Эластомерная композиция

Иллюстрации

Показать все

Изобретение относится к эластомерной композиции, обладающей низкой проницаемостью. Композиция используется для изготовления пневматической диафрагмы, такой как внутренняя оболочка шины. Композиция включает эластомер, наполнитель, расслоенную глину, полибутеновый мягчитель со среднечисленной молекулярной массой 400-10000 и вулканизующее вещество. Эластомер может быть статистической сополимером, включающим звено, дериватизированное из изомоноолефина с C4 по C7. Эластомер может быть выбран из галогенированного изобутилен/п-метилстирольного сополимера, галогенированного звездообразного бутилкаучука, галогенированного бутилкаучука и их смесей. Композиция в целом образует нанокомпозит. Перед смешением с сополимером глину можно подвергать или не подвергать дополнительной расслаивающей обработке. Композиция по изобретению обладает улучшенными свойствами пневматической диафрагмы и технологическими свойствами и приемлема для применения в качестве пневматической диафрагмы. 3 н. и 10 з.п. ф-лы, 19 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к обладающей низкой проницаемостью эластомерной композиции, которая может включать наноглину, а более конкретно к композиции сополимера на изобутиленовой основе с наполнителем, таким как углеродная сажа и глина, и с полибутеновым мягчителем для изготовления пневматической диафрагмы, такой как внутренняя оболочка шины.

Предпосылки создания изобретения

Бромбутильные и хлорбутилкаучуки представляют собой полимеры, которые выбирают для удерживания воздуха в бескамерных шинах. Аналогичным образом бромированный изобутилен/п-метилстирольный сополимер (БИМС), такой как описанные в US 5162445 и 5698640, как правило используют, когда большое значение имеет стойкость против теплового старения или другое важное свойство. Выбор компонентов в случаях технических композиций эластомеров зависит от баланса необходимых свойств и конечной цели применения. Так, например, в шинной промышленности необходимо сбалансировать все такие важные аспекты, как технологические свойства резиновой смеси до обработки (невулканизованной) в сравнении с эксплуатационными характеристиками вулканизованного резинового композита шины, и природу шины, т.е. диагональное в отличие от радиального расположение нитей корда в каркасе шины, а также с учетом назначения для легковых автомобилей в отличие от грузового транспорта и в отличие от самолетов.

Один метод изменения свойств продукта и улучшения свойств пневматической диафрагмы состоит в добавлении глины в эластомеры с получением "нанокомпозита". Нанокомпозиты представляют собой полимерные системы, содержащие неорганические частицы с по меньшей мере одним размером в нанометрическом диапазоне. Некоторые их примеры описаны в US 6060549, 6103817, 6034164, 5973053, 5936023, 5883173, 5807629, 5665183, 5576373 и 5576372. Неорганическими частицами обычного типа, используемыми в нанокомпозитах, являются филлосиликаты, неорганические вещества из общего класса так называемых "наноглин" или "глин". В идеальном варианте должна происходить интеркаляция в нанокомпозит, в процессе которой в пространство или галерею между поверхностями частиц глины внедряется полимер. В конечном счете необходимо достижение почти полного расслаивания, при котором полимер полностью диспергируется с индивидуальными пластиночками глины нанометрического размера. Благодаря общему улучшению качеств пневматической диафрагмы из различных полимерных композиций, когда в них присутствуют глины, существует необходимость иметь нанокомпозит с низкой воздухопроницаемостью.

Нанокомпозиты готовят с применением бромированных сополимеров изобутилена и п-метилстирола (см., например, Elspass и др., US 5807629, 5883173 и 6034164). Еще большее улучшение свойств этих эластомерных композиций в невулканизованном и вулканизованном состояниях может быть достигнуто применением веществ для улучшения технологических свойств. Для улучшения перерабатываемости эластомерных смесей можно использовать смолы и масла (или "вещества для улучшения технологических свойств"), такие как нафтеновые, парафиновые и алифатические смолы. Однако повышения перерабатываемости в присутствии масел и смол достигают ценой потери воздухонепроницаемости, не считая других нежелательных влияний на различные прочие свойства.

В патенте US 4279284, выданном на имя Spadone, патенте US 5964969, выданном на имя Sandstrom и др., и европейской заявке 0314416, поданной Mohammed, уже описаны полибутеновые мягчители и мягчители парафинового типа. Мягчитель парафинового типа описан в патенте US 5631316, выданном на имя Costemalle и др. Кроме того, в заявке WO 94/01295, поданной Gursky и др., описано применение нефтяных парафинов и нафтеновых масел и смол в каучуковой композиции для боковин шин, а в заявке на патент US серийный номер 09/691764, поданной 18 октября 2000 г. (правопреемником которой является обладатель прав на настоящее изобретение) Waddell и др., описаны способные окрашиваться каучуковые композиции. Другие публикации с описанием содержащих мягчители или смолы эластомерных или клеевых композиций включают US 5005625, 5013793, 5162409, 5178702, 5234987, 5234987, 5242727, 5397832, 5733621, 5755899, ЕР 0682071 A1, EP 0376558 В1, WO 92/16587, JP 11005874, JP 05179068 A и JO 3028244. Ни в одном из этих описаний не предлагается путь решения проблемы улучшения перерабатываемости эластомерных композиций, которые могут быть использованы для изготовления шин, пневматических диафрагм и т.д., при одновременном сохранении или улучшении воздухонепроницаемости этих композиций.

