использовать в качестве внешних доноров, включают сложные эфиры ароматических кислот, такие, как алкилбензоаты, и, в частности, соединения кремния, содержащие, по меньшей мере, одну связь Si-OR, где R представляет собой углеводородный радикал.

Примерами соединений кремния являются (трет-бутил)2Si(OCH3)2, (циклогексил)(метил)Si(OCH3)2, (циклопентил)2Si(OCH3)2 и (фенил)2Si(OCH3)2. Желательно также использовать и простые 1,3-диэфиры, описываемые приведенными выше формулами. Если внутренним донором будет один из данных простых диэфиров, внешние доноры можно будет и не использовать.

В частности, даже если многие другие комбинации ранее упомянутых компонентов катализатора могут позволить получить композиции пропиленовых полимеров, соответствующие настоящему изобретению, статистические сополимеры предпочтительно получают при использовании катализаторов, содержащих фталат в качестве внутреннего донора и (циклопентил)2Si(OCH3)2 в качестве внешнего донора или упомянутые простые 1,3-диэфиры в качестве внутренних доноров.

Как уже говорилось ранее, способ полимеризации можно реализовать в две либо более стадии. Стадии полимеризации предпочтительно последовательные, то есть, первый пропиленовый сополимер, такой, как сополимер (А), и второй сополимер, такой как сополимер (В), получают на независимых последовательных стадиях, проводя реакцию на каждой стадии, за исключением первой стадии, в присутствии полимера, полученного на предшествующей стадии, и катализатора, использованного на ней. Очевидно, что, если композиция будет содержать дополнительные полимеры, то для их получения станет необходимым добавление дополнительных стадий полимеризации. Упомянутые стадии полимеризации можно проводить в отдельных реакторах либо в одном или нескольких реакторах, где создают градиенты концентраций мономеров и условия проведения полимеризации. Катализатор в общем случае добавляют только на первой стадии, однако его активность такова, что он все еще остается активным и на всех последующих стадиях.

Регулирование молекулярной массы проводят, используя известные регуляторы, в частности водород.

В результате надлежащего дозирования на соответствующих стадиях концентрации регулятора степени полимеризации получают описанные ранее значения MFR.

Весь процесс полимеризации, который может быть непрерывным или периодическим, проводят по известным методикам, проводя реакцию в жидкой фазе, в присутствии или в отсутствие инертного разбавителя, в газовой фазе или в соответствии со смешанными газожидкостными методиками.

Время, давление и температура реакции для обеих стадий не являются существенными, однако, лучше всего, если температура будет находиться в диапазоне от 20 до 100°С. Давление может быть атмосферным либо более высоким.

Катализаторы можно предварительно ввести в контакт с небольшим количеством олефинов (форполимеризация).

В соответствии с предпочтительным способом полимеризации композиции настоящего изобретения получают по способу ступенчатой полимеризации, описанной выше, за исключением того, что сополимер (А) получают по способу газофазной полимеризации, реализуемом, по меньшей мере, в двух взаимосвязанных зонах полимеризации.

Используемый на первой стадии способ полимеризации с получением сополимера (А) в соответствии с предпочтительным способом проиллюстрирован в заявке ЕР 782587.

Подробно, упомянутый способ включает подачу в условиях реакции одного или нескольких мономеров в упомянутые зоны полимеризации в присутствии катализатора и отбор полимерного продукта из упомянутых зон полимеризации. В упомянутом способе растущие полимерные частицы перетекают вверх через одну (первую) из упомянутых зон полимеризации (лифт-реактор) в условиях быстрого псевдоожижения, покидают упомянутый лифт-реактор и поступают в другую (вторую) зону полимеризации (реактор-осадитель), через которую они перетекают вниз в уплотненной форме под действием силы тяжести, покидают упомянутый реактор-осадитель и повторно поступают в лифт-реактор, таким образом создавая циркуляцию полимера между лифт-реактором и реактором-осадителем.

В реакторе-осадителе достигаются высокие значения плотности твердой фазы, которые приближаются к величине насыпной плотности полимера. Таким образом, вдоль направления течения можно получить положительный прирост давления, так что становится возможным повторное введение полимера в лифт-реактор без помощи специальных механических приспособлений. Таким образом, устанавливается циркуляция в «цикле», которую определяют баланс давлений между двумя зонами полимеризации и потери напора, присутствующие в системе.

