Электрохимическая ячейка

Иллюстрации

Показать все

Настоящее изобретение относится к электрохимическим элементам, включающим в себя первый рабочий электрод (32), первый противоэлектрод (34), второй рабочий электрод (36) и второй противоэлектрод (38), при этом электроды разнесены так, что продукты реакции от первого противоэлектрода (34) поступают на первый рабочий электрод (32), а продукты реакции от первого и второго противоэлектродов (34), (38) не поступают на второй рабочий электрод (36). Также предложен способ использования таких электрохимических элементов для определения концентрации восстановленной или окисленной формы окислительно-восстановительного вещества. Техническим результатом изобретения является повышение точности определения концентрации. 8 н. и 25 з.п. ф-лы, 2 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к электрохимическим ячейкам, включающим в себя первый рабочий электрод, первый противоэлектрод, второй рабочий электрод и второй противоэлектрод, в которых электроды отделены друг от друга таким расстоянием, что продукты реакции с первого противоэлектрода поступают на первый рабочий электрод, а продукты реакции с первого и второго противоэлектродов не поступают на второй рабочий электрод. Также предложен способ использования таких электрохимических ячеек для определения концентрации восстановленной или окисленной формы окислительно-восстановительного вещества с большей точностью, чем та, которая может быть получена при использовании электрохимической ячейки, имеющей один рабочий электрод и один противоэлектрод.

УРОВЕНЬ ТЕХНИКИ

В амперометрической электрохимии ток, протекающий на электроде, может быть использован в качестве меры концентрации электроактивного вещества, электрохимически реагирующего на рабочем электроде. В кулонометрии ток, протекающий на электроде, может быть проинтегрирован по времени для получения общего количества прошедшего заряда, что дает меру количества электроактивного материала, прореагировавшего на рабочем электроде. Ток, протекающий (или заряд, проходящий в любой момент времени) на электроде, зависит от скорости переноса электроактивного вещества к рабочему электроду. Когда рядом с электродом присутствует значительная концентрация электроактивного вещества и к электроду приложен электрический потенциал, достаточный для электрохимической реакции электроактивного вещества на границе раздела электрод/раствор, сначала протекает более высокий ток, который уменьшается во времени. В случае изолированного и по существу плоского электрода, когда приложенный к электроду потенциал достаточен для реагирования электроактивного вещества фактически мгновенно после поступления на электрод, а перенос электроактивного вещества к электроду лимитируется диффузией, ток изменяется в соответствии с кривой, известной в данной области техники как уравнение Коттрелла. Согласно этому уравнению ток изменяется обратно пропорционально квадратному корню из времени. Это дает ток, который затухает во времени, так как количество электроактивного вещества, которое реагирует на электроде, становится обедненным рядом с электродом, и поэтому со временем электроактивное вещество должно перемещаться со все большего и большего расстояния, чтобы достичь электрода.

Если, в дополнение к электрохимической реакции электроактивного вещества на электроде, это электроактивное вещество образуется рядом с рабочим электродом в результате химической реакции, то форма кривой протекающего на электроде тока становится сложной. Электродная реакция стремится понизить концентрацию электроактивного вещества рядом с рабочим электродом, тогда как химическая реакция стремится увеличить концентрацию электроактивного вещества в этой области. Зависящее от времени поведение этих двух процессов смешивается, и поэтому может оказаться трудным измерить кинетику химических реакций исходя из тока, протекающего (или заряда, проходящего) на электроде.

По этой причине в опубликованной литературе скорости химических реакций обычно не измеряются электрохимическим способом, кроме специальных применений, использующих специальное оборудование. Пример такого оборудования известен в данной области техники как вращающийся кольцевой/дисковый электрод. Это устройство применимо только к относительно быстрой кинетике реакции и требует, чтобы электрод вращался с известной регулируемой скоростью при хорошо описанной гидродинамике жидкости.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Желательно создать электрохимическую ячейку и способ использования такой электрохимической ячейки для определения концентрации восстановленной или окисленной формы окислительно-восстановительного вещества с большей точностью, чем та, которая может быть получена при использовании электрохимической ячейки, имеющей один рабочий электрод и один противоэлектрод. Предпочтительные варианты реализации настоящего изобретения предлагают такие электрохимические ячейки и способы.