Таким образом, все еще существует проблема приготовления нанокомпозита, приемлемого для изготовления пневматической диафрагмы, в частности пневматической диафрагмы, материал которой включает сополимер (или "тройной сополимер") изомоноолефина с С4 по С7, п-метилстирола и п-галометилстирола и/или галогенированный разветвленный бутилкаучук. Несмотря на улучшение барьерных свойств эластомерных композиций, приготовление нанокомпозита связано с тенденциями ухудшения перерабатываемости.

Кроме того, сохраняется проблема введения натурального каучука в смеси с этими сополимерами, поскольку при добавлении натурального каучука утрачиваются некоторые необходимые свойства. Что требуется, так это эластомерная композиция и нанокомпозитная композиция, которая сохраняет целевые качества пневматической диафрагмы, но обладает улучшенной перерабатываемостью, которые могут обеспечить мягчители и смолы, даже в присутствии натуральных каучуковых смесей.

Краткое изложение сущности изобретения

Варианты выполнения настоящего изобретения включают эластомерную композицию, включающую по меньшей мере один статистический сополимер, содержащий звено, дериватизированное из изомоноолефина с С4 по С7, по меньшей мере один наполнитель и полибутеновое масло, обладающее среднечисленной молекулярной массой больше 400 и вязкостью при 100°С больше 35 сСт. Сополимер выбирают из изобутилен/п-метилстирольного сополимера, галогенированного изобутилен/п-метилстирольного сополимера, галогенированного звездообразного бутилкаучука, галогенированного бутилкаучука и их смесей. Композиция может также включать термопластичную смолу, наполнитель и/или расслаивающуюся глину. Приемлемые термопластичные смолы включают полиолефины, найлоны и другие полимеры. Наполнитель выбирают из карбоната кальция, глины, слюды, диоксида кремния и силикатов, талька, диоксида титана, крахмала и других органических наполнителей, таких как древесная мука, углеродная сажа и их смеси. Расслоенную глину выбирают из расслоенного природного или синтетического монтмориллонита, нонтронита, бейделлита, волконскоита, лапонита, гекторита, сапонита, соконита, магадита, кенияита, стевенсита, вермикулита, галлуазита, алюминатоксидов, гидроталькита и их смесей. Эти композиции можно использовать при изготовлении пневматических диафрагм, таких как, например, внутренние оболочки для шин.

Подробное описание изобретения

Аббревиатурой "част./100" обозначают количество частей на сто частей каучука, она представляет собой меру, общепринятую в данной области техники, в которой содержание компонентов композиции выражают относительно основного эластомерного компонента, т.е. в пересчете на 100 мас.част. эластомера или эластомеров.

В приведенной в настоящем описании ссылке на "группы" Периодической таблицы элементов использована новая схема нумерации для групп Периодической таблицы элементов, которая представлена в Hawley's Condensed Chemical Dictionary 852 (издание 13-е, 1997).

Встречающееся в настоящем описании понятие "эластомер" относится к любому полимеру или композиции полимеров, соответствующей определению по стандарту ASTM D1566. Понятия "эластомер" и "каучук", которые использованы в настоящем описании, можно применять как взаимозаменяемые.

Эластомер

Композиции по настоящему изобретению включают по меньшей мере один эластомер. В одном варианте выполнения изобретения эластомер представляет собой гомополимер или сополимер на изобутиленовой основе. Эти полимеры могут быть описаны как статистические сополимеры из звена, дериватизированного из изомоноолефина с С4 по С7, такого как звено, дериватизированное из изобутилена, и по меньшей мере одного из других полимеризующихся мономеров. Сополимер на изобутиленовой основе может быть галогенированным или негалогенированным.

