Волокна из сложного полиэфира с модифицированным поперечным сечением
Иллюстрации
Показать всеИзобретение относится к технологии получения волокон из сложных полиэфиров с модифицированным поперечным сечением, характеризующихся удовлетворительным цветовым тоном и превосходной формуемостью, и может быть применено в текстильной промышленности. Волокна из сложного полиэфира, характеризующиеся деформированным поперечным сечением, изготавливают из сложного полиэфирного полимера. Полимер получают поликонденсацией сложного эфира ароматической двухосновной карбоновой кислоты в присутствии катализатора, содержащего смесь компонента на основе соединения титана (А) и компонента на основе соединения фосфора (В). (А) включает, по меньшей мере, один алкоксид титана либо продукт реакции между ним и специфической карбоновой кислотой либо ее ангидридом. (В) - соединение общей формулы (III) и/или продукт реакции между компонентом на основе соединения титана (С) и компонентом на основе соединения фосфора (D), описываемым следующей далее общей формулой (IV). Полученные волокна характеризуются подходящим цветовым тоном и превосходным качеством без признаков ворсования. 14 з.п. ф-лы, 9 ил., 11 табл.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к волокнам из сложного полиэфира с модифицированным поперечным сечением. Говоря более конкретно, оно относится к волокнам из сложного полиэфира с модифицированным поперечным сечением, получаемым при использовании сложного полиэфирного полимера с удовлетворительным цветовым тоном и превосходной формуемостью.
Уровень техники
Сложные полиэфирные полимеры, в особенности полиэтилентерефталат, полиэтиленнафталат, политриметилентерефталат и политетраметилентерефталат, демонстрируют превосходные механические, физические и химические эксплуатационные свойства, и поэтому они широко используются для изготовления волокон, пленок и других формованных продуктов.
Такие сложные полиэфирные полимеры, например полиэтилентерефталат, обычно получают в результате синтеза сначала этиленгликолевого сложного эфира терефталевой кислоты и/или его низшего полимера, а после этого его нагревания при пониженном давлении в присутствии катализатора полимеризации для прохождения реакции до достижения желательной степени полимеризации. Другие сложные полиэфиры получают сходными способами.
Известно, что тип используемого катализатора поликонденсации оказывает решающее влияние на качество получающегося в результате сложного полиэфира, и в качестве катализаторов поликонденсации, предназначенных для получения полиэтилентерефталата, наиболее широко используются соединения сурьмы.
Однако с использованием соединений сурьмы связана проблема, обусловленная тем, что продолжительное непрерывное формование волокон из расплава сложных полиэфиров в результате приводит к накоплению инородных материалов, налипающих в окрестности прядильного отверстия (здесь и далее в настоящем документе называемому просто «налипанием на фильере»), и к изменению направления потока расплавленного полимера (загибанию), что, в конечном счете, становится причиной ворсования и разрыва нитей либо формирования неоднородных физических свойств элементарных нитей во время стадий формования волокон и вытяжки.
В частности, при попытке получения элементарных нитей с модифицированными поперечными сечениями при использовании формования волокон из расплава сложная форма прядильного отверстия обуславливает то, что инородный материал на фильере будет оказывать еще большее влияние на состояние выпуска расплавленного полимера при том, что во время формования волокон также будут иметь место и такие проблемы, как ворсование и разрыв нитей.
В качестве средства решения данных проблем было описано использование в качестве катализаторов получения сложных полиэфиров продуктов реакции между соединениями титана и тримеллитовой кислотой (например, смотрите японскую прошедшую экспертизу патентную публикацию SHO №59-46258) и использование в качестве катализаторов получения сложных полиэфиров продуктов реакции между соединениями титана и сложными эфирами фосфористой кислоты (например, смотрите японскую не прошедшую экспертизу патентную публикацию SHO №58-38722). Несмотря на то, что данные способы действительно в некоторой степени улучшают термостойкость расплава сложных полиэфиров, эффект от улучшения недостаточен, и для полученных сложных полиэфирных полимеров требуется улучшение цветового тона.
В качестве катализаторов получения сложных полиэфиров также были предложены комплексы соединение титана/соединение фосфора (например, смотрите японскую не прошедшую экспертизу патентную публикацию HEI №7-138354). Однако, несмотря на то, что данный способ в некоторой степени обеспечивает улучшение термостойкости расплава, данный эффект недостаточен, и для полученных сложных полиэфиров требуется улучшение цветового тона.
