Способ и система для производства стекла в стекловаренной печи и горелка, предназначенная для использования в указанной печи
Иллюстрации
Показать всеСпособ и система для подачи и сжигания пылевидного топлива, например нефтяного кокса, в стекловаренной печи, которая содержит зону стекловарения и большое количество горелок, связанных с парой герметизированных камер регенераторов, расположенных по бокам, которые действуют как теплообменники, при этом горелки размещены в ряде каналов, которые связаны с зоной стекловарения печи. Система содержит средство для подвода к стеклянной шихте пылевидного топлива посредством каждой одной из горелок. Выбросы отходящих газов, образующихся в процессе горения топлива в печи, регулируют для поддержания отходящих газов чистыми и для снижения выбросов примесей из топлива, таких как SOx, NOx и частицы. Камеры регенераторов облицовывают огнеупорными плавлеными материалами, такими как магнезия, циркон-кремнезем-глинозем или оксид магния и силикат циркония, для противодействия эрозионному и абразивному воздействиям, возникающим в процессе горения топлива в стекловаренной камере. Технический результат изобретения - снижение стоимости производства стекла. 3 н. и 8 з.п. ф-лы, 12 ил.
Реферат
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Область техники, к которой относится изобретение
Настоящее изобретение относится к способу и системе для подачи и сжигания пылевидного топлива в стекловаренной печи, а более конкретно к способу и системе для подачи и сжигания пылевидного нефтяного кокса в стекловаренной печи, и к горелке, предназначенной для использования в указанной печи.
Уровень техники
Варку стекла осуществляют в печах различных видов и используют топливо различных типов в зависимости от конечных характеристик продукта, а также термической эффективности процессов варки и осветления. Для варки стекла (с помощью газообразного топлива) используют блочные стекловаренные печи, при этом эти печи имеют несколько горелок, размещенных вдоль боковых поверхностей печи, а блок в целом похож на закрытую коробку с дымовой трубой, которая расположена либо в начале загрузочного устройства, либо в дальнем конце печи ниже по потоку. Однако в стекловаренных печах с высокой рабочей температурой наблюдаются чрезмерно большие потери теплоты. Например, при температуре 2500°F теплота в отходящих газах печи, работающей на природном газе, составляет 62% входной теплоты.
Существует более совершенная и дорогостоящая конструкция, позволяющая получать преимущество от сохранения теплоты отходящих газов, называемая регенеративной печью. Хорошо известно, что при работе регенеративной стекловаренной печи множество газовых горелок находится в связи с парой герметизированных регенераторов, размещенных по бокам печи. Каждый регенератор имеет нижнюю камеру, огнеупорную конструкцию над нижней камерой и верхнюю камеру над конструкцией. Каждый регенератор имеет соответствующий канал, соединяющий соответствующую верхнюю камеру с варочной камерой печи с зоной осветления. Горелки размещены для сжигания топлива, такого как природный газ, нефть, жидкое топливо или другое газообразное или жидкое топливо, которое пригодно для использования в стекловаренной печи, и тем самым подвода теплоты для варки и осветления стекломассы в камере. Варочная камера с зоной осветления загружается стеклянной шихтой на одном конце, на котором расположен загрузочный карман, и имеет распределитель стекломассы, расположенный на ее другом конце, который имеет ряд каналов, через которые стекломасса может быть удалена из варочной камеры с зоной осветления.
Горелки могут быть размещены рядом возможных способов. Например, могут проходить через канал, быть сбоку от канала или ниже канала. Топливо, например природный газ, подается из горелок в подводимый поток предварительно нагретого воздуха, поступающего из каждого регенератора во время цикла воспламенения, и получающееся в результате пламя и продукты сгорания, образующиеся в этом пламени, распространяются по поверхности стекломассы и передают теплоту к стекломассе в варочной камере с зоной осветления.
При работе регенераторы действуют циклически, поочередно между циклом подачи воздуха для горения и циклом выпуска теплоты. В зависимости от конкретных характеристик печи каждые 20 или 30 минут направление пламени изменяется. Назначение каждого регенератора заключается в сохранении теплоты отработавших газов, что позволяет получать большую эффективность и более высокую температуру пламени, чем те, которые могли бы быть в случае холодного воздуха.
При работе стекловаренной печи осуществляют регулирование подачи топлива к горелкам и подвода воздуха для горения путем измерения в устье канала и в верхней части конструкции количества кислорода и горючего материала с тем, чтобы обеспечивать меньшую подачу воздуха для горения в варочную камеру или в места вдоль варочной камеры, чем требуется для полного сгорания подводимого топлива.
