Целлюлозный продукт и способ его получения
Целлюлозный продукт и способы его получения относятся к целлюлозно-бумажной промышленности. Целлюлозный продукт содержит глину, имеющую укладку атомных плоскостей 3R2. Целлюлозный продукт представляет собой бумагу или волокнистую массу, а глина является катионной. Способ получения целлюлозного продукта включает: (i) получение водной суспензии, содержащей целлюлозные волокна и необязательно наполнитель; (ii) добавление к суспензии глины, имеющей укладку атомных плоскостей 3R2; (iii) обезвоживание полученной суспензии. Другой способ получения целлюлозного продукта включает: (i) получение водной суспензии, содержащей целлюлозные волокна и необязательно наполнитель; (ii) добавление к суспензии катионной глины; (iii) добавление к суспензии одного или нескольких дренирующих и повышающих удерживаемость наполнителя вспомогательных веществ, содержащих, по меньшей мере, один катионный полимер; (iv) обезвоживание полученной суспензии. Техническим результатом является снижение содержания мешающих и вредных веществ в целлюлозной суспензии, повышение удерживаемости наполнителя, обезвоживающих вспомогательных веществ и агентов проклеивания. 3 н. и 24 з.п. ф-лы, 14 табл.
Реферат
Настоящее изобретение относится к способу получения целлюлозного продукта, который включает обработку целлюлозных волокон с помощью глины, имеющую укладку атомных плоскостей 3R2, и к способу получения целлюлозного продукта, который включает обработку целлюлозных волокон катионной глиной. Настоящее изобретение также относится к целлюлозным продуктам, содержащим глину, имеющую укладку атомных плоскостей 3R2.
Уровень техники
Суспензии волокнистой массы широко используются при изготовлении целлюлозных продуктов, таких, например, как волокнистая масса и бумага, и содержат, кроме целлюлозных волокон, также соединения, которые имеют отрицательное воздействие на процесс производства. Такие соединения находятся в целлюлозных суспензиях, происходящих как из первичной волокнистой массы, так и из рециклированной волокнистой массы.
В суспензиях первичной волокнистой массы такие мешающие/вредные вещества представляют собой, прежде всего, гемицеллюлозу, лигнин, а также липофильные и гидрофильные экстрагируемые вещества. Кроме целлюлозы, эти веществ являются до различной степени растворенными или коллоидно диспергированными в технологической воде, во время операций варки и беления. Соединения, которые высвобождаются во время операций варки и беления, обычно упоминаются в целом как смола. Примеры смолы включают древесные смолы, такие как липофильные экстрагируемые вещества (жирные и смолистые кислоты, стеролы, сложные стеариловые эфиры, триглицериды), и также жиры, терпены, терпеноиды, воски и тому подобное.
В суспензиях рециклированной волокнистой массы соединения, имеющие отрицательное воздействие на процесс изготовления бумаги, в основном состоят из клеев, чернил и латекса на основе термопластиков, в целом, несколько соединений, которые все вместе обычно упоминаются как липкие вещества. Кроме смолы и липких веществ, суспензия содержит также заряженные примеси, подобные солям, и различные полимеры древесины, из которых заряженные, слабо заряженные или незаряженные соединения конкурируют с целлюлозой в отношении адсорбции и взаимодействия с химикалиями, добавляемыми для улучшения рабочих характеристик, такими как дренирующие и повышающие удерживаемость наполнителя вспомогательные вещества, агенты для проклеивания и тому подобное. Обычно такие мешающие соединения упоминаются как анионный мусор.
Все указанные выше соединения входят в процессы создания волокнистой массы и бумаги различными путями. Например, некоторые из них преципитируют из-за изменений свойств суспензии волокнистой массы и могут осаждаться на различных механических деталях бумагоделательной машины, таких, например, как сетки и сукна. Со временем осадки будут приводить к отказам бумагоделательной машины, часто в форме разрыва полотна бумаги, при этом бумагоделательная машина должна останавливаться для очистки. Кроме того, бумажные фабрики стремятся рециркулировать оборотную воду до степени, большей, чем ранее, что увеличивает присутствие мешающих и вредных веществ в суспензии.
Различные добавки используются для уменьшения отрицательного воздействия указанных выше вредных/мешающих веществ. Например, для адсорбции смолы и липких веществ широко используется тальк. Также для уменьшения воздействия вредных соединений используются различные типы глины.
Выложенная заявка на патент Японии № 1985-94687 относится к адсорбирующему смолу агенту, содержащему гидротальцит.