Раскрытие изобретения
Первой целью изобретения является решение упомянутых выше проблем предшествующего уровня техники в результате обеспечения волокон из сложного полиэфира с модифицированным поперечным сечением, отличающихся удовлетворительным цветовым тоном, отсутствием ворсования и высоким качеством. Данная цель достигается следующими волокнами из сложного полиэфира с модифицированным поперечным сечением.
Волокна из сложного полиэфира с модифицированным поперечным сечением, содержащие в качестве основного компонента сложный полиэфирный полимер и характеризующиеся наличием модифицированного поперечного сечения, где
данный сложный полиэфирный полимер получают в результате проведения поликонденсации с участием сложного эфира ароматической двухосновной карбоновой кислоты в присутствии катализатора,
данный катализатор содержит, по меньшей мере, один ингредиент, выбираемый из приведенных ниже смеси (1) и продукта реакции (2),
смесь (1) представляет собой смесь следующих компонентов (А) и (В):
(А) компонент на основе соединения титана, включающий, по меньшей мере, одно соединение, выбираемое из группы, состоящей из
(a) алкоксидов титана, описываемых следующей общей формулой (I):
где каждый из R1, R2, R3 и R4 независимо представляет собой одну группу, выбираемую из числа алкильных групп, содержащих от 1 до 20 атомов углерода, и фенильных групп, m представляет собой целое число в диапазоне 1-4, и если m представляет собой целое число, равное 2, 3 либо 4, то тогда две, три либо четыре группы R2 и R3 могут быть одинаковыми либо различными, и
(b) продуктов реакции между алкоксидами титана, описываемыми приведенной выше общей формулой (I), и ароматическими поливалентными карбоновыми кислотами, описываемыми следующей общей формулой (II):
где n представляет собой целое число в диапазоне 2-4,
либо их ангидридами, и
(В) компонент на основе соединения фосфора, содержащий, по меньшей мере, одно соединение, описываемое следующей общей формулой (III):
где каждый из R5, R6 и R7 независимо представляет собой алкильные группы, содержащие от 1 до 4 атомов углерода, а Х представляет собой, по меньшей мере, одну группу, выбираемую из группы -СН2- и группы -CH2(Y), где Y представляет собой фенильную группу,
смесь (1) катализатора используют при соотношении концентраций компонентов в смеси таком, что соотношение (%) MTi между миллимолями элемента титана в компоненте на основе соединения титана (А) и количеством молей сложного эфира ароматической двухосновной карбоновой кислоты и соотношение (%) Мр между миллимолями элемента фосфора в компоненте на основе соединения фосфора (В) и количеством молей сложного эфира ароматической двухосновной карбоновой кислоты удовлетворяют следующим далее выражениям (i) и (ii):
а продукт реакции (2) представляет собой продукт реакции между следующими компонентами (С) и (D):
(C) компонент на основе соединения титана, содержащий, по меньшей мере, одно соединение, выбираемое из группы, состоящей из
(c) алкоксидов титана, описываемых приведенной выше формулой (I), и
(d) продуктов реакции между алкоксидами титана, описываемыми приведенной выше общей формулой (I), и ароматическими поливалентными карбоновыми кислотами, описываемыми приведенной выше общей формулой (II), либо их ангидридами, и
(D) компонент на основе соединения фосфора, содержащий, по меньшей мере, одно соединение фосфора, описываемое следующей общей формулой (IV):
где R8 представляет собой алкильные группы, содержащие от 1 до 20 атомов углерода, либо арильные группы, содержащие от 6 до 20 атомов углерода, а р представляет собой целое число, равное 1 либо 2.
Компонент (А) смеси (1) для катализатора и компонент (С) продукта реакции (2) для катализатора для волокон из сложного полиэфира с модифицированным поперечным сечением изобретения предпочтительно содержат соответствующие алкоксид титана (а) и алкоксид титана (с), каждый с молярным соотношением в реакции по отношению к ароматической поливалентной карбоновой кислоте, описываемой общей формулой (II), либо ее ангидриду в диапазоне от 2:1 до 2:5.