В прошлом топливом, использовавшимся для варки стекла, было жидкое топливо, получаемое при перегонке нефти. Топливо этого вида использовалось в течение многих лет, но ужесточение экологических нормативов способствовало снижению объемов использования жидкого топлива, поскольку топливо такого вида имеет примеси, источником которых является сырая нефть, например серу, ванадий, никель и некоторые другие тяжелые металлы. Применение жидкого топлива этого вида приводит к образованию загрязняющих веществ, например SOx, NOx и частиц. В последнее время в стекольной промышленности используют природный газ как более чистое топливо. Все тяжелые металлы и сера, содержащиеся в жидком потоке остатков от перегонки нефти, отсутствуют в природном газе. Однако высокая температура, создающаяся в пламени природного газа, весьма способствует образованию большего количества NOx по сравнению с другими загрязняющими веществами. В этом направлении была сделана серия попыток разработать горелки для сжигания природного газа с образованием небольшого количества NOx. Кроме того, для предотвращения образования NOx были разработаны различные технологии. Примером такой технологии является кислородно-топливная технология, в которой вместо воздуха для поддержания процесса горения использован кислород. Применение этой технологии приводит к трудностям вследствие необходимости иметь блочную варочную печь с особым образом выполненными огнеупорами, нужными для предотвращения просачивания воздуха. Кроме того, при использовании кислорода образуется пламя с более высокой температурой, но в отсутствие азота выработка NOx резко уменьшается.
Другой недостаток кислородно-топливного процесса заключается в стоимости самого кислорода. Чтобы сделать его более дешевым, необходимо рядом с печью расположить кислородную установку для подачи нужного количества кислорода, требуемого для процесса варки.
Однако непрерывно вытягивающаяся кверху спираль энергетических затрат (в основном природного газа) вынуждает основных производителей листового стекла взимать дополнительную плату за вагон листового стекла. В этом году стоимость природного газа возросла больше, чем до 120% (в Мексике и других местах - намного выше предварительных оценок).
Общее мнение хорошо осведомленных специалистов стекольной промышленности заключается в том, что оптовые поставщики обратят пристальное внимание на эти новые наценки и наиболее вероятно, что они будут действовать в соответствии с ними.
С учетом предшествующего уровня техники настоящее изобретение относится к применению различных технологий для снижения стоимости варки стекла, к использованию твердого топлива, полученного из остатков от перегонки нефти в дистилляционной колонне, такого как нефтяной кокс, для производства стекла чистым для окружающей среды способом.
Основное отличие топлива этого типа от жидкого топлива и природного газа заключается в физическом состоянии вещества, поскольку жидкое топливо находится в жидкой фазе, природный газ находится в газообразной фазе, тогда как нефтяной кокс является твердым веществом. Жидкое топливо и нефтяной кокс имеют примеси одинаковых видов, поскольку оба они получены из остатков от дистилляции сырой нефти в дистилляционной колонне. Существенное различие заключается в количестве примесей, содержащихся в каждом из них. Нефтяной кокс получают тремя различными процессами, называемыми замедленным коксованием, коксованием в кипящем слое и периодическим коксованием. Остатки от процесса перегонки помещают в барабаны и затем нагревают до температуры от 900 до 1000°F и в продолжение до 36 часов, чтобы отобрать из остатков большую часть оставшихся летучих продуктов. Летучие продукты извлекают из верхней части коксовых барабанов, а оставшийся в барабанах материал представляет собой твердый кокс, содержащий около 90% углерода и остатки всех примесей из использованной сырой нефти. Кокс извлекают из барабанов, используя гидравлические резаки и водяные насосы.
Ниже приведен типичный состав нефтяного кокса: углерод около 90%; водород около 3%; азот от около 2 до 4%; кислород около 2%; сера от около 0,05 до 6% и остальное около 1%.
Использование нефтяного кокса
Нефтяное твердое топливо уже используют в промышленности по производству цемента и на паротурбинных электростанциях. Согласно Расе Consultants Inc. в 1999 году использование нефтяного кокса для производства цемента и выработки электроэнергии составляло соответственно 40 и 14%.