В одном варианте выполнения изобретения эластомер на изобутиленовой основе представляет собой каучук бутильного типа или разветвленный каучук бутильного типа, преимущественно галогенированные варианты этих эластомеров. Приемлемыми эластомерами являются ненасыщенные бутилкаучуки, такие как гомополимеры и сополимеры олефинов или изоолефинов и мультиолефинов или гомополимеры мультиолефинов. Эластомеры этих и других типов, приемлемые для выполнения изобретения, хорошо известны и описаны в работах Rubber Thechnology 209-581 (под ред. Maurice Morton, Chapman & Hall, 1995), The Vanderbilt Rubber Handbook 105-122 (Robert F. Ohm ed., фирма R.T.Vanderbilt Co., Inc. 1990) и Edward Kresge и Н.С.Wang в 8 Kirk-Othmer Encyclopedia of Chemical Thechnology 934-955 (John Wiley & Sons, Inc. издание 4-е, 1993). Неограничивающими примерами ненасыщенных эластомеров, которые могут быть использованы в способе и композиции по настоящему изобретению, являются изобутилен-изопреновый сополимер, полиизопрен, полибутадиен, полиизобутилен, бутадиен-стирольный сополимер, натуральный каучук, звездообразный бутилкаучук и их смеси. Приемлемые для выполнения настоящего изобретения эластомеры могут быть получены любым приемлемым путем, известным в данной области техники, и объем изобретения каким-либо конкретным методом получения эластомера, представленным в настоящем описании, не ограничен.

Бутилкаучуки получают реакцией в смеси мономеров, причем эта смесь включает по меньшей мере (1) изоолефиновый с С4 по С12 мономерный компонент, такой как изобутилен, и (2) мультиолефиновый мономерный компонент. Изоолефин составляет от 70 до 99,5 мас.% от общей массы смеси сомономеров в одном варианте и от 85 до 99,5 мас.% в другом варианте. Мультиолефиновый компонент содержится в мономерной смеси в количестве от 30 до 0,5 мас.% в одном варианте и от 15 до 0,5 мас.% в другом варианте. И, тем не менее, в еще одном варианте от 8 до 0,5 мас.% сомономерной смеси приходятся на долю мультиолефина.

Изоолефин представляет собой соединение с С4 по С12, неограничивающими примерами которого являются такие соединения, как изобутилен, изобутен, 2-метил-1-бутен, 3-метил-1-бутен, 2-метил-2-бутен, 1-бутен, 2-бутен, метилвиниловый эфир, инден, винилтриметилсилан, гексен и 4-метил-1-пентен. Мультиолефин представляет собой полиненасыщенный олефин с С4 по C14, такой как изопрен, бутадиен, 2,3-диметил-1,3-бутадиен, мирцен, 6,6-диметилфульвен, гексадиен, циклопентадиен и пиперилен, а также другие мономеры, такие как описанные в ЕР 0279456 и US 5506316 и 5162425. Для гомополимеризации или сополимеризации с получением бутилкаучуков приемлемы также другие полимеризующиеся мономеры, такие как стирол и дихлорстирол. Один вариант бутилкаучукового полимера по изобретению получают реакцией от 95 до 99,5 мас.% изобутилена и от 0,5 до 8 мас.% изопрена или, тем не менее, в другом варианте от 0,5 до 5,0 мас.% изопрена. Бутилкаучуки и способы их получения подробно описаны, например, в US 2356128, 3968076, 4474924, 4068051 и 5532312.

Промышленными примерами целесообразных бутилкаучуков являются изобутилен-изопреновые сополимеры EXXON бутильных сортов, обладающие вязкостью по вискозиметру Муни от 32±2 до 51±5 (ML 1+8 при 125°С). Другой промышленный пример целесообразного каучука бутильного типа представляет собой полиизобутиленовый каучук VISTANEX, обладающий средневязкостной молекулярной массой от 0,9±0,15 до 2,11±0,23×106.

Другой вариант бутилкаучука, который может быть использован при выполнении изобретения, представляет собой разветвленный или "звездообразный" бутилкаучук. Эти каучуки описаны, например, в ЕР 0678529 B1, US 5182333 и 5071913. В одном варианте звездообразный бутилкаучук ("ЗОБ") представляет собой композицию бутилкаучука (либо галогенированного, либо негалогенированного) и полидиена или блок-сополимера (либо галогенированного, либо негалогенированного). Объем изобретения конкретным методом получения ЗОБ не ограничивается. Полидиены/блок-сополимер или агенты образования ответвлений (ниже в настоящем описании "полидиены") как правило катионно реакционноспособны и присутствуют во время полимеризации при получении бутил- или галогенированного бутилкаучука или могут быть смешаны с бутилкаучуком с получением ЗОБ. В качестве агента образования ответвлений или полидиена может быть использован любой приемлемый агент образования ответвлений, и конкретным типом полидиена, используемого для получения ЗОБ, объем изобретения не ограничен.

В одном варианте ЗОБ как правило является композицией бутильного или галогенированного бутилкаучука, как это представлено выше, и сополимера полидиена и частично гидрированного полидиена, выбранного из группы, включающей стирол, полибутадиен, полиизопрен, полипиперилен, натуральный каучук, бутадиен-стирольный каучук, этилен-пропилен-диеновый каучук (тЭПД), этилен-пропиленовый каучук (СЭП), стирол-бутадиен-стирольный и стирол-изопрен-стирольный блок-сополимеры. Эти полидиены присутствуют в пересчете на массовое процентное содержание мономера в количестве больше 0,3 мас.% в одном варианте, от 0,3 до 3 мас.% в другом варианте и, тем не менее, в еще одном варианте от 0,4 до 2,7 мас.%.