В продукте реакции (2) для катализатора для волокон из сложного полиэфира с модифицированным поперечным сечением изобретения соотношение в реакции между компонентом (D) и компонентом (С) предпочтительно находится в диапазоне от 1:1 до 3:1 в расчете на отношение между молями атомов фосфора в компоненте (D) и молями атомов титана в компоненте (С) (P/Ti).
Соединение фосфора, описываемое общей формулой (IV), используемое в продукте реакции (2) для катализатора для волокон из сложного полиэфира с модифицированным поперечным сечением изобретения, предпочтительно выбирают из числа моноалкилфосфатов.
Сложный эфир ароматической двухосновной карбоновой кислоты в случае волокон из сложного полиэфира с модифицированным поперечным сечением изобретения предпочтительно представляет собой сложный диэфир, получаемый в результате проведения переэтерификации между диалкиловым эфиром ароматической двухосновной карбоновой кислоты и алкиленгликолевым сложным эфиром в присутствии катализатора, содержащего соединение титана.
Ароматическую двухосновную карбоновую кислоту в случае волокон из сложного полиэфира с модифицированным поперечным сечением изобретения предпочтительно выбирают из терефталевой кислоты, 1,2-нафталиндикарбоновой кислоты, фталевой кислоты, изофталевой кислоты, дифенилдикарбоновой кислоты и дифеноксиэтандикарбоновой кислоты, а алкиленгликоль предпочтительно выбирают из этиленгликоля, бутиленгликоля, триметиленгликоля, пропиленгликоля, неопентилгликоля, гексанметиленгликоля и додеканметиленгликоля.
Вторая цель изобретения заключается в обеспечении в дополнение к первой цели волокон из сложного полиэфира с модифицированным поперечным сечением, которые позволяют получать ткани, не вызывающие ощущения прилипания и характеризующиеся превосходной мягкостью, свойством непроницаемости, низкой проницаемостью для воздуха, гигроскопичностью и износостойкостью. Данная цель достигается при использовании следующих волокон из сложного полиэфира с модифицированным поперечным сечением.
Говоря конкретно, они представляют собой волокна из сложного полиэфира с модифицированным поперечным сечением, содержащие в качестве основного компонента сложный полиэфирный полимер, получаемый в результате проведения поликонденсации в присутствии упомянутого выше специфического катализатора, где форма поперечного сечения у каждого индивидуального волокна является плоской, и плоская форма представляет собой форму, включающую 3-6 форм с круглым поперечным сечением, соединенных в продольном направлении.
Волокна из сложного полиэфира с модифицированным поперечным сечением предпочтительно содержат неорганические частицы в количестве в диапазоне 0,2-10% (мас.).
В поперечном сечении волокон из сложного полиэфира с модифицированным поперечным сечением плоскостность, представляемая через соотношение А/В между протяженностью А длинной оси и максимальной протяженностью В короткой оси, перпендикулярной длинной оси А, предпочтительно находится в диапазоне 3-6.
В поперечном сечении волокон из сложного полиэфира с модифицированным поперечным сечением нерегулярность, представляемая через соотношение В/С между максимальной протяженностью В короткой оси и минимальной протяженностью С (минимальной протяженностью в точках соединения форм с круглым поперечным сечением), по величине предпочтительно превышает 1 и меньше 5.
Третья цель изобретения заключается в обеспечении в дополнение к первой цели волокон из сложного полиэфира с модифицированным поперечным сечением), отличающихся превосходными гигроскопичностью и способностью быстрого высыхания. Данная цель достигается следующими волокнами из сложного полиэфира с модифицированным поперечным сечением.
Говоря конкретно, они представляют собой волокна из сложного полиэфира с модифицированным поперечным сечением, содержащие в качестве основного компонента сложный полиэфирный полимер, получаемый в результате проведения поликонденсации в присутствии упомянутого выше специфического катализатора, где в поперечном сечении каждого индивидуального волокна от сердцевины поперечного сечения волокна наружу отходят 3-8 ребер, и коэффициент выступания, определяемый в соответствии с приведенной ниже формулой (iii), находится в диапазоне от 0,3 до 0,7.
Здесь a1 представляет собой расстояние от центра окружности, вписанной во внутренние стенки поперечного сечения волокна, до оконечности ребра, a b1 представляет собой радиус окружности, вписанной во внутренние стенки поперечного сечения волокна.