В первом варианте реализации предложен способ определения концентрации восстановленной или окисленной формы окислительно-восстановительного вещества, причем данный способ включает в себя этапы, на которых: обеспечивают наличие электрохимической ячейки, содержащей первый рабочий электрод, первый противоэлектрод, второй рабочий электрод и второй противоэлектрод; выбирают расстояние между первым рабочим электродом и первым противоэлектродом так, что продукты реакции с первого противоэлектрода поступают на первый рабочий электрод; выбирают расстояние между первым рабочим электродом и вторым противоэлектродом так, что значительное количество продуктов реакции со второго противоэлектрода не поступает на первый рабочий электрод; выбирают расстояние между вторым рабочим электродом и вторым противоэлектродом, которое является существенно большим, чем расстояние между первым рабочим электродом и первым противоэлектродом, так что значительное количество продуктов реакции со второго противоэлектрода не поступает на второй рабочий электрод; прикладывают разность электрических потенциалов между первым рабочим электродом и первым противоэлектродом; прикладывают разность электрических потенциалов между вторым рабочим электродом и вторым противоэлектродом; выбирают потенциал первого рабочего электрода так, что скорость электроокисления восстановленной формы или электровосстановления окисленной формы упомянутого вещества лимитируется диффузией; выбирают потенциал второго рабочего электрода так, что скорость электроокисления восстановленной формы или электровосстановления окисленной формы упомянутого вещества лимитируется диффузией; вычитают ток, протекающий между вторым рабочим электродом и вторым противоэлектродом, из тока, протекающего между первым рабочим электродом и первым противоэлектродом, в результате чего получают скорректированный ток; и получают исходя из скорректированного тока величину, указывающую на концентрацию восстановленной формы или окисленной формы упомянутого вещества.

В одном аспекте первого варианта реализации площадь поверхности первого рабочего электрода и площадь поверхности второго рабочего электрода являются по существу одинаковыми.

В другом аспекте первого варианта реализации площадь поверхности первого рабочего электрода и площадь поверхности второго рабочего электрода являются разными, и при этом этап вычитания тока включает в себя: определение тока, протекающего между первым рабочим электродом и первым противоэлектродом; определение тока, протекающего между вторым рабочим электродом и вторым противоэлектродом; нормирование тока, протекающего между первым рабочим электродом и первым противоэлектродом, и тока, протекающего между вторым рабочим электродом и вторым противоэлектродом, к одинаковой площади поверхности электродов для получения нормированного тока, протекающего между первым рабочим электродом и первым противоэлектродом, и нормированного тока, протекающего между вторым рабочим электродом и вторым противоэлектродом; и вычитание нормированного тока, протекающего между вторым рабочим электродом и вторым противоэлектродом, из нормированного тока, протекающего между первым рабочим электродом и первым противоэлектродом, в результате чего получают скорректированный ток.

В еще одном аспекте первого варианта реализации первый рабочий электрод и первый противоэлектрод отделены расстоянием менее примерно 500 мкм или менее примерно 200 мкм. Второй рабочий электрод и второй противоэлектрод или первый рабочий электрод и второй противоэлектрод отделены расстоянием более примерно 500 мкм или более примерно 1 мм.

В еще одном аспекте первого варианта реализации окислительно-восстановительным веществом может быть медиатор. Когда окислительно-восстановительным веществом является медиатор, концентрация восстановленной или окисленной формы медиатора указывает на концентрацию аналита (т.е. анализируемого вещества), и при этом определяют меру коэффициента диффузии восстановленной или окисленной формы медиатора в качестве промежуточного результата при определении концентрации аналита.

В еще одном аспекте первого варианта реализации электрохимическая ячейка дополнительно содержит отдельный электрод сравнения.

В еще одном аспекте первого варианта реализации аналитом может быть глюкоза.

Во втором варианте реализации предложена электрохимическая ячейка, содержащая первый рабочий электрод, первый противоэлектрод, второй рабочий электрод и второй противоэлектрод, причем первый рабочий электрод отделен от первого противоэлектрода расстоянием менее примерно 500 мкм, первый рабочий электрод отделен от второго противоэлектрода расстоянием более примерно 500 мкм, а второй рабочий электрод отделен от второго противоэлектрода расстоянием более примерно 500 мкм.