В обеих отраслях промышленности сжигание нефтяного кокса используют для непосредственного прокаливания, когда атмосфера, образующаяся при горении топлива, находится в непосредственном контакте с продуктом. В случае производства цемента для того, чтобы создать температурный профиль, необходимый для продукта, требуется вращающаяся обжиговая печь. В этой вращающейся печи всегда образуется оболочка из расплавленного цемента, исключающая непосредственный контакт газообразных продуктов сгорания и пламени с огнеупорами обжиговой печи, исключающая их коррозию. В этом случае кальцинированный продукт (цемент) поглощает газообразные продукты сгорания, исключая эрозионное и абразивное воздействия ванадия, SO3 и NOx во вращающейся обжиговой печи.
Однако вследствие высокого содержания серы и ванадия нефтяной кокс вообще не используют в стекольной промышленности из-за отрицательного воздействия на огнеупоры и проблем, связанных с окружающей средой.
Проблемы, связанные с огнеупорами
В стекольной промышленности применяют огнеупорные материалы нескольких видов и большую часть из них используют для осуществления различных функций, не только для работы в условиях повышенных температур, но также и для обеспечения химической стойкости и противодействия механической эрозии примесями, содержащимися в ископаемом топливе.
При использовании ископаемого топлива в качестве основного источника энергии на вход печи попадают тяжелые металлы различных типов, содержащиеся в топливе, такие как пентаоксид ванадия, оксид железа, оксид хрома, кобальт и т.д. В процессе горения большая часть тяжелых металлов испаряется вследствие низкого давления паров оксидов металлов и высокой температуры в стекловаренной печи.
Вследствие высокого содержания серы в ископаемом топливе отходящие газы, выходящие из печи, в большинстве случаев имеют кислотные свойства. Кроме того, таким же кислотным свойством, как и сернистые отходящие газы, обладает пентаоксид ванадия. Оксид ванадия является одним из металлов, которые представляют собой источник разрушения основных огнеупоров, поскольку кислотное свойство этого оксида проявляется в газообразном состоянии. Хорошо известно, что пентаоксид ванадия сильно реагирует с оксидом кальция, образуя при температуре 1275°С двухкальциевый силикат.
Двухкальциевый силикат продолжает разрушение с образованием фазы мервинита, затем монтичеллита и наконец форстерита, который реагирует с пентаоксидом ванадия с образованием трехкальциевого ванадата.
Существует только один путь уменьшения разрушения основных огнеупоров, заключающийся в снижении количества оксида кальция в основных огнеупорах, чтобы исключить образование двухкальциевого силиката, который продолжает реагировать с пентаоксидом ванадия до полного повреждения огнеупоров.
С другой стороны, основная проблема, связанная с использованием нефтяного кокса, заключается в высоком содержании серы и ванадия, которые оказывают отрицательное воздействие на конструкцию огнеупоров в печах. Требование к основным характеристикам огнеупорных материалов сводится к необходимости противостояния повышенной температуре в течение продолжительного периода времени. Кроме того, они должны быть способны противостоять неожиданным изменениям температуры, обладать стойкостью к эрозионному воздействию стекломассы, коррозионному воздействию газов и абразивным воздействиям частиц в атмосфере.
Воздействие ванадия на огнеупорные материалы исследовано в различных статьях, например в статье Roy W. Brown and Karl H. Sandmeyer "Sodium vanadate′s effect on superstructure refractories", Part I and II, The Glass Industry Magazine, November and December 1978 issues. В этой статье исследователи привели результаты испытаний различных литых огнеупорных материалов, сосредоточив внимание на ослаблении воздействия ванадия на сплавные литые композиции, такие как глинозем-диоксид циркония-кремнезем, альфа-, бета-глинозем, альфа-глинозем и бета-глинозем, которые обычно используются в верхних обвязках ванн для варки стекла.
J.R.Mclaren и Н.М.Richardson в статье "The action of vanadium pentoxide on aluminum silicate refractories" описали ряд экспериментов, в процессе проведения которых методом Деформации конусов был испытан ряд образцов в виде брусков с содержанием глинозема 73, 42 и 9%, при этом каждый образец содержал примесь пентаоксида ванадия наряду с или в сочетании с оксидом натрия или оксидом кальция.
Обсуждение результатов было направлено на анализ воздействия пентаоксида ванадия, воздействия пентаоксида ванадия совместно с оксидом натрия и воздействия пентаоксида ванадия совместно с оксидом кальция. Они сделали следующее заключение:
1. Муллит обладает стойкостью против воздействия пентаоксида ванадия при температурах вплоть до 1700°С.