Степень кристалличности волокна в случае волокон из сложного полиэфира с модифицированным поперечным сечением предпочтительно не превышает 30%.
Степень усадки волокна в кипящей воде в случае волокон из сложного полиэфира с модифицированным поперечным сечением предпочтительно составляет 15-70%.
Четвертая цель изобретения заключается в обеспечении в дополнение к первой цели волокон из сложного полиэфира с модифицированным поперечным сечением, которые позволяют получать ткани, которые характеризуются наличием объемности и мягкого грифа. Данная цель достигается при использовании следующих волокон из сложного полиэфира с модифицированным поперечным сечением.
Говоря конкретно, они представляют собой волокна из сложного полиэфира с модифицированным поперечным сечением, содержащие в качестве основного компонента сложный полиэфирный полимер, получаемый в результате проведения поликонденсации в присутствии упомянутого выше специфического катализатора, где поперечное сечение каждого индивидуального волокна включает сердцевину и несколько ребер, отходящих от сердцевины в радиальном направлении по длине сердцевины, и волокна из сложного полиэфира, удовлетворяющие всем следующим далее соотношениям от (iv) до (vi), подвергают обработке в условиях щелочного гидролиза с целью отделения от сердцевин, по меньшей мере, некоторых ребер.
Здесь SA представляет собой площадь поперечного сечения сердцевины, DA представляет собой диаметр сердцевины, если поперечное сечение представляет собой круг, либо диаметр описанной окружности, если поперечное сечение круг собой не представляет, a SB, LB и WB представляют собой площадь поперечного сечения, максимальную длину и максимальную ширину ребер соответственно.
В случае описанных выше волокон из сложного полиэфира с модифицированным поперечным сечением в волокна из сложного полиэфира перед проведением щелочной обработки предпочтительно включают соединение, характеризующееся параметром совместимости χ, описываемым приведенным ниже соотношением (vii), в диапазоне 0,1-2,0, в количестве в диапазоне 0,5-5,0% (масс.) в расчете на массу волокон из сложного полиэфира.
Здесь Va представляет собой молярный объем (см3/моль) сложного полиэфира, R представляет собой газовую постоянную (Дж/моль·К), Т представляет собой абсолютную температуру (К), а δа и δb представляют собой параметры растворимости (Дж1/2/см3/2) для сложного полиэфира и соединения соответственно.
Пятая цель изобретения заключается в обеспечении в дополнение к первой цели волокон из сложного полиэфира с модифицированным поперечным сечением, которые позволяют получать шелковистую ткань, вызывающую ощущение грубоватого поскрипывания, превосходное ощущение пухлости, ощущение гибкости и легкости, при отсутствии пятен от неравномерного окрашивания. Данная цель достигается следующими волокнами из сложного полиэфира с модифицированным поперечным сечением.
Говоря конкретно, они представляют собой волокна из сложного полиэфира с модифицированным поперечным сечением, содержащие в качестве основного компонента сложный полиэфирный полимер, получаемый в результате проведения поликонденсации в присутствии упомянутого выше специфического катализатора, где форма поперечного сечения у индивидуального волокна представляет собой форму, включающую секцию треугольной формы и выступ, отходящий от одной вершины контура треугольника, где удовлетворяются оба следующих далее соотношения (viii) и (ix), и имеющую полую область в секции треугольной формы, составляющую 3-15% от нее.
Здесь L1 представляет собой расстояние от точки соединения секции треугольной формы и выступа до оконечности выступа, L2 представляет собой расстояние от точки соединения секции треугольной формы и выступа до стороны секции треугольной формы, противоположной точке соединения, h1 представляет собой ширину выступа, a h2 представляет собой длину стороны секции треугольной формы, противоположной точке соединения секции треугольной формы и выступа.
В волокна из сложного полиэфира с модифицированным поперечным сечением предпочтительно включают соль органической сульфоновой кислоты и металла, описываемую приведенной ниже общей формулой (V), в количестве в диапазоне 0,5-2,5% (мас.) при расчете на массу волокон из сложного полиэфира.
Здесь R9 представляет собой алкильные группы, содержащие от 3 до 30 атомов углерода, или же арильную либо алкиларильную группу, содержащую от 7 до 40 атомов углерода, а М представляет собой щелочной металл либо щелочноземельный металл.