Промышленным вариантом ЗОБ по настоящему изобретению является продукт SB Butyl 4266 (фирма ExxonMobil Chemical Company, Хьюстон, шт. Техас), обладающий вязкостью по вискозиметру Муни (ML 1+8 при 125°С, по стандарту ASTM D1646) от 34 до 44. Более того, продукт SB Butyl 4266 обладает следующими вулканизационными характеристиками: МН составляет 69±6 дН·м, a ML составляет 11,5±4,5 дН·м (стандарт ASTM D2084).

В целесообразном варианте сополимера на изобутиленовой основе этот каучук на изобутиленовой основе, который может быть использован при выполнении изобретения, может быть также галогенированным. Галогенированный бутилкаучук получают галогенированием бутилкаучукового продукта, описанного выше. Галогенирование можно проводить любым путем, и при этом объем изобретения каким-либо конкретным методом галогенирования не ограничен. Методы галогенирования полимеров, таких как бутильные полимеры, описаны в US 2631984, 3099644, 4554326, 4681921, 4650831, 4384072, 4513116 и 5681901. В одном варианте бутилкаучук галогенируют в гексановом разбавителе при температуре от 4 до 60°С с использованием в качестве галогенирующего агента брома (Br2) или хлора (Cl2). Такой галогенированный бутилкаучук обладает вязкостью по вискозиметру Муни от 20 до 70 (ML 1+8 при 125°С) в одном варианте и от 25 до 55 в другом варианте. Массовое процентное содержание галогена составляет от 0,1 до 10 мас.% в пересчете на массу галогенированного бутилкаучука в одном варианте и от 0,5 до 5 мас.% в другом варианте. И, тем не менее, в еще одном варианте массовое процентное содержание галогена в галогенированном бутилкаучуке составляет от 1 до 2,5 мас.%.

Промышленным вариантом галогенированного бутилкаучука по настоящему изобретению является продукт Bromobutyl 2222 (фирма ExxonMobil Chemical Company). Его вязкость по вискозиметру Муни составляет от 27 до 37 (ML 1+8 при 125°С, стандарт ASTM 1646, модифицированный метод), а содержание брома составляет от 1,8 до 2,2 мас.% в пересчете на продукт Bromobutyl 2222. Далее, продукт Bromobutyl 2222 обладает следующими вулканизационными характеристиками: МН составляет от 28 до 40 дН·м, ML составляет от 7 до 18 дН·м (по стандарту ASTM D2084). Другой промышленный вариант галогенированного бутилкаучука представляет собой Bromobutyl 2255 (ExxonMobil Chemical Company). Его вязкость по вискозиметру Муни составляет от 41 до 51 (ML 1+8 при 125°С, по стандарту ASTM D1646), а содержание брома равно от 1,8 до 2,2 мас.%. Более того, продукт Bromobutyl 2255 обладает следующими вулканизационными характеристиками: МН составляет от 34 до 48 дН·м, ML составляет от 11 до 21 дН·м (по стандарту ASTM D2084).

В качестве другого варианта бромированного каучукового компонента по изобретению используют разветвленный или "звездообразный" галогенированный бутилкаучук. В одном варианте этот галогенированный звездообразный бутилкаучук ("ГЗОБ") представляет собой композицию бутилкаучука (либо галогенированного, либо негалогенированного) и полидиена или блок-сополимера (либо галогенированного, либо негалогенированного). Способы галогенирования подробно изложены в US 4074035, 5071913, 5286804, 5182333 и 6228978. Объем изобретения каким-либо конкретным методом получения ГЗОБ не ограничен. Для получения ГЗОБ во время полимеризации с образованием бутильного или галогенированного бутилкаучука можно добавлять или можно смешивать с бутильным или галогенированным бутилкаучуком полидиены/блок-сополимеры или агенты образования ответвлений (ниже в настоящем описании "полидиены"), которые как правило катионно реакционноспособны. В качестве агента образования ответвлений или полидиена может быть использован любой приемлемый агент образования ответвлений, и конкретным типом полидиена, используемого для получения ГЗОБ, объем изобретения не ограничен.

В одном варианте ГЗОБ как правило представляет собой композицию бутильного или галогенированного бутилкаучука, как это представлено выше, и сополимера полидиена и частично гидрированного полидиена, выбранного из группы, включающей стирол, полибутадиен, полиизопрен, полипиперилен, натуральный каучук, бутадиен-стирольный каучук, этилен-пропилен-диеновый каучук, стирол-бутадиен-стирольный и стирол-изопрен-стирольный блок-сополимеры. Эти полидиены содержатся в пересчете на массовое процентное количество мономера в количестве больше 0,3 мас.% в одном варианте, от 0,3 до 3 мас.% в другом варианте и, тем не менее, в еще одном варианте от 0,4 до 2,7 мас.%.