Обычно условия быстрого псевджоожижения в лифт-реакторе устанавливают в результате подачи в упомянутый лифт-реактор газовой смеси, содержащей соответствующие мономеры. Предпочтительно, подачу газовой смеси проводить ниже точки повторного ввода полимера в упомянутый лифт-реактор при использовании там, где это будет уместно, газораспределительных приспособлений. Скорость транспортирующего газа при подаче в лифт-реактор превышает скорость транспортирования в рабочих условиях, предпочтительно она находится в диапазоне от 2 до 15 м/с.

Обычно полимер и газовую смесь, покидающие лифт-реактор, перепускают в зону разделения твердой/газообразной фаз. Разделение твердой/газообразной фаз можно осуществлять, используя обычные устройства для разделения. Из зоны разделения полимер поступает в реактор-осадитель. Газообразную смесь, покидающую зону разделения, подвергают сжатию, охлаждают и перепускают, если это будет уместно, при добавлении компенсирующих расход количеств мономеров и/или регуляторов степени полимеризации, в лифт-реактор. Перепускание можно осуществлять при помощи линии отправления на рецикл для газообразной смеси.

Управление циркуляцией полимера между двумя зонами полимеризации можно осуществлять дозированием количества полимера, покидающего реактор-осадитель, используя устройства, подходящие для управления потоком твердых частиц, такие, как механические клапаны.

Рабочие параметры, такие, как температура, такие же, как те, что обычно используют в способе газофазной полимеризации олефинов, например, они находятся в диапазоне от 50 до 120°С.

Данный процесс первой стадии можно проводить при рабочих давлениях в диапазоне от 0,5 до 10 МПа, предпочтительно от 1,5 до 6 МПа.

В зонах полимеризации выгодно поддерживать присутствие одного или нескольких инертных газов в таких количествах, чтобы сумма парциального давления инертных газов предпочтительно находилась в диапазоне от 5 до 80% от полного давления газов. Инертным газом, например, может быть азот или пропан.

В лифт-реактор в любой точке упомянутого лифт-реактора подают различные катализаторы. Однако их также можно подавать и в любой точке реактора-осадителя. Катализатор может находиться в любом агрегатном состоянии, поэтому возможно использование катализаторов либо в твердом, либо в жидком состоянии.

На второй стадии полимеризации предпочтительного способа обычно получают сополимер (В) по обычно используемым газофазным технологиям с псевдоожиженным слоем.

Композиции также можно получить в результате раздельного получения упомянутых сополимеров, проводя реакции с использованием тех же самых катализаторов и по существу при тех же самых условиях проведения полимеризации, что и описанные ранее, (за исключением того, что упомянутые сополимеры будут получать на раздельных стадиях полимеризации) и последующего механического перемешивания упомянутых сополимеров в расплавленном состоянии. Можно использовать обычные смесительные аппараты, такие, как шнековые экструдеры, в частности двухшнековые экструдеры.

Пропиленовые полимеры и композиции пропиленовых полимеров, используемые для изделий настоящего изобретения, также могут содержать добавки, обычно используемые на современном уровне техники, такие, как антиоксиданты, светостабилизаторы, термостабилизаторы, зародышеобразователи, красители и наполнители.

В частности, добавление зародышеобразователей приводит к значительному улучшению важных физико-механических свойств, таких, как модуль упругости при изгибе, теплостойкость (HDT), прочность на растяжение при пределе текучести и прозрачность.

Обычными примерами зародышеобразователей являются п-трет-бутилбензоат и 1,3- и 2,4-дибензилиденсорбиты.

Зародышеобразователи предпочтительно добавляют в количестве в диапазоне от 0,05 до 2% (мас.), более предпочтительно от 0,1 до 1% (мас.) в расчете на полную массу.

Добавление неорганических наполнителей, таких, как тальк, карбонат кальция и минеральные волокна, также приводит к улучшению некоторых механических свойств, таких, как модуль упругости при изгибе и HDT. Тальк также может действовать и в качестве зародышеобразователя.