2. Не обнаружено образования кристаллических соединений или твердых растворов пентаоксида ванадия и оксида алюминия или пентаоксида ванадия и диоксида кремния.
3. Пентаоксид ванадия может действовать как минерализатор во время разъедания шлаком алюмосиликатных огнеупорных материалов, но он не является основным разъедающим веществом.
4. Соединения с низкой температурой плавления образуются между пентаоксидом ванадия и оксидами натрия (преимущественно) или кальция.
5. При реакциях между натриевыми или кальциевыми ванадатами и алюмосиликатами шлаки с более низкой температурой плавления образуются в блоках с высоким содержанием диоксида кремния, а не в блоках с высоким содержанием оксида алюминия.
T.S.Busby и М.Carter в статье "The effect of SO3, Na2SO4 and V2O5 on the bonding minerals of basic refractories", Glass Technology, vol.20, No. April, 1979 привели результаты испытаний ряда шпинелей и силикатов, связующих минералов основных огнеупоров в серной атмосфере в диапазоне температур от 600 до 1400°С как с, так и без добавок Na2SO4 и V2O5. Было обнаружено, что некоторое количество MgO или СаО в этих минералах преобразовалось в сульфат. Скорость реакции возрастала в присутствии MgSO4 или V2O5. Эти результаты указывают на то, что СаО и MgO в основных огнеупорах могут преобразовываться в сульфат, если их использовать в печи, в которой сера присутствует в отходящих газах. Образование сульфата кальция происходит при температурах ниже 1400°С, а сульфата магнитя при температурах ниже приблизительно 1100°С.
Однако, как описано выше, воздействие ванадия на огнеупоры в стекловаренных печах создает множество проблем, которые полностью не решены.
Нефтяной кокс и окружающая среда
Еще одна проблема, связанная с использованием нефтяного кокса, относится к окружающей среде. Высокое содержание серы и металлов, таких как никель и ванадий, выделяющихся при сжигании нефтяного кокса, создает проблемы, связанные с окружающей средой. Однако уже существуют решения, направленные на снижение содержания серы или обессеривание нефтяного кокса с высоким содержанием серы (свыше 5% по массе). Например, патент США № 4389388, выданный Charles P. Goforth 21 июня 1983 года, относится к обессериванию нефтяного кокса. Нефтяной кокс обрабатывают для снижения содержания серы. Измельченный кокс поддерживают в контакте с нагретым водородом в условиях повышенного давления в продолжение от около 2 до 60 секунд. Получающийся обессеренный кокс пригоден для металлургических целей и дуговых электропечей.
Патент США № 4857284, выданный Rolf Hauk 15 августа 1989 года, относится к процессу для удаления серы из отходящего газа шахтной печи с восстановительной атмосферой. В этом патенте описан новый процесс для удаления серы, содержащейся в газообразном соединении, путем поглощения из, по меньшей мере, части отходящего газа шахтной печи с восстановительной атмосферой, предназначенной для плавки железной руды. Отходящий газ сначала очищается в скруббере и охлаждается, после чего подвергается обессериванию, во время которого поглощающий серу материал составляет часть губчатого железа, получаемого в шахтной печи с восстановительной атмосферой. Обессеривание успешно происходит при температурах в пределах от 30 до 60°С. Предпочтительно, чтобы оно осуществлялось при отделении СО2 от доменного газа, а часть доменного газа использовалась в качестве выходящего газа.
Патент США № 4894122, выданный Arturo Lazcano-Navarro и др. 16 января 1990 года, относится к процессу для обессеривания остатков от перегонки нефти в виде частиц кокса, имеющих исходное содержание серы более чем около 5% по массе. Обессеривание производят с помощью непрерывного электрохимического процесса, основанного на использовании множества последовательно связанных псевдоожиженных слоев, в которые последовательно вводят частицы кокса. Теплоту, необходимую для обессеривания частиц кокса, получают, используя частицы кокса в качестве электрического сопротивления в каждом псевдоожиженном слое, создавая пару электродов, которые проходят в псевдоожиженные частицы кокса, и пропуская электрический ток через электроды и через псевдоожиженные частицы кокса. Последний псевдоожиженный слой без электродов предусмотрен для охлаждения частиц обессеренного кокса после того, как содержание серы снижается до меньше, чем около 1% по массе.