В одном аспекте второго варианта реализации первый рабочий электрод и первый противоэлектрод и/или второй рабочий электрод и второй противоэлектрод обращены друг к другу или расположены бок о бок.

В другом аспекте второго варианта реализации первый рабочий электрод и второй рабочий электрод имеют по существу соответствующие площади.

В другом аспекте второго варианта реализации электрохимическая ячейка дополнительно содержит отдельный электрод сравнения.

В еще одном аспекте второго варианта реализации электрохимическая ячейка может представлять собой полую электрохимическую ячейку. Электрохимическая ячейка может иметь эффективный объем менее 1,5 микролитров.

В третьем варианте реализации предложено устройство для определения концентрации окислительно-восстановительного вещества в электрохимической ячейке, включающее в себя: электрохимическую ячейку, имеющую первый рабочий электрод, первый противоэлектрод, второй рабочий электрод и второй противоэлектрод и характеризующуюся тем, что первый рабочий электрод отделен от первого противоэлектрода расстоянием менее 500 мкм, первый рабочий электрод отделен от второго противоэлектрода расстоянием более 500 мкм, а второй рабочий электрод отделен от второго противоэлектрода расстоянием более 500 мкм; средства приложения разности электрических потенциалов между первым рабочим электродом и первым противоэлектродом и средства приложения разности электрических потенциалов между вторым рабочим электродом и вторым противоэлектродом.

В одном аспекте третьего варианта реализации предложенное устройство может представлять собой измеритель глюкозы.

В четвертом варианте реализации предложена электрохимическая ячейка, содержащая первый рабочий электрод, первый противоэлектрод и второй рабочий электрод, причем первый рабочий электрод отделен от первого противоэлектрода расстоянием менее примерно 500 мкм, а второй рабочий электрод отделен от первого противоэлектрода расстоянием более примерно 500 мкм.

В пятом варианте реализации предложен способ определения концентрации восстановленной или окисленной формы окислительно-восстановительного вещества, включающий в себя этапы, на которых: обеспечивают наличие электрохимической ячейки, содержащей первый рабочий электрод, противоэлектрод и второй рабочий электрод; выбирают расстояние между первым рабочим электродом и противоэлектродом так, что продукты реакции с противоэлектрода поступают на первый рабочий электрод, и так, что расстояние между вторым рабочим электродом и противоэлектродом является существенно большим, чем расстояние между первым рабочим электродом и противоэлектродом; обеспечивают наличие окислительно-восстановительного вещества, при этом по меньшей мере полезная доля окислительно-восстановительного вещества, первоначально присутствующего в растворе над вторым рабочим электродом, была восстановлена или окислена на втором рабочем электроде; прикладывают разность электрических потенциалов между первым рабочим электродом и противоэлектродом; выбирают потенциал первого рабочего электрода так, что скорость электроокисления восстановленной формы или электровосстановления окисленной формы упомянутого вещества лимитируется диффузией; определяют ток, протекающий между первым рабочим электродом и противоэлектродом; и получают исходя из этого тока величину, указывающую на концентрацию восстановленной формы или окисленной формы упомянутого вещества.

В одном аспекте пятого варианта реализации площадь поверхности первого рабочего электрода и площадь поверхности второго рабочего электрода являются по существу одинаковыми.

В другом аспекте пятого варианта реализации площадь поверхности первого рабочего электрода и площадь поверхности второго рабочего электрода являются существенно разными.

В шестом варианте реализации предложен способ определения концентрации восстановленной или окисленной формы окислительно-восстановительного вещества, включающий в себя этапы, на которых: обеспечивают наличие электрохимической ячейки, содержащей первый рабочий электрод, второй рабочий электрод и противоэлектрод; выбирают расстояние между первым рабочим электродом и противоэлектродом так, что продукты реакции с противоэлектрода поступают на первый рабочий электрод; выбирают расстояние между вторым рабочим электродом и противоэлектродом, которое является существенно большим, чем расстояние между первым рабочим электродом и противоэлектродом, так что значительное количество продуктов реакции с противоэлектрода не поступает на второй рабочий электрод; прикладывают разность электрических потенциалов между вторым рабочим электродом и противоэлектродом, в результате чего по существу заряжают второй рабочий электрод, и в результате этого по существу завершают реакции поверхностных групп; разрывают цепь между вторым рабочим электродом и противоэлектродом до того, как значительное количество упомянутого вещества прореагирует на втором рабочем электроде; прикладывают разность электрических потенциалов между первым рабочим электродом и противоэлектродом; выбирают потенциал первого рабочего электрода так, что скорость электроокисления восстановленной формы или электровосстановления окисленной формы упомянутого вещества лимитируется диффузией; определяют ток, протекающий между первым рабочим электродом и противоэлектродом; и получают исходя из этого тока величину, указывающую на концентрацию восстановленной формы или окисленной формы упомянутого вещества.