Промышленным вариантом ГЗОБ по настоящему изобретению является Bromobutyl 6222 (фирма ExxonMobil Chemical Company), обладающий вязкостью по вискозиметру Муни (ML 1+8 при 125°С, по стандарту ASTM D1646) от 27 до 37 и содержанием брома от 2,2 до 2,6 мас.% в пересчете на ГЗОБ. Более того, продукт Bromobutyl 6222 обладает следующими вулканизационными характеристиками: МН составляет от 24 до 38 дН·м, ML составляет от 6 до 16 дН·м (стандарт ASTM D2084).

Другой вариант эластомера на изобутиленовой основе, который может быть использован при выполнении изобретения, представляет собой изоолефиновый сополимер, включающий звено, дериватизированное из галометилстирола. В одном варианте выполнения изобретения этим эластомером является статистический сополимер, включающий по меньшей мере звенья, дериватизированные из изоолефина с С4 по С7, такие как звенья, дериватизированные из изобутилена, и звенья, дериватизированные из галометилстирола. Галометилстирольное звено может быть орто-, мета- или пара-алкилзамещенным стирольным звеном. В одном варианте дериватизированное из галометилстирола звено представляет собой п-галометилстирол, содержащий по меньшей мере 80%, более предпочтительно по меньшей мере 90 мас.%, пара-изомера. В качестве "галогруппы" может содержаться атом любого галогена, целесообразно атом хлора или брома. Галогенированный эластомер может также включать функционализованные сополимеры, в которых по меньшей мере некоторые алкильные замещающие группы, имеющиеся в стирольных мономерных звеньях, содержат бензильный атом галогена или какую-либо другую функциональную группу, дополнительно описанную ниже. Эти сополимеры в настоящем описании названы "изоолефиновыми сополимерами, включающими звено, дериватизированное из галометилстирола" или просто "изоолефиновыми сополимерами".

Другой вариант эластомера на изобутиленовой основе, который может быть использован при выполнении изобретения, представляет собой изоолефиновый сополимер, включающий звено, дериватизированное из галометилстирола. В одном варианте эластомер по изобретению представляет собой статистический сополимер, включающий по меньшей мере звенья, дериватизированные из изоолефина с С4 по С7, такие как звенья, дериватизированные из изобутилена, и звенья, дериватизированные из галометилстирола. Галометилстирольное звено может быть орто-, мета- или пара-алкилзамещенным стирольным звеном. В одном варианте дериватизированное из галометилстирола звено представляет собой п-галометилстирол, содержащий по меньшей мере 80%, более предпочтительно по меньшей мере 90 мас.%, пара-изомера. В качестве "галогруппы" может содержаться атом любого галогена, целесообразно атом хлора или брома. Галогенированный эластомер может также включать функционализованные сополимеры, у которых по меньшей мере некоторые алкильные замещающие группы, имеющиеся в стирольных мономерных звеньях, содержат бензильный атом галогена или какую-либо другую функциональную группу, дополнительно описанную ниже. В настоящем описании эти сополимеры получили название "изоолефиновых сополимеров, включающих звено, дериватизированное из галометилстирола" или просто "изоолефиновых сополимеров".

Изоолефиновый сополимер может также включать звенья, дериватизированные из других мономеров. Изоолефин сополимера может представлять собой соединение с С4 по С12, неограничивающими примерами которого являются такие соединения, как изобутилен, изобутен, 2-метил-1-бутен, 3-метил-1-бутен, 2-метил-2-бутен, 1-бутен, 2-бутен, метилвиниловый эфир, инден, винилтриметилсилан, гексен и 4-метил-1-пентен. Такой сополимер может также дополнительно включать звенья, дериватизированные из мультиолефина. Мультиолефин представляет собой полиненасыщенный олефин с С4 по C14, такой как изопрен, бутадиен, 2,3-диметил-1,3-бутадиен, мирцен, 6,6-диметилфульвен, гексадиен, циклопентадиен и пиперилен, а также другие мономеры, такие как описанные в ЕР 0279456 и US 5506316 и 5162425. Целесообразные звенья, дериватизированные из стирольных мономеров, которые могут содержаться в сополимере, включают стирол, метилстирол, хлорстирол, метоксистирол, инден, инденовые производные и их сочетания.