Патент США № 5259864, выданный Richard В. Greenwalt 9 ноября 1993 года, относится к способу как удаления нежелательного для окружающей среды материала, содержащего нефтяной кокс, так и удаления серы и тяжелых металлов, содержащихся в нем, а также образования топлива для процесса получения жидкого чугуна или полуфабрикатов стали и восстановительного газа в плавильной камере-газогенераторе, имеющей верхнюю сторону загрузки топлива, сторону выпуска восстановительного газа, нижнюю сторону сбора расплавленного металла и кокса и средства, обеспечивающие ввод загрузочного железистого материала в плавильную камеру-газификатор; ввод нефтяного кокса в плавильную камеру-газификатор на нижней стороне загрузки топлива; дутье содержащего кислород газа в нефтяной кокс для образования, по меньшей мере, первого псевдоожиженного слоя частиц кокса из нефтяного кокса; ввод железистого материала в плавильную камеру-газификатор через заборное средство, при этом нефтяной кокс, кислород и частицы железистого материала взаимодействуют при сжигании основной части нефтяного кокса с образованием восстановительного газа и расплавленного железа или полуфабрикатов стали, содержащих тяжелые металлы, высвобожденные при сжигании нефтяного кокса, и шлак, содержащий серу, высвобожденную при сжигании нефтяного кокса.
Дополнительным фактором, который следует учитывать в стекольной промышленности, является загрязнение окружающего воздуха. Доля частиц и газообразных загрязняющих веществ, выделяемых стекловаренными печами, в суммарных выбросах стекольного оборудования составляет свыше 99%. Топочный отработавший газ стекловаренных печей в основном состоит из диоксида углерода, азота, водяных паров, оксидов серы и оксидов азота. Газообразные отходы, выделяющиеся из стекловаренных печей, в основном состоят из газообразных продуктов сгорания топлива и газов, возникающих при плавлении шихты, которые в свою очередь зависят от химических реакций, протекающих в это время. Доля газов, выделяемых шихтой в печах с нагревом исключительно пламенем, составляет от 3 до 5% суммарного объема газов.
Доля загрязняющих воздух компонентов в топочном отработавшем газе зависит от типа сжигаемого топлива, его теплотворной способности, температуры воздуха для горения, конструкции горелки, конфигурации пламени и излишка подаваемого воздуха. Источниками оксидов серы в газообразных отходах стекловаренных печей являются используемое топливо, а также расплавленная шихта.
Предлагались различные способы, включая возгонку этих оксидов металлов и удаление в виде гидроокислов. В любом случае из результатов реального химического анализа веществ в форме частиц хорошо известно, что больше 70% материала составляют соединения натрия, приблизительно от 10 до 15% соединения кальция, а остальное преимущественно магний, железо, диоксид кремния и оксид алюминия.
Другим важным обстоятельством являются выбросы SO2 из стекловаренной печи. Выбросы SO2 зависят от содержания серы в исходных материалах и в топливе. В продолжение нагрева печи, а именно после роста объема выработки, выделяется множество SO2. Количество выбросов SO2 находится в пределах от около 2,5 фунтов на 1 т стекломассы до вплоть 5 фунтов на 1 т. При использовании для варки природного газа концентрация SO2 в выпускной трубе обычно находится в пределах от 100 до 300 частей на один миллион. В случае использования высокосернистого топлива на каждый 1% серы в топливе добавляются приблизительно 4 фунта SO2 на каждую тонну стекла.
С другой стороны, образование NOx как следствие процессов горения исследовано и описано рядом авторов: Zeldovich J. (Зельдович) "The oxidation of nitrogen in combustion and explosions". Acta. Physiochem. 21 (4), 1946; Edwards J.B. (Эдвардс) "Combustion: The formation and emission of trace species". Ann Arbor Science Publishers, 1974, p.39. Эти исследования были одобрены Emission Standards Division, Office of Air Quality Planning and Standards, USEPA, при этом в их отчет "NOX emission from glass manufacturing" включены исследования Зельдовича по образованию NOx общего происхождения и эмпирические уравнения Эдвардса. Зельдович получил значения скорости образования NO и NO2 при протекании процессов высокотемпературного горения.
Наконец, при нормальных рабочих условиях, когда пламя соответствующим образом отрегулировано, а в печи не испытывается недостатка воздуха для горения, в выпускной трубе обнаруживается очень небольшое количество СО или других остаточных веществ вследствие неполного сгорания ископаемого топлива. Концентрация газа этих веществ меньше 100 частей на один миллион, возможно даже меньше 50 частей на один миллион, а при отнесении к норме выработки 0,2%/1 т. Регулирование этих загрязняющих веществ заключается просто в соответствующем задании параметров процесса горения.