В седьмом варианте реализации предложен способ определения концентрации восстановленной или окисленной формы окислительно-восстановительного вещества, включающий в себя этапы, на которых: обеспечивают наличие электрохимической ячейки, содержащей первый рабочий электрод, второй рабочий электрод и противоэлектрод; выбирают расстояние между первым рабочим электродом и противоэлектродом так, что продукты реакции с противоэлектрода поступают на первый рабочий электрод; выбирают расстояние между вторым рабочим электродом и противоэлектродом, которое является существенно большим, чем расстояние между первым рабочим электродом и противоэлектродом, так что значительное количество продуктов реакции с противоэлектрода не поступает на второй рабочий электрод; прикладывают разность электрических потенциалов между вторым рабочим электродом и противоэлектродом и между первым рабочим электродом и противоэлектродом, в результате чего по существу заряжают второй рабочий электрод и первый рабочий электрод и в результате чего по существу завершают реакции поверхностных групп; разрывают цепь между вторым рабочим электродом и противоэлектродом до того, как значительное количество упомянутого вещества прореагирует на втором рабочем электроде; прикладывают разность электрических потенциалов между первым рабочим электродом и противоэлектродом; выбирают потенциал первого рабочего электрода так, что скорость электроокисления восстановленной формы или электровосстановления окисленной формы упомянутого вещества лимитируется диффузией; определяют ток, протекающий между первым рабочим электродом и противоэлектродом; и получают исходя из этого тока величину, указывающую на концентрацию восстановленной формы или окисленной формы упомянутого вещества.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 представлено схематическое изображение в поперечном сечении электрохимической ячейки 10 согласно предпочтительному варианту реализации с электродными поверхностями в параллельной и противолежащей конфигурации.

На фиг.2 представлено схематическое изображение в поперечном сечении электрохимической ячейки 50 согласно предпочтительному варианту реализации с электродами в конфигурации бок о бок.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ РЕАЛИЗАЦИИ

Нижеследующие описание и примеры подробно иллюстрируют предпочтительные варианты реализации настоящего изобретения. Специалистам в данной области техники будет понятно, что существуют многочисленные изменения и модификации настоящего изобретения, которые охватываются его сущностью. Следовательно, описание предпочтительного варианта реализации не должно рассматриваться как ограничивающее объем настоящего изобретения.

При использовании электрохимических ячеек в качестве амперометрических датчиков для обнаружения и количественного определения аналитов может оказаться желательным иметь возможность обнаруживать очень низкие концентрации аналита. Одним из ограничений известного уровня техники при обнаружении низких концентраций аналита может быть присутствие паразитных токов, маскирующих интересующий ток. Некоторые из этих нежелательных токов возникают в результате протекания тока заряда емкости электрода и наличия электрического шума, принимаемого из окружающей среды. Предпочтительные варианты реализации настоящего изобретения направлены на создание способа, предназначенного для минимизации вклада этих токов в общий сигнал, что позволяет достичь улучшенного обнаружения аналита.

Как известно из уровня техники, электроды в электрохимической ячейке с двумя или тремя электродами могут быть расположены так, что рабочий электрод изолирован от реакций и продуктов реакций на противоэлектроде, или так, что продукты реакции на противоэлектроде диффундируют к рабочему электроду, где они вступают в реакцию. Первый тип электрохимической ячейки хорошо известен из уровня техники. Второй тип электрохимической ячейки описан в патентах США 6179979 и 5942102.