Краткое описание чертежей
Фиг.1 представляет собой набор схематических иллюстраций, демонстрирующих примеры форм поперечного сечения для волокон из сложного полиэфира с модифицированным поперечным сечением, которые обеспечивают достижение второй цели изобретения.
Фиг.2 представляет собой схематическую иллюстрацию, с целью разъяснения размеров демонстрирующую один пример формы поперечного сечения для волокон из сложного полиэфира с модифицированным поперечным сечением, которые обеспечивают достижение второй цели изобретения.
Фиг.3 представляет собой схематическую иллюстрацию, демонстрирующую один пример формы поперечного сечения для волокон из сложного полиэфира с модифицированным поперечным сечением, которые обеспечивают достижение третьей цели изобретения.
Фиг.4 представляет собой схематическую иллюстрацию, демонстрирующую один пример выпускного отверстия фильеры, используемой для формования волокон из сложного полиэфира с модифицированным поперечным сечением, которые обеспечивают достижение третьей цели изобретения.
Фиг.5 представляет собой схематическую иллюстрацию, демонстрирующую один пример формы поперечного сечения для волокон из сложного полиэфира с модифицированным поперечным сечением до проведения обработки в условиях щелочного гидролиза, которые обеспечивают достижение четвертой цели изобретения.
Фиг.6 представляет собой схематическую иллюстрацию, демонстрирующую примеры выпускных отверстий фильеры, используемых для формования волокон из сложного полиэфира с модифицированным поперечным сечением, которые обеспечивают достижение четвертой цели изобретения.
Фиг.7 представляет собой схематическую иллюстрацию, демонстрирующую вид сбоку для волокон из сложного полиэфира с модифицированным поперечным сечением (после проведения обработки в условиях щелочного гидролиза), которые обеспечивают достижение четвертой цели изобретения.
Фиг.8 представляет собой схематическую иллюстрацию, с целью разъяснения размеров демонстрирующую один пример формы поперечного сечения для волокон из сложного полиэфира с модифицированным поперечным сечением, которые обеспечивают достижение пятой цели изобретения.
Фиг.9 представляет собой схематическую иллюстрацию, демонстрирующую один пример выпускного отверстия фильеры, используемой для формования волокон из сложного полиэфира с модифицированным поперечным сечением, которые обеспечивают достижение пятой цели изобретения.
Наилучший способ реализации изобретения
Существенный признак волокон из сложного полиэфира с модифицированным поперечным сечением изобретения заключается в том, что они представляют собой волокна из сложного полиэфира, содержащие в качестве основного компонента сложный полиэфирный полимер и характеризующиеся наличием модифицированного поперечного сечения, и в том, что сложный полиэфирный полимер получают в результате проведения поликонденсации с участием сложного эфира ароматической двухосновной кислоты в присутствии описанного в настоящем документе специфического катализатора. Это делает возможным получение волокон из сложного полиэфира с модифицированным поперечным сечением, отличающихся удовлетворительным цветовым тоном, а также отсутствием ворсования и высоким качеством, несмотря на формование волокон из фильеры со сложным выпускным отверстием. В дополнение к этому, поскольку стабильное производство из полимера можно осуществить даже и тогда, когда волокна из сложного полиэфира с модифицированным поперечным сечением будут характеризоваться высокой степенью нерегулярности, волокна могут демонстрировать удовлетворительные функции благодаря своим нерегулярности (гигроскопичность, способность противодействовать обрастанию, непроницаемость) и грифу (качество на ощупь, изменение цветового тона, блеск и тому подобное). «Модифицированное поперечное сечение» обозначает форму поперечного сечения, которая не является круглой формой, такую как в случае эллиптического, плоского, треугольного, квадратного, крестообразного, звездообразного, C-образного, H-образного, I-образного, L-образного, S-образного, T-образного, U-образного, V-образного, W-образного, X-образного, Y-образного либо Z-образного поперечного сечения. Эффект от изобретения более ярко проявляется в случае сложных форм поперечного сечения и модифицированных поперечных сечений со строго определенными углами и размерами в каждой области поперечного сечения.
Катализатор поликонденсации состоит, по меньшей мере, из одного представителя, выбираемого из числа (1) смесей компонента на основе соединения титана (А) и компонента на основе соединения фосфора (В), описанных далее, и (2) продуктов реакции между компонентом на основе соединения титана (С) и компонентом на основе соединения фосфора (D), описанными далее.