Технологические способы, предназначенные для снижения газообразных выбросов, особенно ограничены в применении выбором соответствующего топлива для сжигания и исходных материалов, а также конструкцией и работой печи. В патенте США № 5053210, выданном Michael Buxer и др. 1 октября 1991 года, описаны способ и установка для очистки отходящих газов, в частности для обессеривания, и исключения выбросов NOx из отходящего газа с помощью многоступенчатого поглощения и каталитической реакции в движущихся под действием силы тяжести слоях гранулированных, содержащих углерод материалов, соприкасающихся с поперечным потоком газа, при этом минимум два движущихся слоя расположены последовательно по отношению к пути газа, так что исключение NOx происходит во втором или в любом последующем движущемся слое ниже по потоку. Когда необходимо очищать большие объемы отходящего газа из промышленных печей, на очистку неблагоприятно влияет образование газовых струй, приводящее к переменным концентрациям диоксида серы. Этот недостаток исключается тем, что предварительно очищенный отходящий газ, покидающий первый движущийся слой и имеющий локальный переменный градиент концентрации диоксида серы, подвергают повторному перемешиванию до добавления аммиака в качестве реагирующего вещества для исключения NOx.
Патент США № 5636240, выданный Jeng-Syan и др. 3 июня 1997 года, относится к процессу регулирования загрязнения воздушной среды и к установке для стекловаренных печей, предназначенным для использования в выпускной трубе для отходящего газа печи, при этом способ включает пропускание газообразных отходов через нейтрализующую оросительную колонну для удаления сульфатов из газообразных отходов путем разбрызгивания абсорбента (NaOH), чтобы уменьшить непрозрачность отработавшего газа, и использование пневматического, подающего порошок устройства, предназначенного для периодической подачи летучей золы или гидроокиси кальция на участке между нейтрализующей оросительной колонной и загрузочным карманом для поддержания нормального функционирования мешочного фильтра в загрузочном кармане.
Горелки для пылевидного топлива
Наконец, необходимо рассмотреть горелки специальной конструкции для пылевидного или порошкового нефтяного кокса. Обычно энергию для воспламенения прикладывают к смеси горючего топлива и воздуха, чтобы зажечь пламя горелки. Разработаны горелки нескольких систем для сжигания пылевидного топлива, например угольного или нефтяного кокса.
В Международной заявке РСТ/ЕР83/00036 (Uwe Wiedmann et al.), опубликованной 1 сентября 1983 года, описана горелка для пылевидного, газообразного и/или жидкого топлива. Эта горелка имеет камеру зажигания со стенкой, которая незамкнута и имеет вращательную симметрию, а также выпускную трубку, присоединенную к ней. В центральной части стенки камеры имеется впускное отверстие трубки для подачи струи топлива, а также средство подачи воздуха, окружающее указанное впускное отверстие, предназначенное для подачи вихревого потока воздуха для горения, который создает внутри камеры зажигания горячий, совершающий циркуляцию поток, перемешивающий струю топлива и нагревающий его до температуры зажигания. Количество воздуха в вихревом потоке, подаваемом в камеру зажигания, составляет только часть суммарного воздуха, необходимого для горения. В области между стенкой камеры и выпускной трубкой расположена вторая трубка для подвода воздуха, по которой в камеру зажигания может быть введена другая часть воздуха для горения, при этом указанная часть полностью или частично смешивается со струей топлива. Объем части воздуха для горения, выделяемого внутри камеры зажигания для смешивания со струей воздуха (и, следовательно, для зажигания и начала горения), регулируют так, чтобы он не превышал 50% суммарного объема воздуха, необходимого для горения. При соответствующем согласовании всех этих показателей получается горелка, особенно подходящая для выработки теплоты, предназначенной для производственного процесса, и также имеющая промежуточные и изменяющиеся параметры устойчивого зажигания, создающая в камере сгорания пламя с удлиненным и тонким факелом и поэтому с небольшим радиальным отклонением частиц.
Патент США № 4412810, выданный Akira Izuha 1 ноября 1983 года, относится к горелке для пылевидного топлива, которая может обеспечивать устойчивое горение при снижении количества NOx, CO и несгоревшего углерода, образующихся вследствие горения.