В другом варианте выполнения изобретения сополимеры представляют собой статистические эластомерные сополимеры из звена, дериватизированного из этилена, или звена, дериватизированного из α-олефина с С3 по С6, и звена, дериватизированного из галометилстирола, предпочтительно п-галометилстирола, содержащего по меньшей мере 80%, более предпочтительно по меньшей мере 90 мас.%, пара-изомера, а также включают функционализованные сополимеры, у которых по меньшей мере некоторые алкильные замещающие группы, находящиеся в стирольных мономерных звеньях, содержат бензильный атом галогена или какую-либо другую функциональную группу.

Предпочтительные изоолефиновые сополимеры могут быть охарактеризованы как сополимеры, включающие мономерные звенья, статистически размещенные вдоль полимерной цепи, следующих формул:

в которых каждый из R и R1 независимо обозначает водородный атом, низший алкил, предпочтительно алкил с C1 по С7, или первичный или вторичный алкилгалогенид, а Х обозначает функциональную группу, такую как атом галогена. Целесообразными атомами галогена являются атомы хлора, брома или их сочетания. В предпочтительном варианте каждый из R и R1 обозначает водородный атом. Группы -CRR1H и -CRR1X могут быть заместителями в стирольном кольце либо в орто-, либо в мета-, либо в пара-положении, предпочтительно в пара-положении. Вплоть до 60 мольных % п-замещенных стирольных звеньев, входящих в сополимерную структуру, могут обладать вышеприведенным функционализованным строением (2) в одном варианте и от 0,1 до 5 мольных % - в другом варианте. И, тем не менее, в еще одном варианте содержание функционализованной структуры (2) составляет от 0,4 до 1 мольного %.

Функциональная группа Х может представлять собой атом галогена или какую-либо другую функциональную группу, которую можно внедрять нуклеофильным замещением бензильного атома галогена другими группами, такими как остатки карбоновых кислот, солей карбоновых кислот, эфиров карбоновых кислот, амидов и имидов, гидроксильная, алкоксидная, феноксидная, тиолатная, тиоэфирная, ксантогенатная, цианидная, цианатная, аминогруппа и их смеси. Эти функционализованные изомоноолефиновые сополимеры, способ их получения, способы функционализации и вулканизации более конкретно описаны в US 5162445.

Наиболее широкое применение из таких функционализованных материалов находят эластомерные статистические сополимеры изобутилена и п-метилстирола, включающие от 0,5 до 20 мольных % звеньев п-метил стирола, в которых до 60 мольных % метильных замещающих групп, находящихся в бензильном кольце, содержат атом брома или хлора, предпочтительно атом брома (п-бромметилстирол), а также их варианты, функционализованные остатками кислот или эфиров, в которых атом галогена замещен остатком малеинового ангидрида или акриловой или метакриловой кислоты. Эти сополимеры называют "галогенированными изобутилен/п-метилстирольными сополимерами" или "бромированными изобутилен/п-метилстирольными сополимерами", которые технически доступны под названием эластомеров EXXPRO (фирма ExxonMobil Chemical Company, Хьюстон, шт.Техас). Вполне очевидно, что использование понятий "галогенированный" или "бромированный" не ограничивается методом галогенирования сополимера, они служат просто для описания сополимера, который включает звенья, дериватизированные из изобутилена, звенья, дериватизированные из п-метилстирола, и звенья, дериватизированные из п-галометилстирола.

В предпочтительном варианте эти функционализованные полимеры обладают по существу гомогенным композиционным распределением, вследствие чего содержание п-алкилстирольных звеньев в по меньшей мере 95 мас.% полимера находится в 10%-ном диапазоне относительно среднего содержания п-алкилстирольных звеньев в полимере. Более предпочтительные полимеры характеризуются также узким молекулярно-массовым распределением (Mw/Mn), составляющим меньше 5, более предпочтительно меньше 2,5, предпочтительной средневязкостной молекулярной массой в интервале от 200000 до 2000000 и предпочтительной среднечисленной молекулярной массой в интервале от 25000 до 750000, как это определяют гельпроникающей хроматографией.

Такие сополимеры могут быть получены суспензионной полимеризацией мономерной смеси с использованием кислоты Льюиса в качестве катализатора, последующим галогенированием, предпочтительно бромированием, в растворе в присутствии галогена и инициатора свободно-радикальной полимеризации, такого как тепло и/или свет, и/или химический инициатор, и необязательным последующим электрофильным замещением атома брома другим функциональным дериватизированным звеном.