Соединение титана (А) в смеси (1) для катализатора поликонденсации состоит, по меньшей мере, из одного соединения, выбираемого из группы, состоящей из
(а) алкоксидов титана, описываемых следующей общей формулой (I):
где каждый из R1, R2, R3 и R4 независимо представляет собой одну группу, выбираемую из числа алкильных групп, содержащих от 1 до 20 атомов углерода, предпочтительно от 1 до 6 атомов, и фенильных групп, m представляет собой целое число в диапазоне 1-4, а предпочтительно 2-4, и если m представляет собой целое число, равное 2, 3 либо 4, то тогда две, три либо четыре группы R2 и R3 могут быть одинаковыми либо различными, и
(b) продуктов реакции между алкоксидами титана, описываемыми приведенной выше общей формулой (I), и ароматическими поливалентными карбоновыми кислотами, описываемыми следующей общей формулой (II):
где n представляет собой целое число в диапазоне 2-4, а предпочтительно 3-4,
либо их ангидридами.
Соединение фосфора (В) в смеси (1) для катализатора поликонденсации состоит, по меньшей мере, из одного соединения, описываемого следующей общей формулой (III):
где каждый из R5, R6 и R7 независимо представляет собой алкильные группы, содержащие от 1 до 4 атомов углерода, а Х представляет собой, по меньшей мере, одну группу, выбираемую из группы -СН2- и группы -CH2(Y) (где Y представляет собой фенильную группу).
Продукт реакции (2) для катализатора поликонденсации представляет собой продукт реакции между компонентом на основе соединения титана (С) и компонентом на основе соединения фосфора (D).
Компонент на основе соединения титана (С) состоит, по меньшей мере, из одного соединения, выбираемого из группы, состоящей из
(c) алкоксидов титана, описываемых приведенной выше формулой (I), и
(d) продуктов реакции между алкоксидами титана, описываемыми приведенной выше общей формулой (I), и ароматическими поливалентными карбоновыми кислотами, описываемыми приведенной выше общей формулой (II), либо их ангидридами.
Компонент на основе соединения фосфора (D) состоит, по меньшей мере, из одного соединения фосфора, описываемого следующей общей формулой (IV):
где R8 представляет собой алкильные группы, содержащие от 1 до 20 атомов углерода, либо арильные группы, содержащие от 6 до 20 атомов углерода, а р представляет собой целое число, равное 1 либо 2.
Если в качестве катализатора поликонденсации использовать смесь (1) компонента на основе соединения титана (А) и компонента на основе соединения фосфора (В), то тогда алкоксид титана (а), описываемый общей формулой (I), либо продукт реакции (b) между алкоксидом титана (а) и ароматической карбоновой кислотой, описываемой общей формулой (II), либо ее ангидридом, используемые в качестве компонента на основе соединения титана (А), будут характеризоваться высокими растворимостью в сложных полиэфирных полимерах и совместимостью с ними, и поэтому, даже если остаток компонента на основе соединения титана (А) и останется в сложном полиэфирном полимере, получаемом в результате проведения поликонденсации, во время формования волокон из расплава вокруг фильеры не произойдет никакого накопления инородного материала, так что можно будет получить волокна из сложного полиэфира удовлетворительного качества с высокой эффективностью формования.
В качестве описываемых общей формулой (I) алкоксидов титана (а), используемых в соответствующем изобретению компоненте на основе соединения титана (А) либо (С) катализатора поликонденсации, предпочтительны тетраизопропоксититан, тетрапропоксититан, тетра-н-бутоксититан, тетраэтоксититан, тетрафеноксититан, октаалкилтрититанат и гексаалкилдититанат.
Ароматическую поливалентную карбоновую кислоту, описываемую общей формулой (II), либо ее ангидрид, которые вводят в реакцию с алкоксидом титана (а) либо (с), предпочтительно выбирают из фталевой кислоты, тримеллитовой кислоты, гемимеллитовой кислоты, пиромеллитовой кислоты и их ангидридов. В частности, при использовании тримеллитового ангидрида будет получен продукт реакции, демонстрирующий высокое сродство к сложному полиэфирному полимеру, что обеспечит эффективное предотвращение накопления инородного материала.