Сущность изобретения
Настоящее изобретение, в целом, направлено на способ, в котором целлюлозные волокна обрабатываются с помощью глины, имеющей укладку атомных плоскостей 3R2. Настоящее изобретение также, в целом, направлено на способ, в котором целлюлозные волокна обрабатывают катионной глиной. Кроме того, настоящее изобретение направлено на способ получения целлюлозного продукта, который включает добавление глины, имеющей укладку атомных плоскостей 3R2, к водной суспензии, содержащей целлюлозные волокна. Кроме того, настоящее изобретение, в целом, направлено на целлюлозный продукт, содержащий глину, имеющую укладку атомных плоскостей 3R2.
Кроме того, настоящее изобретение относится к способу получения целлюлозного продукта, который включает: (i) создание водной суспензии, содержащей целлюлозные волокна; (ii) добавление к суспензии глины, имеющей укладку атомных плоскостей 3R2,и необязательно одного или нескольких дренирующих (обезвоживающих) и повышающих удерживаемость наполнителя вспомогательных веществ; (iii) обезвоживание полученной суспензии. Кроме того, настоящее изобретение относится к способу получения целлюлозного продукта, который включает: (i) создание водной суспензии, содержащей целлюлозные волокна; (ii) добавление к суспензии катионной глины; (iii) добавление к суспензии одного или нескольких дренирующих (обезвоживающих) и повышающих удерживаемость наполнителя вспомогательных веществ, содержащих, по меньшей мере, один катионный полимер; (iv) обезвоживание полученной суспензии. Производимый целлюлозный продукт предпочтительно представляет собой волокнистую массу и/или бумагу.
Подробное описание изобретения
Неожиданно обнаружено, что отрицательное воздействие на процессы изготовления волокнистой массы и бумаги из-за присутствия мешающих и вредных веществ в водных суспензиях целлюлозной волокнистой массы, в частности проблемы, вызываемые смолой и липкими веществами, могут быть уменьшены посредством обработки целлюлозных волокон глиной в соответствии с настоящим изобретением.
Также было неожиданно обнаружено, что добавление к целлюлозной суспензии глины в соответствии с настоящим изобретением, в частности катионной глины и/или глины 3R2, в сочетании с добавками, используемыми для изготовления волокнистой массы и бумаги, не только дает возможность для адсорбции и удаления мешающих веществ, но это также улучшает рабочие характеристики добавок, используемых в способе, по сравнению с ситуацией, где глина не добавляется. Примеры таких добавок, для которых наблюдается улучшение рабочих характеристик, включают в себя повышающие удерживаемость наполнителя и обезвоживающие вспомогательные вещества, агенты для проклеивания и тому подобное. Предпочтительно, глина используется вместе с одним или несколькими дренирующими и повышающими удерживаемость наполнителя вспомогательными веществами, содержащими, по меньшей мере, один катионный полимер. Таким образом, настоящее изобретение предусматривает улучшение дренирования (обезвоживания) и удерживания в способах изготовления волокнистой массы и бумаги, а также улучшение проклеивания в процессах изготовления бумаги, при этом одновременно, дополнительно уменьшая содержание мешающих и вредных веществ в целлюлозной суспензии.
Глина по настоящему изобретению может быть получена из природных глин, химически и/или физически модифицированных природных глин и синтетических глин. Природные глины, как правило, имеют по существу кристаллическую структуру. Однако синтетически полученные глины могут также дополнительно содержать аморфный материал, имеющий по существу такую же химическую композицию, как кристаллические структуры. Количество аморфного материала, присутствующего в синтетической глине, зависит в основном от используемых параметров реакции. Термин "глина", как он здесь используется, относится к глинам, имеющим по существу кристаллическую структуру, а также к глинам, содержащим как кристаллические, так и аморфные структуры.
Глины характеризуются слоистой структурой, где атомы в слоях (ламеллах) являются поперечно сшитыми посредством химических связей, в то время как атомы соседних слоев взаимодействуют, в основном, с помощью физических сил. Слои глины могут быть незаряженными или заряженными, в зависимости от типа атомов, присутствующих в слоях. Если слои являются заряженными, тогда пространство между этими слоями, обозначаемое также как межслойное пространство, содержит ионы, которые имеют заряд, противоположный по отношению к заряду слоев. Термин "катионная глина", как он здесь используется, относится к глинам, имеющим положительно заряженные слои и анионы, присутствующие в межслойном пространстве. Термин "анионная глина", как он здесь используется, относится к глинам, имеющим отрицательно заряженные слои и катионы, присутствующие в межслойном пространстве. Обычно ионы в межслойном пространстве могут участвовать в ионном обмене.