Эти две конфигурации электродов разнятся тем, что в случае изолированной конфигурации противоэлектрод расположен на достаточно большом расстоянии от рабочего электрода, так что в течение времени использования ячейки продукты электрохимических реакций на противоэлектроде не поступают на рабочий электрод. На практике это в типичном случае достигается посредством отделения рабочего электрода и противоэлектрода расстоянием, равным по меньшей мере одному миллиметру.

При неизолированной конфигурации рабочий электрод и противоэлектрод размещены достаточно близко друг к другу, так что в течение времени использования ячейки продукты электрохимических реакций на противоэлектроде могут диффундировать к рабочему электроду. Эти продукты реакции затем могут вступать в реакцию на рабочем электроде, давая больший ток, чем тот, который может иметь место в случае изолированного электрода. При неизолированной конфигурации реакции на рабочем электроде могут быть описаны как связанные с реакциями на противоэлектроде.

КОНФИГУРАЦИИ ЭЛЕКТРОДОВ

В предпочтительном варианте реализации изолированные рабочие электроды и рабочие электроды, связанные с противоэлектродом, объединяют в одной электрохимической ячейке с тем, чтобы обеспечить улучшенное обнаружение вещества с низкой концентрацией. На фиг.1 и 2 представлены различные конфигурации электродов в электрохимических ячейках согласно предпочтительным вариантам реализации.

На фиг.1 представлено схематическое изображение в поперечном сечении электрохимической ячейки 10 согласно одному предпочтительному варианту реализации. Открытые части электропроводящих слоев 12, 14, 16, 18 действуют в качестве электродов 32, 34, 36, 38 в ячейке 10. Электропроводящие слои 12, 14, 16, 18 находятся в контакте со слоями 20, 22, 24, 26 из электрорезистивного материала (т.е. материала с высоким электрическим сопротивлением). Один или несколько разделительных слоев (не показаны) поддерживают расстояние между электродами 32, 34 составляющим менее 500 мкм. Либо электрод 32, либо электрод 34, либо электрод 36, либо электрод 38 могут быть рабочими электродами, при условии, что электроды 32 и 34 образуют одну пару рабочего электрода и противоэлектрода, и что электрод 36 и электрод 38 образуют другую пару рабочего электрода и противоэлектрода. Толщины слоя 24 и слоя 26 являются такими, что все расстояния между ближайшими кромками электрода 32 и электрода 36, а также между ближайшими кромками электрода 34 и электрода 38 в типичном случае превышают 500 мкм, а предпочтительно - превышают 1 мм. В другом варианте реализации слой 20 или 22 из электрорезистивного материала и проводящий слой 16 или 18, который он поддерживает, могут быть заменены одним слоем соответствующего электропроводящего материала (не показан), такого как, например, алюминиевая фольга или проводящий полимер. Для легкости изготовления, в некоторых вариантах реализации может оказаться желательным полностью покрыть одну поверхность одного или нескольких слоев 20, 22, 24, 26 из электрорезистивного материала электропроводящим слоем 12, 14, 16, 18. Альтернативно, в других вариантах реализации может оказаться желательным только частично покрыть слой 20, 22, 24, 26 из электрорезистивного материала электропроводящим слоем 12, 14, 16, 18, например, чтобы сэкономить на стоимости материалов, если материал электродов содержит благородный металл. Например, в ячейке 10, изображенной на фиг.1, проводящий слой 12 может покрывать только часть изолирующего слоя 20, соседнего с резервуаром 28 для пробы. Часть изолирующего слоя 20, соседняя со слоем 26, не покрывается. Для специалиста в данной области техники очевидны другие конфигурации электропроводящего слоя 12, 14, 16, 18 и соседнего с ним слоя 20, 22, 24, 26 из электрорезистивного материала.

Другая конфигурация электродов в электрохимической ячейке 50 согласно еще одному предпочтительному варианту реализации изображена на фиг.2. В этой конфигурации все электроды 52, 54, 56, 58 расположены в одной и той же плоскости. На фиг.2 изображен также разделительный слой 60, расположенный над электродом 52 и электродом 54. Когда электрохимическая ячейка 50 используется в сочетании с методом вычитания тока, как описано ниже, может оказаться предпочтительным исключить разделительный слой 60. Когда разделительный слой 60 исключен, диффузия вдоль плоскости к электроду 54 более точно соответствует диффузии вдоль плоскости к электроду 58, приводя в результате к более точному вычитанию тока.