Если алкоксид титана (а) либо (с) компонента на основе соединения титана (А) либо (С) вводить в реакцию с ароматической поливалентной карбоновой кислотой, описываемой общей формулой (II), либо ее ангидридом, то тогда, например, ароматическую поливалентную карбоновую кислоту либо ее ангидрид предпочтительно растворять в растворителе, по каплям добавлять к раствору алкоксид титана (а) либо (с) и нагревать смесь в течение, по меньшей мере, 30 минут при температуре 0-200°С. Растворитель, используемый в данном случае, в соответствии с необходимостью предпочтительно выбирают из этанола, этиленгликоля, триметиленгликоля, тетраметиленгликоля, бензола и ксилола.
На молярное соотношение в реакции между алкоксидом титана (а) либо (с) и ароматической поливалентной карбоновой кислотой, описываемой общей формулой (II), либо ее ангидридом никаких особенных ограничений не накладывается, но если доля алкоксида титана будет чрезмерно высокой, то тогда цветовой тон получающегося в результате сложного полиэфира может быть ухудшен, либо может быть понижена температура размягчения, в то время как, если доля алкоксида титана будет чрезмерно низкой, то тогда могут возникнуть трудности с прохождением реакции поликонденсации. Поэтому молярное соотношение в реакции между алкоксидом титана (а) либо (с) и ароматической поливалентной карбоновой кислотой, описываемой общей формулой (II), либо ее ангидридом предпочтительно находится в диапазоне от 2:) до 2:5.
Продукт реакции (b) либо (d), получаемый в результате проведения реакции, можно использовать непосредственно либо его можно использовать после проведения очистки в результате перекристаллизации при использовании ацетона, метилового спирта и/или этилацетата.
Соединение фосфора (фосфонатное производное), описываемое общей формулой (III), используемое в компоненте на основе соединения фосфора (В) соответствующей изобретению смеси (1) для катализатора поликонденсации, предпочтительно выбирают из числа диметиловых сложных эфиров, диэтиловых сложных эфиров, дипропиловых сложных эфиров и дибутиловых сложных эфиров производных фосфоновой кислоты, таких как карбометоксиметанфосфоновая кислота, карбоэтоксиметанфосфоновая кислота, карбопропоксиметанфосфоновая кислота, карбобутоксиметанфосфоновая кислота, карбометоксифенилметанфосфоновая кислота, карбоэтоксифенилметанфосфоновая кислота, карбопропоксифенилметанфосфоновая кислота, карбобутоксифенилметанфосфоновая кислота и тому подобное.
Если для реакции поликонденсации с участием сложного эфира ароматической двухосновной карбоновой кислоты использовать компонент на основе соединения фосфора (В), состоящий из соединения фосфора (фосфонатного производного), описываемого общей формулой (III), то тогда реакция с компонентом на основе соединения титана (А) будет протекать более умеренно в сравнении с реакцией с использованием соединений фосфора, применяемых в качестве стабилизаторов реакции обычно, и поэтому эксплуатационный срок службы в качестве катализатора у компонента на основе соединения титана (А) в способе проведения реакции поликоденсации будет более продолжительным, и в результате может быть использована меньшая доля компонента на основе соединения титана (А) по отношению к количеству сложного эфира ароматической двухосновной карбоновой кислоты в системе реакции поликонденсации. Кроме того, если даже в систему реакции поликонденсации, содержащую компонент на основе соединения фосфора (В), состоящий из соединения фосфора, описываемого общей формулой (III), добавить большое количество стабилизатора, то у полученного сложного полиэфирного полимера не произойдет никакого ухудшения термостойкости, и его цветовой тон также будет удовлетворительным.