Глины по настоящему изобретению могут в принципе иметь любой анион, а также, необязательно, молекулы воды, присутствующие в межслойном пространстве. Примеры распространенных анионов, которые могут присутствовать в межслойном пространстве, включают NO3 -, OH-, Cl-, Br-, I-, CO3 2-, SO4 2-, SiO3 2-, CrO4 2-, BO3 2-, MnO4 -, HGaO3 2-, HVO4 -, и ClO4 -, а также столбчатые или интеркалирующие анионы, такие как V10O28 6- и MO7O24 6-, монокарбоксилаты, подобные ацетату, дикарбоксилаты, такие как оксалат, и алкилсульфонаты, такие как лаурилсульфонат, обычно, гидроксид и карбонат. Природные глины по настоящему изобретению обычно имеют карбонатные анионы в межслойном пространстве.
Удобно, чтобы слой или ламелла глины содержала, по меньшей мере, два различных атома металла, имеющих различные валентности. Удобно, чтобы один атом металла являлся двухвалентным, а другой атом металла являлся, соответственно, трехвалентным. Однако слой также может содержать более двух атомов металлов. Заряд слоя определяется отношением атомов металлов, имеющих различные валентности. Например, большее количество трехвалентных металлов будет создавать слой, имеющий повышенную плотность положительного заряда. Удобно, чтобы глина по настоящему изобретению содержала слои, содержащие двухвалентные и трехвалентные металлы в некотором отношении, так, чтобы общий заряд слоев был катионным и пространство между слоями содержало анионы. Предпочтительно, слои в основном состоят из двухвалентных и трехвалентных металлов при таком отношении, что общий заряд слоев является катионным.
Полученные синтетически и природные глины в соответствии с настоящим изобретением могут характеризоваться общей формулой:
[Mm 2+ Mn 3+ (OH)2m+2n] Xn/z Z- bH2O,
где m и n, независимо друг от друга, представляют собой целые числа, имеющие такое значение, что m/n находится в пределах от 1 до 10, предпочтительно от 1 до 6, более предпочтительно от 2 до 4, а наиболее предпочтительно имеет значения около 3; b представляет собой целое число, имеющее значение в пределах от 0 до 10, удобно, чтобы это было значение от 2 до 6, а часто значение примерно 4; Xn/z Z- представляет собой анион, где z представляет собой целое число от 1 до 10, предпочтительно от 1 до 6, удобно, чтобы этот Xn/z Z- включал NO3 -, OH-, Cl-, Br-, I-, CO3 2-, SO4 2-, SiO3 2-, CrO4 2-, BO3 2-, MnO4 -, HGaO3 2-, HVO4 - и ClO4 -,столбчатые (стопочные) анионы и анионы включения, такие как V10O28 6- и MO7O24 6-, монокарбоксилаты, подобные ацетату, дикарбоксилаты, такие как оксалат, и алкилсульфонаты, такие как лаурилсульфонат; M2+ представляет собой двухвалентный атом металла, пригодные для использования двухвалентные атомы металлов включают Be, Mg, Cu, Ni, Co, Zn, Fe, Mn, Cd и Ca, предпочтительно Mg; M3+ представляет собой трехвалентный атом металла, пригодные для использования трехвалентные атомы металлов включают Al, Ga, Ni, Co, Fe, Mn, Cr, V, Ti и In, предпочтительно Al. Предпочтительно, двухвалентный металл представляет собой магний, а трехвалентный металл представляет собой алюминий, что приводит к общей формуле:
[Mgm 2+ Aln 3+ (OH)2m+2n] Xn/z Z- bH2O.
В соответствии с одним из предпочтительных вариантов осуществления настоящего изобретения, глина является катионной. Примеры пригодных для использования катионных глин в соответствии с настоящим изобретением включают гидротальцит, манассеит, пироаурит, сьегренит, штихтит, барбертонит, таковит, реевезит, дезаутельзит, мотукореаит, вермландит, меикснерит, коалингит, хлоромагалумит, карробойдит, хонессит, вудвардит, айоваит, гидрохонессит, маунткеитит и тому подобное. Примеры терминов, также используемых для описания этих глин, включают соединения, подобные гидротальциту, и слоистые соединения двойных гидроксидов.