Когда электрохимическая ячейка 50 используется в сочетании с методом усиления тока, как описано ниже, то тогда предпочтительно сохранить разделительный слой над электродом 52 и электродом 54 с тем, чтобы получить меньший объем полости 29 и соответствующий более высокий коэффициент усиления, чем в случае, когда разделительного слоя 60 там не было бы. Один или несколько разделительных слоев (не показаны) поддерживают расстояние между электродами 52, 54, 56, 58 и слоем 64, тем самым обеспечивая в электрохимической ячейке 50 резервуар для пробы. Расстояние между ближайшими кромками электрода 52 и электрода 54 составляет менее 500 мкм, предпочтительно - менее примерно 450, 400, 350, 300 или 250 мкм, более предпочтительно - менее примерно 200, 150 или 100 мкм, а наиболее предпочтительно - менее примерно 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 5 или 1 мкм. Расстояния между ближайшими кромками электрода 52 и электрода 58 и между ближайшими кромками электрода 54 и электрода 58 составляют в типичном случае более примерно 500 мкм, предпочтительно - более примерно 550, 600, 650, 700, 750, 800, 850, 900 или 950 мкм, а наиболее предпочтительно - более 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25 или 50 мм. Однако может подойти любое подходящее расстояние, включая расстояния менее примерно 500 мкм, при условии, что значительное количество продуктов реакции на первом электроде не достигает второго электрода. В этом контексте значительным количеством продуктов реакции является количество, достаточное для создания дополнительной величины тока на втором электроде, которая является достаточно большой и оказывает влияние на практическую полезность способов использования описываемых ячеек для достижения требуемых результатов. В некоторых вариантах реализации может оказаться предпочтительным исключить любые разделительные слои и слой 64, тем самым создавая электрохимическую ячейку, содержащую электроды 52, 54, 56, 58 на одном единственном слое 68 из электрорезистивного материала. Этот вариант реализации может быть предпочтительным в том случае, когда размеры пробы являются достаточными, так что слой 68 и электроды 52, 54, 56, 58 могут быть погружены в пробу, или же достаточный слой пробы может быть нанесен на электроды 52, 54, 56, 58.

Как будет очевидно для специалиста в данной области техники, в различных вариантах реализации могут быть предпочтительными различные конфигурации электродов, поддерживающие соответствующее расстояние между электродами 52, 54, 56, 58. Например, электрохимическая ячейка 50, изображенная на фиг.2, может быть модифицирована посредством размещения одного из или обоих электродов 56 и 58 на слое 64 вместо слоя 68. Альтернативно, один или оба электрода 52 и 54 могут быть размещены на слое 64 или 60 вместо слоя 68. Если только один из электродов 52 и 54 размещен на слое 68, слои 64 и 68 или слои 60 и 68 размещаются достаточно близко, так что расстояние между ближайшими кромками или поверхностями электродов 52 и 54 поддерживается на уровне менее 500 мкм, предпочтительно - менее примерно 450, 400, 350, 300 или 250 мкм, более предпочтительно - менее примерно 200, 150 или 100 мкм, а наиболее предпочтительно - менее примерно 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 5 или 1 мкм. В другом варианте реализации на слое 68 размещается дополнительный слой (не показан), и на этом дополнительном слое могут быть размещены один или оба электрода 52 и электрода 54.

ИЗГОТОВЛЕНИЕ ЭЛЕКТРОХИМИЧЕСКОЙ ЯЧЕЙКИ

Электрохимическая ячейка в некоторых вариантах реализации является одноразовой и предназначена для использования в одном единственном эксперименте. В предпочтительных вариантах реализации электрохимическая ячейка может быть изготовлена с использованием способов, аналогичных тем, которые описаны в патенте США 5942102. В одном предпочтительном варианте реализации способа изготовления электрохимической ячейки 10, показанной на фиг.1, слоями 20, 22, 24 или 26 из электрорезистивного материала являются полиэфирные листы, имеющие напыленное покрытие из палладия в качестве электропроводящего слоя 12, 14, 16 или 18, причем часть, остающаяся открытой после изготовления, образует электроды 32, 34, 36 или 38.