Основной областью применения композиции настоящего изобретения представляет собой область применения отлитых пленок либо листов и контейнеров, полученных по способу литья под давлением. Отлитые пленки или листы и полученные по способу литья под давлением изделия в особенности пригодны для использования при упаковке продуктов питания и для контейнеров для пищи либо напитков.

Отлитые пленки, листы и полученные по способу литья под давлением изделия настоящего изобретения можно получать по хорошо известным способам.

Пленки настоящего изобретения имеют толщину, которая обычно находится в диапазоне от 10 до 100 мкм, тогда как листы в общем случае имеют толщину, больше либо равную 100 мкм.

Отлитые пленки/листы настоящего изобретения могут быть одно- или многослойными пленками/листами. В многослойных пленках/листах, по меньшей мере, основной слой (также называемый «несущим слоем»), который находится в контакте с пищей, содержит композицию пропиленовых полимеров, соответствующую настоящему изобретению. Другой слой (слои) может содержать другие типы полимеров, такие, как кристаллические либо полукристаллические полимеры С26 α-олефинов, полиамид и сополимер поли(этилен-винилацетат). Полиэтилен предпочтительно выбирают из ЛПЭНП и ПЭНП. Такие многослойные пленки/листы получают в результате совместного экструдирования индивидуальных пленок/листов, соединяемых при использовании обычных условий технологического процесса.

Следующие далее примеры приведены для иллюстрирования настоящего изобретения без целей его ограничения.

Данные, относящиеся к полимерным материалам и пленкам из примеров, получали при использовании методов, приведенных ниже.

- Скорость течения расплава: определяли в соответствии с методом ISO method 1133 (230°C, 2,16 кг).

- Растворимость в ксилоле: определяли следующим образом.

В стеклянную колбу, оснащенную холодильником и механической мешалкой, вводили 2,5 г полимера и 250 мл ксилола. Температуру увеличивали в течение 30 минут до температуры кипения растворителя. Полученный таким образом прозрачный раствор выдерживали при температуре кипения при перемешивании еще в течение 30 минут. Затем закрытую колбу выдерживали в течение 30 минут в водяной бане со льдом, а также в течение 30 минут в термостатированной водяной бане при 25°С. Полученную таким образом твердую фазу фильтровали на бумаге для быстрого фильтрования. 100 мл отфильтрованной жидкости выливали в предварительно взвешенный алюминиевый контейнер, который нагревали на нагревательной плитке в потоке азота для удаления растворителя в результате его испарения. После этого контейнер выдерживали в печи при 80°С под вакуумом до тех пор, пока не достигали постоянной массы. Затем рассчитывали массовый процент полимера, растворимого в ксилоле при комнатной температуре. Массовый процент полимера, нерастворимого в ксилоле при комнатной температуре, рассматривали в качестве индекса изотактичности полимера. Данная величина по существу соответствует индексу изотактичности, определенному в результате экстрагирования в кипящем н-гептане, который по определению представляет собой индекс изотактичности полипропилена.

- Характеристическую вязкость (IV): определяли в тетрагидронафталине при 135°С.

- Содержание фракции, экстрагируемой в гексане, для пленки или пластинки: определяли в соответствии с методом FDA 177, 1520 в результате суспендирования образца композиции в избытке гексана. Образец представлял собой пленку или пластинку с толщиной 100 мкм. Пленку получали в результате экструдирования. Пластинку получали в результате прямого прессования. Суспензию помещали в автоклав при 50°С на 2 часа. После этого гексан удаляли в результате его испарения, а высушенный остаток взвешивали.

- Температуру плавления, энтальпию плавления и температуру кристаллизации: определяли при помощи ДСК, измененяя температуру на 20°C в минуту.

- Содержание этилена: определяли по методу ИК-спектроскопии.

- Температуру перехода от пластического состояния к хрупкому разрушению: определяли в соответствии с внутренним методом от компании Basell MTM 17324, который может быть предоставлен по запросу.

- Модуль упругости при изгибе: определяли в соответствии с методом ISO 178.

- Напряжение пластического течения и разрушающее напряжение: определяли в соответствии с методом ISO 527.

- Относительное удлинение при пределе текучести и относительное удлинение при разрыве: определяли в соответствии с методом ASTM D-882.