В соответствии с другим предпочтительным вариантом осуществления настоящего изобретения глина имеет конкретную укладку атомных плоскостей, а именно укладку атомных плоскостей 3R2; этот тип глины упоминается здесь также как "глина 3R2". Глина 3R2 является предпочтительно катионной и может представлять собой любую из тех, которые рассмотрены выше. Предпочтительно, глина представляет собой глину 3R2, содержащую магний и алюминий. Соответственно глина 3R2 имеет период из трех слоев. Политип глины с укладкой атомных плоскостей 3R2 имеет другое расположение/укладку атомных плоскостей слоев, чем политип с укладкой атомных плоскостей 3R1, упоминающийся здесь также как "глина 3R1". Глины 3R1 и 3R2 могут отличаться друг от друга по картинам дифракции/отражений рентгеновских лучей, по интенсивности отражений dhkl 107 и 108. Глина 3R2 имеет более сильное отражение dhkl 107 вблизи 2 тэта 45° (согласно Drits и Bookin), в то время как глина 3R1 имеет более сильное отражение dhkl вблизи 2 тэта 47° (отражение dhkl 108). Присутствие пиков как на 2 тэта 45°, так и 2 тэта 47°, указывает на присутствие смеси глин 3R1 и 3R2. Понятно, что точные значения 2 тэта для отражений dhkl 107 и 108 будут зависеть от структурных параметров решетки "a" и "c" для данной глины, например глины Mg-Al. Разумеется, имеются также некоторые другие различия в картинах дифракции рентгеновских лучей, но предполагается, что именно этот диапазон является наилучшим диапазоном отражений dhkl для получения такого различия. Кроме того, глина, имеющая укладку атомных плоскостей 3R2, имеет морфологию, отличную от морфологии обычных глин 3R1, и может детектироваться с помощью анализа посредством SEM (сканирующего электронного микроскопа). Глина 3R2, видимо, имеет структуру с нерегулярными хлопьеобразными пластинками, которые агломерируют беспорядочным образом, в то время как обычные и известные из литературы глины 3R1 имеют регулярные, хорошо сформированные слои пластинок, которые располагаются в обычной форме стопы.
Глины, имеющие укладку атомных плоскостей 3R2, в соответствии с настоящим изобретением, могут быть получены посредством гидротермической (сольвотермической) обработки суспензии, содержащей источник алюминия и источник магния. Примеры пригодных для использования глин, имеющих укладку атомных плоскостей 3R2, например глин Mg-Al, в соответствии с настоящим изобретением, и способы их получения включают те, которые описаны в публикации Международной заявки № WO 01/12550, описание которой, тем самым, включается сюда в качестве ссылки.
В соответствии с одним из предпочтительных вариантов осуществления настоящего изобретения глина, имеющая укладку атомных плоскостей 3R2, добавляется к водной суспензии, содержащей целлюлозные волокна, в способе получения целлюлозного продукта, подобного волокнистой массе и бумаге. Наблюдается, что, если глина 3R2 добавляется к такой суспензии, достигается улучшенное удаление мешающих веществ, таких как смола и липкие вещества, по сравнению с добавлением обычной глины, имеющей укладку атомных плоскостей 3R1.
Глину удобно перемешивать с целлюлозными волокнами посредством добавления к водной суспензии, содержащей целлюлозные волокна (здесь также упоминается как "водная целлюлозная суспензия" и "целлюлозная суспензия"), либо в виде взвеси (суспензии), либо порошка, который легко может диспергироваться в воде. Суспензия или порошок глины могут, кроме того, содержать также и другие компоненты, такие, например, как диспергирующие и/или защитные агенты, которые могут вносить вклад в общее воздействие глины. Такие агенты могут иметь неионный, анионный или катионный характер. Примеры пригодных для использования защитных агентов или коллоидов включают водорастворимые производные целлюлозы, например гидроксиэтил- и гидроксипропил-, метилгидроксипропил- и этилгидроксиэтилцеллюлозу, метил- и карбоксиметилцеллюлозу, желатин, крахмал, гуаровую смолу, ксантановую смолу, поливиниловый спирт и тому подобное. Примеры пригодных для использования диспергирующих агентов включают в себя неионные агенты, например этоксилированные жирные кислоты, жирные кислоты, алкилфенолы или амиды жирных кислот, этоксилированные и неэтоксилированные сложные глицериновые эфиры, сорбитовые эфиры жирных кислот, неионные поверхностно-активные вещества, полиолы и/или их производные; анионные агенты, например алкил или алкиларил сульфаты, сульфонаты, простые эфирсульфонаты, полиакриловую кислоту и катионный агент, например эстеркваты, полученные путем взаимодействия алканоламинов со смесями жирных кислот и дикарбоновых кислот, необязательного алкоксилирования полученных сложных эфиров и кватернизации продуктов, амиды кватернизованных жирных кислот, бетаины, соли диметил диалкил или диалкиларил аммония и катионные парные диспергирующие агенты.