Предпочтительными галогенированными изобутилен/п-метилстирольными сополимерами являются бромированные полимеры, которые обычно содержат от 0,1 до 5 мас.% бромметильных групп. И, тем не менее, в еще одном варианте количество бромметильных групп составляет от 0,2 до 2,5 мас.%. Если выразиться по-другому, предпочтительные сополимеры содержат от 0,05 до 2,5 мольных % атомов брома в пересчете на массу полимера, более предпочтительно от 0,1 до 1,25 мольных % атомов брома, и практически свободны от кольцевых атомов галогена или атомов галогена в главной полимерной цепи. В одном варианте выполнения изобретения сополимер представляет собой сополимер из звеньев, дериватизированных из изомоноолефина с С4 по С7, звеньев, дериватизированных из п-метилстирола, и звеньев, дериватизированных из п-галометилстирола, причем п-галометилстирольные звенья находятся в сополимере в количестве от 0,4 до 1 мольного % в пересчете на сополимер. В другом варианте этот п-галометилстирол представляет собой п-бромметилстирол. Вязкость по вискозиметру Муни (1+8, 125°С, стандарт ASTM D1646, модифицированный метод) составляет от 30 до 60 ед. измерения.

Эластомерный компонент, содержащийся в композициях по изобретению, может включать различные количества одного, двух или большего числа разных эластомеров. Так, например, варианты композиций по изобретению могут содержать от 5 до 100 част./100 галогенированного бутилкаучука, от 5 до 95 част./100 звездообразного бутилкаучука, от 5 до 95 част./100 галогенированного звездообразного бутилкаучука или от 5 до 95 част./100 галогенированного изобутилен/п-метилстирольного сополимера. В другом варианте композиции содержат от 40 до 100 част./100 галогенированного изобутилен/п-метилстирольного сополимера и/или от 40 до 100 част./100 галогенированного звездообразного бутилкаучука (ГЗОБ). Эластомерные композиции по изобретению могут содержать другие эластомеры или так называемые "вспомогательные" эластомерные компоненты.

Вспомогательный эластомерный компонент

В композициях по настоящему изобретению может содержаться вспомогательный эластомерный компонент. Такие каучуки включают, хотя ими их список не ограничен, натуральные каучуки, полиизопреновый каучук, бутадиен-стирольный каучук (БСК), полибутадиеновый каучук, изопрен-бутадиеновый каучук (ИБК), стирол-изопрен-бутадиеновый каучук (СИБК), этилен-пропиленовый каучук, этилен-пропилен-диеновый каучук (тЭПД), полисульфид, бутадиен-нитрильный каучук, пропиленоксидные полимеры, звездообразный бутилкаучук и галогенированный звездообразный бутилкаучук, бромированный бутилкаучук, хлорированный бутилкаучук, звездообразный полиизобутиленовый каучук, звездообразный бромированный бутилкаучук (полиизобутилен-изопреновый сополимер), изобутилен-метилстирольные сополимеры, такие как изобутилен/мета-бромметилстирольные, изобутилен-бромметилстирольные, изобутилен-хлорметилстирольные, галогенированные изобутилен-циклопентадиеновые, изобутилен-хлорметилстирольные и их смеси.

В композиции и пневматической диафрагме по изобретению может также содержаться вспомогательный каучуковый компонент. Вариантом содержащегося вспомогательного каучукового компонента является натуральный каучук. Подробно натуральные каучуки описаны Subramaniam в Rubber Technology 179-208 (1995). Необходимые для выполнения настоящего изобретения варианты натуральных каучуков выбирают из малайзийских каучуков, таких как SMR CV, SMR 5, SMR 10, SMR 20, SMR 50 и их смеси, причем вязкость по вискозиметру Муни этих натуральных каучуков при 100°С (ML 1+4) составляет от 30 до 120, более предпочтительно от 40 до 65. Испытание на вязкость по вискозиметру Муни, о котором идет речь в настоящем описании, проводят в соответствии со стандартом ASTM D-1646.

Некоторыми примерами промышленных синтетических вспомогательных каучуков, которые могут быть использованы при выполнении настоящего изобретения, являются продукты NATSYN (фирма Goodyear Chemical Company) и BUDENE 1207 или BR 1207 (фирма Goodyear Chemical Company). Целесообразным каучуком является полибутадиен с высоким содержанием цис-звеньев (цис-БК). Понятие "цис-полибутадиен" или "полибутадиен с высоким содержанием цис-звеньев" означает, что используют 1,4-цис-полибутадиен, где количество цис-компонента составляет по меньшей мере 95%. Примером полибутадиеновых промышленных продуктов с высоким содержанием цис-звеньев, используемых в предлагаемой композиции, является продукт BUDENE 1207. Приемлемый этилен-пропиленовый каучук технически доступен как продукт VISTALON (фирма ExxonMobil Chemical Company).