Как будет понятно для специалиста в данной области техники, слои 12, 14, 16, 18 из электропроводящего материала и слои 20, 22, 24, 26 из электрорезистивного материала могут быть выбраны независимо в соответствии с тем, какой материал необходим или желателен, например, для легкости изготовления, для снижения стоимости материалов или для достижения других требуемых свойств ячейки 10 или процесса изготовления. Аналогично, слои 12, 14, 16, 18 из электропроводящего материала могут быть нанесены на слои 20, 22, 24, 26 из электрорезистивного материала в виде любого подходящего рисунка, например, рисунка, который только частично покрывает слой 20, 22, 24 или 26 из электрорезистивного материала.

Поскольку электропроводящие материалы нанесены в виде покрытия на соответствующие электрорезистивные слои 20, 22, 24 или 26 или иным образом прикреплены к ним, то слои 40, 42 с покрытиями затем могут быть прикреплены друг к другу с образованием несущего электроды слоя 48. В электрохимической ячейке по фиг.1 слой 40 с покрытием прикреплен к слою 42 с покрытием, при этом в слое 42 с покрытием проводящий слой 16 располагается рядом с электрорезистивным слоем 26. Слои 44 и 46 с покрытиями прикреплены аналогичным образом, образуя несущий электроды слой 49.

В предпочтительных вариантах реализации различные слои в ячейке могут быть прикреплены друг к другу (склеены) с использованием подходящего клея. Подходящие клеи включают в себя, например, активируемые нагреванием клеи, чувствительные к давлению (самоклеящиеся) клеи, клеи горячего отверждения, клеи химического отверждения, термоплавкие клеи, термически размягчаемые клеи и т.д. Чувствительные к давлению клеи являются предпочтительными для использования в тех конкретных вариантах реализации, где требуется упрощение изготовления. Однако в других вариантах реализации липкость чувствительных к давлению клеев может привести к загрязнению клеем инструмента или липкости продукта. В таких вариантах реализации обычно являются предпочтительными клеи горячего или химического отверждения. Особенно предпочтительными являются активируемые нагреванием клеи и клеи горячего отверждения, которые могут быть удобным образом активированы в соответствующий момент времени.

В некоторых вариантах реализации может оказаться предпочтительным использование термоплавкого клея. Термоплавкий клей представляет собой не содержащий растворителя термопластичный материал, который является твердым при комнатной температуре и наносится в расплавленном виде на поверхность, к которой он приклеивается при охлаждении до температуры ниже его температуры плавления. Имеются термоплавкие клеи с различными химическими составами и с широким диапазоном температур плавления. Термоплавкий клей может быть в форме ленты, нетканого материала, тканого материала, порошка, раствора или любой другой соответствующей формы. Для некоторых конкретных вариантов реализации могут быть предпочтительными полиэфирные термоплавкие клеи. Такие клеи (выпускаемые, например, фирмой Bostic Corp. из г.Миддлтон, шт.Массачусетс, США) представляют собой расплавы линейных насыщенных сложных полиэфиров, имеющих температуры плавления от 65°С до 220°С и по своей природе принадлежащих к диапазону от полностью аморфных до высококристаллических. Также могут быть предпочтительными полиамидные (нейлоновые) термоплавкие клеи, также выпускаемые фирмой Bostic, включая полиамидные клеи как на основе димерной кислоты, так и нейлонового типа. Подходящие химические составы термоплавкого клея включают в себя сополимер этилена и винилацетата (ЭВА), полиэтилен и полипропилен.

Альтернативно, в некоторых других вариантах реализации может быть предпочтительным использование технологий ламинирования для соединения определенных слоев друг с другом. Подходящие технологии ламинирования описаны в одновременно рассматриваемой заявке с порядковым номером 09/694 120, поданной 20 октября 2000 г. и озаглавленной "Laminates of Asymmetrical Membranes" (Слоистые материалы асимметричных мембран). Подлежащие ламинированию слои располагают рядом друг с другом, после чего подводят тепло, и в результате между слоями образуется связь, т.е. слои соединяются друг с другом. Также может быть приложено давление, способствующее образованию такой связи. Методы ламинирования могут быть предпочтительны для связывания любых двух материалов, способных образовывать связь (соединяться) при приложении тепла и/или давления. Ламинирование предпочтительно для образования связи между двумя соответствующими полимерными материалами.