Глина может добавляться в любой точке процесса производства целлюлозного продукта, начиная от точки, где разрушаются древесные стружки, и до точки в процессе, где имеет место обезвоживание целлюлозной суспензии. Целлюлозный продукт может находиться в любой форме, как, например в форме полотна или листа, например, листов волокнистой массы и листов бумаги.
В соответствии с предпочтительным вариантом осуществления настоящего изобретения, глину добавляют в целлюлозную суспензию способа изготовления волокнистой массы. Глина может добавляться до или после процесса варки, который может представлять собой крафт процесс, механический, термомеханический, механохимический, термомеханохимический процесс варки. Глина может добавляться непосредственно перед процессом варки или непосредственно в процессе варки, например, в дигестер. Однако является предпочтительным, чтобы глина добавлялась в целлюлозную суспензию химического переваривания, например, после промывного аппарата для сульфатной целлюлозы или после очистки механической (механохимической) волокнистой массы. Обычно целлюлозную волокнистую массу отбеливают в многостадийном процессе беления, включающем в себя различные стадии беления, и глина может добавляться в любой последовательности по отношению к белению. Примеры соответствующих стадий беления включают стадии хлорного беления, например стадии беления элементарным хлором и двуокисью хлора, стадии нехлорного беления, например стадии с пероксидом, подобным озону, перекиси водорода и перуксусной кислоте, и сочетания стадий хлорного и нехлорного беления и окисления, необязательно, в сочетании со стадиями восстановления, подобными обработке дитионитом. Глина может добавляться в целлюлозную суспензию непосредственно на стадии беления, предпочтительно, в смеситель перед белильной башней, в любой точке между стадиями беления и промывки, а также на стадии промывки, где глина может частично или полностью удаляться, например, в секции разделения.
В соответствии с другим предпочтительным вариантом осуществления настоящего изобретения глину добавляют в целлюлозную суспензию процесса изготовления бумаг. Глина может добавляться в целлюлозную суспензию в любой точке процесса изготовления бумаги, например в жирную бумажную массу, в тощую бумажную массу или оборотную воду до ее рециклирования, то есть перед напорным ящиком для тощей бумажной массы. Предпочтительно глину добавляют к жирной бумажной массе. Катионная глина может также добавляться более чем в одной точке процесса изготовления волокнистой массы и/или бумаги. Например, в объединенныхцеллюлозных и бумажных фабриках глина может добавляться в процесс для производства волокнистой массы и, необязательно, также в процесс производства бумаги, и одно или несколько дренирующих и повышающих удерживаемость наполнителя вспомогательных веществ могут добавляться в процесс получения бумаги. Такие процессы могут включать обезвоживание целлюлозной суспензии, содержащей глину, разбавление полученной суспензии, добавление к разбавленной суспензии одного или нескольких дренирующих и повышающих удерживаемость наполнителя вспомогательных веществ и обезвоживание суспензии, содержащей дренирующие и повышающие удерживаемость наполнителя вспомогательные вещества.
Термин "бумага", как он здесь используется, включает в себя не только бумагу и ее получение, но также и другие продукты, содержащие целлюлозные волокна, подобные листам или полотнам, такие, например, как картон и усиленный картон, и их производство. Способ может использоваться при производстве бумаги из различных типов водных суспензий целлюлозных (содержащих целлюлозу) волокон, и суспензии должны, соответственно, содержать, по меньшей мере, 25% массовых, а предпочтительно, по меньшей мере, 50% массовых таких волокон, по отношению к сухому веществу. Целлюлозные волокна могут основываться на первичных и/или рециклированных волокнах, и суспензия может основываться на волокнах из химической волокнистой массы, такой как сульфатные, сульфитные волокнистые массы и волокнистые массы на основе органических растворителей, механической волокнистой массы, такой как термомеханическая волокнистая масса, термомеханохимическая волокнистая масса, очищенная волокнистая масса и масса из измельченной древесины как из твердых, так и из мягких пород, и может также основываться на рециклированных волокнах, необязательно от обесцвеченных волокнистых масс, и на их смесях. Если используются рециклированные волокна, суспендированные, рециклированные волокна совместно обрабатываются для отделения неволокнообразных компонентов, таких, например как чернила для принтера и различные соединения для обработки поверхности бумаги, например, латекс, от волокон. В предпочтительном варианте осуществления, удобно добавлять глину в такой процесс обесцвечивающей обработки.