- Ударную вязкость по Изоду: определяли в соответствии с методом ISO 180.

- Мутность пленки: определяли в соответствии с методом ASTM method D 1003/61.

- Энергию разрушения при - 20°С: определяли в соответствии с внутренним методом от компании Basell MTM 17324, который может быть предоставлен по запросу.

- Блеск пленки: определяли в соответствии с методом ASTM 523/89.

Примеры 1-3

В следующих далее примерах композицию-предшественника получали путем полимеризации пропилена и этилена в непрерывном режиме в установке, включающей аппарат для газофазной полимеризации, с дальнейшей деструкцией полученной таким образом композиции до получения конечной композиции, соответствующей изобретению.

Использованный катализатор включал каталитический компонент, полученный по аналогии с примером 5 из ЕР-А-728 769, но при использовании микросфероидального MgCl2·1,7C2H5OH вместо MgCl2·2,1C2H5OH. Такой каталитический компонент использовали вместе с дициклопентилдиметоксисиланом в качестве внешнего донора и триэтилалюминием (TEAl). Массовое отношение TEAl/каталитический компонент было равно 5. Массовое отношение TEAl/внешний донор было равно 4.

Прежде всего в аппарате для газофазной полимеризации в присутствии упомянутого катализатора получали сополимер (А). Аппарат включал два взаимосвязанных цилиндрических реактора (лифт-реактор и реактор-осадитель). Условия быстрого псевдоожижения в лифт-реакторе создавали в результате рециркуляции газа из сепаратора газообразной/твердой фаз.

Полученный таким образом сополимер (А) затем перепускали в обычный реактор с псевдоожиженным слоем, где получали сополимер (В) в нисходящем потоке газо-фазного реактора.

Полимерные частицы, покидающие второй реактор, подвергали обработке паром для удаления реакционно-способных мономеров и летучих соединений, а затем высушивали.

Другие рабочие условия и характеристики полученных полимеров приведены в таблицах.

Полученные таким образом полимерные частицы, которые составляли композицию-предшественника, смешивали с 2,5-диметил-2,5-ди(трет-бутилперокси)гексаном, который выступал в роли свободно-радикального инициатора при последующей экструзионной обработке.

Получали полимерную смесь, содержащую следующее количество компонентов (в массовых процентах):

1) 99,72 частей полимерной композиции;

2) 0,03 части 2,5-бис(трет-бутилперокси)-2,5-диметилгексана; и

3) 0,05 части стеарата кальция;

4) 0,05 части масла; и

5) 0,15 части стабилизирующих добавок.

После этого полимерную смесь помещали в двухшнековый экструдер Berstoff (L/D = 33) и экструдировали при следующих рабочих условиях:

- температура в узле питателя: 190-210°С;

- температура расплава: 240°С;

- температура в узле мундштука: 230°С;

- расход: 12,6 кг/ч;

- скорость вращения шнека: 250 об./мин

Составы и основные свойства образцов вместе с основными рабочими условиями приведены в таблице 1.