Патент США № 4531461, выданный William H. Sayler 30 июля 1985 года, относится к системе для распыления и сжигания твердого топлива, такого как уголь или другое ископаемое топливо, а также для сжигания такого пылевидного топлива, находящегося в виде суспензии в потоке воздуха, преимущественно в промышленных печах, таких, которые используются для нагревания варочных котлов, предназначенных для получения гипса, и в металлургических печах.
Патент США № 4602575, выданный Klaus Grethe 29 июля 1986 года, относится к способу сжигания пыли нефтяного кокса в пламени горелки, имеющей зону интенсивной внутренней рециркуляции. Пыль нефтяного кокса подают в эту зону интенсивной рециркуляции, которая снабжает энергией зажигания пыль нефтяного кокса, которая должна сжигаться. Однако в этом патенте описано, что в зависимости от вида обработки, которой подвергалась сырая нефть, нефтяной кокс может содержать вредные материалы, например ванадий, который не только приводит к коррозии деталей во время сжигания в парогенераторах, но и также существенно загрязняет окружающую среду, когда выпускается из парогенератора вместе с отходящим газом. Предполагается, что при использовании такой горелки эти отрицательные эффекты или случаи появления вредных веществ можно исключить, добавляя в камеру сгорания связывающие ванадий вещества, вводя их в поток воздуха.
Еще одна разработка горелок для угля показана в патенте США № 4924784, выданном Dennis R. Lennon et al. 15 мая 1990 года, который относится к сжиганию пылевидного, очищенного селективными растворителями угля в горелке для парового котла или для аналогичного оборудования.
Наконец, патент США № 5829367, выданный Hideaki Ohta et al. 3 ноября 1998 года, относится к горелке для сжигания смеси обогащенного и бедного пылевидного угля, имеющей панель уменьшенного размера, при этом сама горелка в целом упрощена. Такие горелки могут быть использованы в топке котла или в химической промышленной печи.
Как описано выше, разработки были ориентированы на регулирование выбросов загрязняющих веществ из нефтяного кокса, однако они также были ориентированы на обессеривание или очистку нефтяного кокса.
С другой стороны, нефтяной кокс тем не менее уже используется в других отраслях промышленности, и в некоторых случаях продукт таким же образом поглощает загрязняющие газы, и также наблюдается эрозионное и абразивное воздействия ванадия на огнеупоры (см. цементную промышленность).
В каждом случае проблемы загрязнения и их решение зависят от особенностей каждой отрасли. В каждой отрасли промышленности печи имеют свои термические характеристики и существуют свои проблемы с загрязняющими веществами и с огнеупорами, на которые также оказывают влияние энергопотребление и качество продукции, зависящие от конструкции печи и конечного продукта.
ПРЕДЛОЖЕННОЕ РЕШЕНИЕ
Несмотря на все сказанное выше, до настоящего времени в стекольной промышленности сжигание нефтяного кокса для плавления шихты не рассматривалось вследствие всех факторов, описанных выше, таких как загрязнение и высокое содержание серы и ванадия, которые оказывают отрицательное воздействие на структуру огнеупоров в печах, а также приводят к возникновению серьезных проблем, связанных с окружающей средой.
Применительно ко всем процессам, описанным выше, настоящее изобретение относится к использованию дешевого твердого топлива из остатков от перегонки нефти (нефтяного кокса) при производстве промышленного стекла способом, не загрязняющим окружающую среду, уменьшающим опасность разрушения огнеупоров стекловаренной печи и снижающим выбросы загрязняющих веществ в атмосферу. Такое твердое топливо, какое было описано в уровне техники, не считается пригодным к использованию при варке стекла вследствие возникновения ранее описанных проблем.
Чтобы обеспечить эффективное горение, для использования в этом изобретении было разработано топочное оборудование, предназначенное для подачи и сжигания нефтяного кокса. Изобретение также касается системы регулирования выбросов, которая размещена после печи для очистки отходящих газов и исключает выбросы примесей из топлива, таких как SOx, NOx и частицы. При объединении разработанного оборудования, выборе правильной конфигурации оборудования и систем можно использовать дешевое топливо, производить промышленное стекло и получать отходящие газы с параметрами, укладывающимися в экологические нормативы.