В соответствии с настоящим изобретением удобно добавлять глину в целлюлозную суспензию в количестве от примерно 0,01% массовых до примерно 5% массовых, предпочтительно от примерно 0,05% массовых до примерно 2% массовых, вычисленных как отношение сухой глины к сухой целлюлозной суспензии.
Настоящее изобретение также относится к способу получения целлюлозного продукта, например волокнистой массы и бумаги, который включает добавление к суспензии глины, имеющей укладку атомных плоскостей 3R2,и, необязательно, одного или нескольких дренирующих (обезвоживающих) и повышающих удерживаемость наполнителя вспомогательных веществ. В предпочтительном варианте осуществления дренирующие и повышающие удерживаемость наполнителя вспомогательные вещества содержат, по меньшей мере, один катионный полимер. В другом предпочтительном варианте осуществления дренирующие и повышающие удерживаемость наполнителя вспомогательные вещества содержат катионный полимер и анионный материал. Примеры пригодных для использования анионных материалов включают анионные материалы на основе микрочастиц, например анионных неорганических и органических частиц, и анионные органические полимеры, например анионные полимеры, полученные виниловым полиприсоединением, такие как анионные полимеры на основе акриламида. Является предпочтительным, чтобы в способе получения бумаги использовались глина и дренирующие и повышающие удерживаемость наполнителя вспомогательные вещества.
Термин "дренирующее и повышающее удерживаемость наполнителя вспомогательное вещество", как он здесь используется, относится к компоненту (агенту, добавке), который, когда добавляется к водной целлюлозной суспензии, дает лучшее дренирование и/или повышение удерживаемости наполнителя, чем получается, когда такой компонент не добавляется.
Термин "катионный полимер", как он здесь используется, относится к органическому полимеру, имеющему одну или несколько катионных групп, предпочтительно общий катионный заряд. Катионный полимер может также содержать анионные группы, и такие полимеры обычно также упоминаются как амфотерные полимеры.
Катионный полимер в соответствии с настоящим изобретением может получаться из природных и синтетических источников. Примеры пригодных для использования катионных полимеров, получаемых от природных источников, включают полисахариды, например крахмалы, гуаровые смолы, целлюлозы, хитины, хитозаны, гликаны, галактаны, глюканы, ксантановые смолы, пектины, маннаны, декстрины, предпочтительно крахмалы и гуаровые смолы. Примеры пригодных для использования крахмалов включают картофельный, кукурузный, пшеничный, тапиоковый, рисовый, из воскового маиса, ячменный и тому подобное. Примеры пригодных для использования синтетических, катионных полимеров включают полимеры, полученные посредством реакции роста цепи, например полученные радикальной виниловой полимеризацией полимеры, подобные полимерам на основе акрилата, акриламида и виниламида, и полимеры, полученные посредством ступенчатой полимеризации, например полиуретаны. Удобно, чтобы катионный полимер выбирался из полисахаридов, например крахмалов, и полученных радикальной виниловой полимеризацией полимеров, например полимеров на основе акриламида, и их смесей.
Катионный полимер, в особенности катионные полисахариды и полученные радикальной виниловой полимеризацией полимеры, может также содержать ароматические группы, которые могут присутствовать в основной цепи полимера, или, предпочтительно, ароматические группы могут представлять собой боковые группы, присоединенные к основной цепи полимера или выступающие из нее, или присутствовать в боковой группе, которая присоединена к основной цепи полимера (главной цепи) или выступает из нее. Примеры пригодных для использования ароматических групп включают арильные, аралкильные и алкарильные группы, например фенил, фенилен, нафтил, фенилен, ксилилен, бензил и фенилэтил; азотсодержащие ароматические (арильные) группы, например пиридиний и хинолиний, а также производные этих групп, предпочтительно бензил. Примеры пригодных для использования катионных органических полимеров, имеющих ароматическую группу, которые могут быть использованы в соответствии с настоящим изобретением, включают в себя те, которые описаны в публикациях Международных заявок №№ WO 99/55964, WO 99/55965, WO 99/67310 и WO 02/12626, которые, тем самым, включаются сюда в качестве ссылок. Примеры катионно заряженных групп, которые могут присутствовать в катионном полимере, а также в мономерах, используемых для получения катионного полимера, включают группы четвертичного аммония, третичные аминогруппы и их кислотно-аддитивные соли.