В одном варианте выполнения изобретения в качестве вспомогательного каучука содержится так называемый полукристаллический сополимер (ПКС). Полукристаллические сополимеры описаны в заявке на патент US серийный номер 09/569363, поданной 11 мая 2000 г. (правопреемником которой является правообладатель настоящего изобретения). Обычно ПКС представляет собой сополимер из звеньев, дериватизированных из этилена или пропилена, и звеньев, дериватизированных из α-олефина, причем этот α-олефин содержит от 4 до 16 углеродных атомов в одном варианте, а в другом варианте ПКС представляет собой сополимер из звеньев, дериватизированных из этилена, и звеньев, дериватизированных из α-олефина, причем этот α-олефин содержит от 4 до 10 углеродных атомов, где такой ПКС обладает некоторой степенью кристалличности. В еще одном варианте ПКС представляет собой сополимер из звеньев, дериватизированных из 1-бутена, и звена, дериватизированного из другого α-олефина, причем этот другой α-олефин содержит от 5 до 16 углеродных атомов, где такой ПКС также обладает некоторой степенью кристалличности. ПКС может также служить сополимер этилена и стирола.

Вспомогательный каучуковый компонент эластомерной композиции может содержаться в интервале до 50 част./100 в одном варианте, до 40 част./100 в другом варианте и, тем не менее, до 30 част./100 в еще одном варианте.

Термопластичная смола

Композиции по изобретению могут включать необязательную термопластичную смолу. Термопластичные смолы, приемлемые для выполнения настоящего изобретения, можно использовать самостоятельно или в сочетаниях, они представляют собой смолы, содержащие атомы азота, кислорода, галогена, серы или другие группы, способные взаимодействовать с ароматическими функциональными группами, такие как атомы галогена и кислотные группы. Смолы содержатся в нанокомпозите в количестве от 30 до 90 мас.% от нанокомпозита в одном варианте, от 40 до 80 мас.% в другом варианте и, тем не менее, от 50 до 70 мас.% в еще одном варианте. Однако в другом варианте смола содержится в количестве больше 40 мас.% от нанокомпозита и больше 60 мас.% в еще одном варианте.

Приемлемые термопластичные смолы включают смолы, выбранные из группы, включающей полиамиды, полиимиды, поликарбонаты, сложные полиэфиры, полисульфоны, полилактоны, полиацетали, акрилонитрил-бутадиен-стирольные смолы (АБС), полифениленоксид (ПФО), полифениленсульфид (ПФС), полистирол, стирол-акрилонитрильные смолы (САН), смолы из сополимеры стирола/малеинового ангидрида (СМА), ароматические поликетоны (PEEK, PED и РЕКК) и их смеси.

К приемлемым термопластичным полиамидам (найлонам) относятся кристаллические или смолистые высокомолекулярные твердые полимеры, включая сополимеры и тройные сополимеры, содержащие в полимерной цепи повторяющиеся амидные звенья. Полиамиды могут быть получены полимеризацией одного или нескольких эпсилон-лактамов, таких как капролактам, пирролидион, лауриллактам и аминоундекановый пактам, или аминокислоты, или поликонденсацией двухосновных кислот и диаминов. Пригодны найлоны как волокнообразующих, так и формовочных сортов. Примерами таких полиамидов являются поликапролактам (найлон-6), полилауриллактам (найлон-12), полигексаметиленадипамид (найлон-6,6), полигексаметиленазеламид (найлон-6,9), полигексаметиленсебацамид (найлон-6,10), полигексаметиленизофталамид (найлон-6, ИФ) и продукт поликонденсации 11-аминоундекановой кислоты (найлон-11). Дополнительные примеры приемлемых полиамидов (преимущественно тех, температура размягчения которых составляет меньше 275°С) представлены в томе 16 Encyclopedia of Chemical Technology 1-105 (John Wiley & Sons, 1968), Concise Encyclopedia of Polymer Science and Engineering 748-761 (John Wiley & Sons, 1990) и томе 10 Encyclopedia of Polymer Science and Technology 392-414 (John Wiley & Sons, 1969). При выполнении настоящего изобретения можно эффективно использовать технически доступные термопластичные полиамиды, причем предпочтительны линейные кристаллические полиамиды, температура размягчения или точка плавления которых находится в пределах 160 и 260°С.

Приемлемые термопластичные сложные полиэфиры, которые могут быть использованы, включают полимерные продукты взаимодействия одной или смеси алифатических или ароматических поликарбоновых кислот, сложных эфиров или ангидридов и одного или смеси диолов. Примеры подходящих сложных полиэфиров включают поли(транс-1,4-циклогексилен), поли(алканС26дикарбоксилаты), такие как поли(транс-1,4-циклогексиленсукцинат) и поли(транс-1,4-циклогексиленадипат); поли(цис- или -транс-1,4-циклогександиметилен)алкандикарбоксилаты, такие как поли(цис-1,4-циклогександиметилен)оксалат и поли(цис-1,4-циклогександиметилен)сукцинат; поли(алкиленС24терефталаты), такие как полиэтилентерефталат и политетраметилентерефталат; поли(алкиленС34изофталаты), такие как полиэтиленизофталат и политетраметиленизофталат, и т.п. материалы. Предпочтительные сложные полиэфиры дериватизируют из ароматических дикарбоновых кислот, таких как нафталиновая и о-фт