Из сказанного выше следует, что настоящее изобретение относится к конструкции нескольких систем, применяемых в одном процессе для получения промышленного стекла в стекловаренной печи с боковым отверстием. Поэтому в стекловаренной печи с боковым отверстием пылевидное топливо, содержащее углерод, серу, азот, ванадий, железо и никель, сжигают для плавления стеклянной шихты с целью производства стеклянных листов или контейнеров. Подающими средствами пылевидное топливо подается к, по меньшей мере, одной горелке, при этом горелки размещены в каждом одном из множества первых и вторых боковых каналов в зоне стекловарения указанной стекловаренной печи, для сжигания пылевидного топлива во время циклов варки стекла, указанная стекловаренная печь имеет огнеупорные средства в камерах регенераторов стекловаренной печи, способные противостоять эрозионному воздействию стекломассы, коррозионному воздействию газообразных продуктов сгорания и абразивному воздействию частиц в атмосфере, образующихся при сжигании указанного пылевидного топлива в печи. Наконец, средство для регулирования загрязнения воздушной среды загрязняющими веществами, образующимися после сжигания пылевидного топлива в стекловаренной печи, расположено в выпускной трубе для отходящего газа, при этом указанное средство для регулирования загрязнения воздушной среды снижает выбросы в атмосферу соединений серы, азота, ванадия, железа и никеля.
Кроме того, для уменьшения или исключения возможного разрушения огнеупоров в исходных материалах для огнеупоров необходимо иметь 98% оксида магния, при этом чистота исходных материалов, образующих огнеупоры, определяет снижение количества оксида кальция, присутствующего в материале, и замедляет образование стеклофазы. Чтобы иметь примеси, окруженные оксидом магния, такой огнеупорный материал необходимо обжигать при высокой температуре для образования керамической связи в основном материале.
Основной огнеупорный материал, содержащий 98% или больше оксида магния, используется преимущественно в верхних рядах камер регенераторов стекловаренной печи. Другим примером огнеупорных материалов, которые можно использовать в камерах регенераторов или в верхних насадках регенераторов, являются сплавные литые материалы из циркона-кремнезема-глинозема, которые также при наличии кислотного воздействия, например пентаоксида ванадия, уменьшают последствия разрушения огнеупоров.
При правильном выборе огнеупорного материала для стекловаренной печи можно уменьшить влияние примесей, содержащихся в ископаемом топливе, основываясь на термодинамическом анализе и химическом составе примесей и химических соединений, образующих огнеупорные материалы.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Согласно настоящему изобретению первая задача настоящего изобретения заключается в создании способа и системы для подачи и сжигания пылевидного топлива в стекловаренной печи, предназначенных для подачи и сжигания пылевидного нефтяного кокса и снижения затрат на варку стекла.
Дополнительная задача настоящего изобретения заключается в создании способа и системы для подачи и сжигания пылевидного топлива, которое содержит углерод, серу, азот, ванадий, железо и никель, в стекловаренной печи, позволяющих регулировать выбросы, образующиеся при сжигании пылевидного топлива, чтобы очищать отходящие газы и снижать выбросы примесей из пылевидного топлива, таких как SOx, NOx и частицы, и при этом осуществлять регулируемое снижение выбросов после сжигания пылевидного топлива в стекловаренной печи.
Еще одна задача настоящего изобретения заключается в создании способа и системы для подачи и сжигания пылевидного топлива в стекловаренной печи, которые обеспечивают смешивание пылевидного топлива в совокупности с первичным воздухом или с газом, инжектируемым с высокой скоростью в каждую одну из горелок.
Дополнительная задача настоящего изобретения заключается в создании способа и системы для подачи и сжигания пылевидного топлива в стекловаренной печи, в которой использованы специальные огнеупоры для выполнения камер стекловаренной печи, а также для ослабления эрозионного и абразивного воздействий, наблюдающихся при сжигании указанного пылевидного топлива, особенно воздействий, создаваемых V2O5.
Дополнительная задача настоящего изобретения заключается в создании способа и системы для подачи и сжигания пылевидного топлива в стекловаренной печи, в соответствии с которыми пылевидное топливо подается непосредственно в печь при отношении количества топлива к количеству воздуха около 16%, в излишке по отношению к теоретически необходимому количеству воздуха.
Еще одна задача настоящего изобретения заключается в создании способа и системы для подачи и сжигания пылевидного топлива в стекловаренной печи, в соответствии с которыми можно одновременно осуществлять варку, используя топливо двух или трех видов. В варочной камере могут быть размещены ряды горелок для независимого сжиган