Термин "полимер, полученный посредством реакции роста цепи", как он здесь используется, относится к полимеру, получаемому полимеризацией в результате реакции роста цепи, также упоминаемому как полимер цепной реакции и цепная полимеризация, соответственно. Примеры пригодных для использования катионных полимеров, полученных посредством реакции роста цепи, включают полученные виниловым полиприсоединением полимеры, получаемые посредством полимеризации одного или нескольких мономеров, имеющих винильную группу или этилен-ненасыщенную связь, например полимер, полученный посредством полимеризации катионного мономера или смеси мономеров, содержащей катионный мономер.
Примеры пригодных для использования катионных мономеров включают диаллилдиалкиламмоний галогениды, например диаллилдиметиламмоний хлорид, кислотно-аддитивные соли и четвертичные соли диалкиламиноалкил(мет)акрилата, например четвертичные мономеры, получаемые посредством обработки диметиламиноэтил (мет)акрилата, диэтиламиноэтил (мет)акрилата и диметиламиногидроксипропил (мет)акрилата, и диалкиламиноалкил (мет)акриламидов, например диметиламиноэтил (мет)акриламида, диэтиламиноэтил (мет)акриламида, диметиламинопропил (мет)акриламида и диэтиламинопропил (мет)акриламида, кислотами, например органическими и неорганическими кислотами, алкил галогенидами, например метилхлоридом, и арил галогенидами, например бензилхлоридом. Предпочтительные катионные мономеры включают четвертичную соль диметиламиноэтилакрилат бензилхлорида и четвертичную соль диметиламиноэтилметакрилат бензил хлорида. Катионный мономер может быть совместно полимеризованным с одним или несколькими неионными и/или анионными мономерами. Пригодные для использования сополимеризуемые неионные мономеры включают (мет)акриламид; мономеры на основе акриламида, подобные N-алкил (мет)акриламидам, N,N-диалкил (мет)акриламидам и диалкиламиноалкил (мет)акриламидам, мономеры на основе акрилатов, подобные диалкиламиноалкил (мет)акрилатам, и виниламиды. Пригодные для использования сополимеризуемые анионные мономеры включают акриловую кислоту, метакриловую кислоту и различные сульфонированные виниловые мономеры, такие как стиролсульфонат. Предпочтительные сополимеризуемые мономеры включают акриламид и метакриламид, то есть (мет)акриламид, и катионный или амфотерный органический полимер предпочтительно представляет собой полимер на основе акриламида.
Среднемассовая молекулярная масса катионного полимера может изменяться в широких пределах в зависимости, среди прочего, от типа используемого полимера и обычно она равна, по меньшей мере, примерно 5000, а часто, по меньшей мере, 10000. Чаще, она превышает 150000, как правило, превышает 500000, удобно, чтобы она превышала примерно 700000, предпочтительно, превышала примерно 1000000 и, наиболее предпочтительно, превышала примерно 2000000. Верхний предел не является критичным; он может составлять примерно 200000000, обычно, 150000000, и удобно, чтобы он был равен 100000000.
Анионные неорганические материалы на основе микрочастиц, которые могут использоваться в соответствии с настоящим изобретением, включают анионные частицы на основе двуокиси кремния и анионные глины типа смектита. Является предпочтительным, чтобы анионные неорганические частицы находились в коллоидном диапазоне размеров частиц. Анионные частицы на основе двуокиси кремния, то есть частицы на основе SiO2 или кремниевой кислоты, используются предпочтительно, и такие частицы обычно поставляются в форме водных коллоидных дисперсий, так называемых золей. Примеры пригодных для использования частиц на основе двуокиси кремния включают коллоидную двуокись кремния и различные типы поликремниевой кислоты, в форме либо гомо-, либо сополимера. Золи на основе двуокиси кремния могут модифицироваться и содержать другие элементы, например алюминий, бор, азот, цирконий, галлий, титан и тому подобное, которые могут присутствовать в водной фазе и/или в частицах на основе двуокиси кремния. Пригодные для использования частицы на основе двуокиси кремния этого типа включают коллоидную двуокись кремния, модифицированную алюминием, и силикаты алюминия. Смеси таких пригодных для использования частиц на основе двуокиси кремния могут также использоваться. Дренирующие и повышающие удерживаемость наполнителя вспомогательные вещества, содержащие пригодные для использования анионные частицы на основе двуокиси кремния, включают те, которые описаны в патентах США №№ 4388150, 4927498, 4954220, 4961825, 4980025, 5127994, 5176891, 5368833, 5447604, 5470435, 5543014, 5571494, 5573674, 5584966, 5603805, 5688482 и 5707493, которые, тем самым, включаются сюда в качестве ссылок.