Несущие электроды слои 48 и 49 затем фиксируют в положении, при котором электроды 32 и 34 обращены к электродам 36 и 38. Этого в типичном случае достигают посредством приклеивания одного или нескольких отформованных разделительных слоев (не показаны) между несущими электроды слоями 48 и 49. Разделительный слой выполнен имеющим такую форму, чтобы обеспечить образование резервуаров 28 и 29 для пробы между несущими электроды слоями 48 и 49. Разделительный слой может быть выполнен в форме листа из электрорезистивного материала, причем часть этого листа удалена для образования резервуаров 28 и 29 для пробы, например, круглая часть, расположенная в середине листа, или часть, удаленная по одной кромке листа. Разделительный слой также может включать в себя две или несколько отформованных частей, расположенных рядом друг с другом с полостью между ними, причем эта полость обеспечивает ввод пробы в резервуары 28 и 29 для пробы и образует сами резервуары 28 и 29. Вместо жесткого или гибкого листа из электрорезистивного материала в качестве разделителя может быть предпочтителен слой электрорезистивного клея. В таком варианте реализации клей наносят на электродную сторону несущего электроды слоя 48 или 49, затем другой несущий электроды слой 49 или 48 размещают поверх слоя клея и образуют связь, например, посредством сжатия, отверждения, нагрева или другого подходящего средства.

В предпочтительном варианте реализации разделительный слой представляет собой лист из электрорезистивного материала, имеющий круглое отверстие и прикрепленный посредством клея к несущим электроды слоям 48 и 49. Круглое отверстие, предпочтительно, расположено по центру вдоль кромки электрода 32 рядом с электродом 38 (или кромки электрода 34 рядом с электродом 38). Тем самым образована ячейка 10, имеющая цилиндрическую боковую стенку, закрытую на одном торце несущим электроды слоем 48, а на другом торце несущим электроды слоем 49. В этой сборке выполнен вырез для обеспечения доступа пробы в ячейку 10 или для всасывания посредством затекания или капиллярного действия, а также для обеспечения выхода воздуха. Электродные слои 32, 34, 36, 38 подключены при помощи подходящих электрических соединений или образований, посредством чего могут быть приложены потенциалы и измерены токи.

В другом предпочтительном варианте реализации разделитель образован посредством нанесения рисунка из клея на один или оба несущих электроды слоя 48, 49. Этот способ может быть предпочтительным там, где требуется простота изготовления и снижение стоимости материалов.

Подходящие электрорезистивные материалы, которые могут быть предпочтительными в качестве разделительных слоев, в качестве опор для электродных слоев или в других слоях в данной ячейке, включают в себя такие материалы, как сложные полиэфиры, полистиролы, поликарбонаты, полиолефины, полиэтилентерефталат, стекла, керамику, их смеси и/или их комбинации и т.д. Примеры электрорезистивных клеев, пригодных для использования в качестве разделительных слоев, включают в себя, но не ограничиваются ими, полиакрилаты, полиметакрилаты, полиуретаны и сульфированные сложные полиэфиры.

В тех вариантах реализации, в которых разделитель представляет собой лист из электрорезистивного материала, часть которого удалена для образования резервуаров 28 и 29 для пробы, один несущий электроды слой 48 или 49 расположен на одной стороне этого листа, проходит над отверстием и образует торцевую стенку. Несущий электроды слой 48 или 49 может быть прикреплен к листу разделителя, например, при помощи клея. Многочисленные листы разделителя могут быть прикреплены друг к другу так, чтобы образовать разделитель, который соответствует ступенчатым поверхностям несущих электроды слоев 48 и 49. В качестве разделителя также может быть предпочтительным деформируемый клей, причем этот клей соответствует контурам несущих электроды слоев 48 и 49. В предпочтительном варианте реализации итоговая форма объединенных резервуаров 28 и 29 для пробы является круглой, однако для некоторых вариантов реализации могут быть предпочтительны и другие формы, например, квадратная, прямоугольная, многоугольная, овальная, эллиптическая, неправильная или другие.

Затем второй несущий электроды слой 49 или 48 устанавливается на противоположной стороне разделителя, также проходит над отверстием и образует вторую торцевую стенку. Электроды 32 и 34 в