Таблица 1
Пример123
Условия проведения полимеризации и результаты анализа сополимера поли(пропилена-этилена) (А), полученного в аппарате для газофазной полимеризации
Температура, °С 707070
С2-/(С2- + С3-) (соотношение в газе) (моль/моль)0,040,040,04
Содержание этилена (мас.%) 3,844
MFR (г/10 мин) 4,341,4
Растворимость в ксилоле (мас.%) 7,38,57,9
Условия проведения полимеризации и результаты анализа сополимера поли(пропилена-этилена) (В), полученного во 2-м реакторе
Температура, °С 858585
С2-/(С2- + С3-) (соотношение в газе) (моль/моль)0,120,150,15
Содержание этилена (мас.%)242626
Результаты анализа полимерной композиции
Содержание сополимера (В) (% (мас.%) 201924
Содержание этилена (мас.%)88,29,3
Содержание этилена во фракции, растворимой в ксилоле (мас.%) 22,522,223,5
Содержание этилена во фракции, нерастворимой в ксилоле (мас.%) 43,74,5
Свойства полимерной композиции-предшественника
MFR (г/10 мин) 2,82,30,97
I. V. фракции, растворимой в ксилоле (дл/г) 2,542,472,45
Модуль упругости при изгибе (МПа) 560490-
Свойства полимерной композиции после легкого крекинга
MFR (г/10 мин) 7,57,36,9
Растворимость в ксилоле (мас.%) 24,123,528,8
Нерастворимость в ксилоле (мас.%) 75,976,571,2
I. V. фракции, растворимой в ксилоле (дл/г) 1,69-1,58
I. V. фракции, нерастворимой в ксилоле (дл/г) 1,49-1,57
Содержание фракции, экстрагируемой гексаном, для пленки (100 мкм) (мас.%) 3,63,83,8
Содержание фракции, экстрагируемой гексаном, для пластинки (100 мкм) (мас.%) 5,5-7,4
Температура плавления (°С) 146,8144,9147,5
Энтальпия плавления (Дж/г) 67,260,859,3
Температура кристаллизации (°С) 100,2100,4101,5
Температура перехода от пластического состояния к хрупкому разрушению (°С) -25-32-40
Модуль упругости при изгибе (МПа) 490470370
Напряжение пластического течения (МПа) 171714
Относительное удлинение при пределе текучести (%) 1616,419,8
Разрушающее напряжение (МПа) 241617
Относительное удлинение при разрушении (%) 422420424
Ударная вязкость по Изоду при 23°С (кДж/м2) 15,814,1-
Ударная вязкость по Изоду при - 20°С (кДж/м2) 2,623,6
Энергия разрушения при - 20°С (Дж) 12,612,612,3
Мутность пленки (50 мкм) (%) 12,917,711
Блеск пленки (50 мкм) (%) 514356,1

Приведенные в качестве примера композиции отличаются уровнями содержания фракции, экстрагируемой в гексане (HE), ниже 4% (мас.). Уровень HE измеряли для отлитой пленки толщиной 100 мкм, полученной в соответствии с предписанием FDA (Управления по контролю за продуктами и лекарствами). Измеренные величины в достаточной мере меньше предела, установленного FDA (5,5% (мас.)).

Приведенные в качестве примера композиции демонстрируют низкие значения модуля упругости при изгибе (значения модуля упругости при изгибе, меньшие 500 МПа) и хорошее противодействие ударным нагрузкам при низкой температуре (энергия разрушения при -20°С, приблизительно равна 12 Дж).

Отлитые пленки толщиной 50 мкм, полученные из приведенной в качестве примера композиции, соответствующей настоящему изобретению, также демонстрируют низкие значения модуля упругости при растяжении и напряжения пластического течения при растяжении и очень хорошие оптические свойства.

В таблице 1 приведены характеристики композиций, описанных в примерах 1 и 2, до и после деструкции. В сравнении с композициями сразу после полимеризации композиции, подвергнутые химической деструкции, обнаруживают более высокую текучесть, то же самое содержание фракции, растворимой в ксилоле, и несколько меньшее значение модуля упругости при изгибе.

Сравнительные примеры 1с-5с

Композиции из примеров 1с-5с получали в результате полимеризации пропилена и этилена по способу ступенчатой полимеризации.

В первом реакторе газофазной полимеризации в результате подачи непрерывного и постоянного потока системы форполимеризованного катализатора, водорода (используемого для регулирования степени полимеризации), пропилена и этилена в газовой фазе получали сополимер (А) (сополимер пропилена/этилена).

Непрерывным потоком проводили отбор сополимера, полученного в первом реакторе, который после удаления непрореагировавших мономеров в результате продувки непрерывным потоком вводили во второй газофазный реактор вместе с количественно постоянными потоками водорода, пропилена и этилена в газообразном состоянии.

Полимерные частицы, покидающие второй реактор, подвергали обработке паром для удаления реакционно-способных мономеров и летучих соединений и после этого высушивали.

Катализатор использовали тот же самый, что и катализатор, использованный в примерах 1-3.

Полимерные частицы не подвергали химической деструкции для получения желаемых значений MFRL, поскольку желаемые значения MFRL получали непосредственно в ходе полимеризации.

В таблице 2 приведены условия проведения полимеризации и составы для полученных таким образом сополимеров.

Таб