Удобно, чтобы анионные частицы на основе двуокиси кремния имели средний размер частиц примерно ниже 100 нм, предпочтительно примерно ниже 20 нм, а более предпочтительно, в пределах от примерно 1 до примерно 10 нм. Как обычно в химии двуокиси кремния, размер частиц относится к среднему размеру частиц, которые могут быть агрегированными или неагрегированными. Удобно, чтобы удельная площадь поверхности частиц на основе двуокиси кремния превышала 50 м2/г, а предпочтительно превышала 100 м2/г. Как правило, удельная площадь поверхности может достигать примерно до 1700 м2/г, а предпочтительно достигать 1000 м2/г. Удельная площадь поверхности измеряется посредством титрования NaOH, хорошо известным способом, например, как описано G.W. Sears в Analytical Chemistry 28(1956): 12, 1981-1983 и в патенте США № 5176891. Данная площадь, таким образом, представляет собой среднюю удельную площадь поверхности частиц.
В соответствии с предпочтительным вариантом осуществления настоящего изобретения, анионные частицы на основе двуокиси кремния имеют удельную площадь поверхности в пределах от 50 до 1000 м2/г, предпочтительно от 100 до 950 м2/г. Золи из частиц на основе двуокиси кремния этих типов также охватывают модификации, например, с любым из элементов, указанных выше. Предпочтительно, частицы на основе двуокиси кремния присутствуют в золе, имеющем S-значение в пределах от 8 до 50%, предпочтительно от 10 до 40%, содержащем частицы на основе двуокиси кремния с удельной площадью поверхности в пределах от 300 до 1000 м2/г, соответственно от 500 до 950 м2/г, а предпочтительно от 750 до 950 м2/г, эти золи могут модифицироваться, как указано выше. S-значение может измеряться и вычисляться, как описано Her & Dalton в J.Phys.Chem. 60(1956), 955-957. S-значение показывает степень агрегации или формирование микрогеля и более низкое S-значение указывает на более высокую степень агрегации.
В соответствии с другим предпочтительным вариантом осуществления настоящего изобретения частицы на основе двуокиси кремния выбираются из поликремниевой кислоты в виде либо гомо-, либо сополимера, имеющей высокую удельную площадь поверхности, соответственно, превышающую примерно 1000 м2/г. Удельная площадь поверхности может находиться в пределах от 1000 до 1700 м2/г и предпочтительно от 1050 до 1600 м2/г. Золи поликремниевой кислоты, модифицированные или в виде сополимера, могут содержать другие элементы, как указано выше. В данной области поликремниевая кислота упоминается также как полимерная кремниевая кислота, микрогель поликремниевой кислоты, полисиликат и микрогель полисиликата, все эти значения охватываются термином поликремниевая кислота, используемым здесь. Соединения, содержащие алюминий этого типа обычно упоминаются так же, как полиалюмосиликат и микрогель полиалюмосиликата, которые оба охватываются терминами коллоидная двуокись кремния, модифицированная алюминием и силикат алюминия, используемыми здесь.
В соответствии с еще одним предпочтительным вариантом осуществления настоящего изобретения дренирующее и повышающее удерживаемость наполнителя вспомогательное вещество содержит анионную глину типа смектита. Примеры пригодных для использования смектитных глин включают природные глины, такие как монтмориллонит/бентонит, гекторит, бейделит, нонтронит и сапонит, а также синтетические глины, подобные смектитам, такие как лапонит, и тому подобное, предпочтительно бентонит и, в частности, такой бентонит, который после набухания, предпочтительно, имеет площадь поверхности от 200 до 800 м2/г. Пригодные для использования анионные глины включают те, которые описаны в патентах США №№ 4753710, 5071512 и 5607552, которые, тем самым, включаются сюда в качестве ссылок. Кроме того, могут использоваться смеси анионных частиц на основе двуокиси кремния и анионных глин типа смектита.
Анионные органические полимеры в соответствии с настоящим изобретением содержат одну или несколько отрицательно заряженных (анионных) групп. Примеры групп, которые могут присутствовать в полимере, а также в мономерах, используемых для получения полимера, включают группы, несущие анионный заряд, и кислотные группы, несущие анионный заряд, к