Если в качестве катализатора поликонденсации, соответствующего изобретению, использовать смесь (1), то тогда смесь (1) используют при таком соотношении концентраций компонентов в смеси, что соотношение (%) MTi между миллимолями элемента титана в компоненте на основе соединения титана (А) и количеством молей сложного эфира ароматической двухосновной карбоновой кислоты и соотношение (%) Мр между миллимолями элемента фосфора в компоненте на основе соединения фосфора (В) и количеством молей сложного эфира ароматической двухосновной карбоновой кислоты будут удовлетворять следующим далее соотношениям (i) и (ii):
Соотношение Мр/Мтi находится в диапазоне от 1 до 15, а предпочтительно от 2 до 10. Если соотношение Мр/МTi будет меньше 1, то тогда цветовой тон полученного сложного полиэфирного полимера может быть желтоватым, в то время как, если оно будет больше 15, то тогда реакционная способность к поликонденсации у катализатора поликонденсации с таким составом будет недостаточной, что сделает получение целевого сложного полиэфирного полимера затруднительным. Диапазон для соотношения Мр/МTi, соответствующий изобретению, относительно узок в сравнении с диапазоном, используемым для обычных катализаторов Ti-P, но выдерживание такого диапазона позволяет добиться превосходного результата, который не получали в случае обычно используемых катализаторов Ti-P.
Значение суммы (Мр+МTi) находится в диапазоне от 10 до 100, а предпочтительно от 20 до 70. Если значение (Мр+МTi) будет меньше 10, то тогда волокнообразующие свойства у полученного сложного полиэфирного полимера, производительность способа формования волокон из расплава и эксплуатационные характеристики полученных волокон будут неудовлетворительными. Если значение (Мр+МТi) будет больше 100, то тогда при использовании полученного сложного полиэфирного полимера для формования волокон из расплава вокруг фильеры будет наблюдаться накопление инородного материала в небольшой, но существенной степени. Значение Мтi в общем случае предпочитается иметь в диапазоне 2-15, а более предпочтительно 3-10.
Если в качестве катализатора поликонденсации, соответствующего изобретению, использовать продукт реакции (2), то тогда соединением фосфора, описываемым общей формулой (IV), используемым в качестве соединения фосфора (D), могут быть, например, моноалкилфосфат, такой как моно-н-бутилфосфат, моногексилфосфат, монододецилфосфат, монолаурилфосфат либо моноолеилфосфат; моноарилфосфат, такой как монофенилфосфат, монобензилфосфат, моно(4-этилфенил)фосфат, монобифенилфосфат, мононафтилфосфат либо моноантрилфосфат; диалкилфосфат, такой как диэтилфосфат, дипропилфосфат, дибутилфосфат, дилаурилфосфат либо диолеилфосфат, или же диарилфосфат, такой как дифенилфосфат. Из их числа предпочтительными являются моноалкилфосфаты либо моноарилфосфаты, где р в формуле (IV) равен 1.
Компонент на основе соединения фосфора (D), используемый в изобретении, может представлять собой смесь двух либо более чем двух соединений фосфора, описываемых общей формулой (IV), и в качестве примеров предпочтительных комбинаций могут быть упомянуты смеси моноалкилфосфатов и диалкилфосфатов либо смеси монофенилфосфатов и дифенилфосфатов. В особенности предпочтительными являются композиции, где моноалкилфосфат составляет, по меньшей мере, 50%, а в особенности, по меньшей мере, 90% смеси в расчете на полную массу смеси.
Способ получения продукта реакции между компонентом на основе соединения титана (С) и компонентом на основе соединения фосфора (D) может включать, например, объединение компонентов (С) и (D) и нагревание их в гликоле. Говоря конкретно, нагревание гликолевого раствора, содержащего компонент на основе соединения титана (С) и компонент на основе соединения фосфора (D), будет приводить к помутнению гликолевого раствора с выпадением компонентов (С) и (D) в осадок в виде продуктов реакции. Осадок можно собирать для использования в качестве катализатора для получения сложного полиэфирного полимера.
Гликоль, используемый в данном случае, предпочтительно представляет собой тот же самый гликолевый компонент, что и используемый при получении сложного полиэфира с применением полученного катализатора. Например, этиленгликоль предпочтителен, если сложный полиэфир представляет собой полиэтилентерефталат, 1,3-пропандиол предпочтителен, если сложный полиэфир представляет собой политриметилентерефталат, и тетраметиленгликоль предпочтителен, если сложный полиэфир представляет собой политетраметилентерефталат.
Продукт реакции поликонденсации (2), соответствующий изобретению, можно получать по способу с одновременным объединением компонента в виде соединения титана (С) и соединения фосфора (D) и гликоля и их нагреванием. Однако, поскольку нагревание вызывает протекание реакции между компонентом на основе соединения титана (С) и компонентом на основе соединения фосфора (D) с получением выпавшего в осадок продукта р