Способ формирования сигналов стабилизации и самонаведения подвижного носителя и бортовая система самонаведения для его осуществления

Иллюстрации

Показать все

Изобретение относится к области систем самонаведения подвижных носителей. Технический результат - повышение точности, линейной и угловой разрешающей способности, помехозащищенности самонаведения при одновременном повышении помехоустойчивости и динамической точности автосопровождения объекта визирования по направлению и дальности. Сущность изобретения заключается в том, что формируют сигналы, пропорциональные проекциям вектора кажущегося линейного ускорения и проекциям вектора абсолютной скорости поворота вектора (линии) визирования цели на соответствующие координатные оси базовой антенной системы координат. По полученным сигналам с учетом начальной информации назначения цели или/и объекта визирования (ОВ) и начальных условий выставки инерциального измерения параметров вектора визирования определяют сигналы, пропорциональные текущим значениям вектора визирования цели, т.е. проекций вектора абсолютной линейной скорости сближения подвижного носителя с целью на соответствующие координатные оси базовой антенной системы координат, наклонной дальности сближения подвижного носителя с целью, составляющих пространственной угловой координаты цели в базовой антенной системе координат, направляющих косинусов взаимного углового положения базовой антенной системы координат и опорной геоцентрической системы координат, связанной одной своей координатной осью с неподвижной целью или/и с ОВ, расположенной, например, на земной поверхности. При отсутствии локационного контакта с целью или/и с ОВ преобразуют полученные сигналы в сигналы стабилизации подвижного носителя от его колебаний относительно своего центра масс в горизонтальной плоскости, в вертикальной плоскости и по крену, а также в сигналы самонаведения подвижного носителя на цель, пропорциональные перегрузкам. При поиске ОВ и его автосопровождении формируют сигналы по основному или по встроенному коротковолновому каналу излучения волн, которые пропорциональны составляющим пространственной угловой координаты ОВ и наклонной дальности до ОВ в антенной системе координат. При этом определяют сигналы, пропорциональные параметрам траекторных флюктуаций и деформирующих воздействий корпуса подвижного носителя на пространственное положение фазового центра антенны относительно цели или/и ОВ. По этим сигналам формируют сигнал, пропорциональный фазе опорной функции, являющейся функцией модуля вектора визирования цели или/и ОВ в смещенной системе координат, т.е. наклонной дальности до цели или/и ОВ, а также скорости ее изменения и ускорения за время интервала разрешения цели или/и ОВ. Положение смещенной системы координат при этом определяется вектором смещения фазового центра антенны или/и центра излучения зондирующих сигналов антенны относительно центра пересечения осей чувствительности измерения проекций кажущегося линейного ускорения и проекций вектора абсолютной угловой скорости поворота вектора (линии) визирования цели или/и ОВ в процессе инерциального измерения параметров вектора визирования цели или/и ОВ. По полученному сигналу, пропорциональному фазе опорной функции, определяют сигнал, пропорциональный фазовой поправке, компенсирующей в принимаемых сигналах, отраженных от облучаемого ОВ, траекторную нестабильность фазового центра антенны и деформирующих воздействий корпуса подвижного носителя. При автосопровождении ОВ по направлению и по дальности сравнивают сформированные сигналы, пропорциональные текущим параметрам вектора визирования цели в базовой антенной системе координат, соответственно с идентичными сигналами автосопровождения ОВ по направлению и по дальности в этой системе координат. Затем осуществляют оптимальную адаптивную помехоустойчивую фильтрацию соответствующих сигналов сравнения и формируют сигналы, пропорциональные точным оценкам соответствующих сигналов сравнения. Сигналами, пропорциональными точным оценкам, корректируют сигналы, пропорциональные соответственно текущим значениям параметров вектора визирования цели. По этим сигналам производят поворот вектора визирования по углу наклона и по азимуту относительно корпуса подвижного носителя до совмещения ее с направлением на ОВ, а при автосопровождении ОВ формируют сигналы, пропорциональные наклонной дальности и скорости сближения подвижного носителя с ОВ. Кроме того, формируют одновременно сигналы, пропорциональные скорости изменения соответственно углов визирования ОВ в горизонтальной и вертикальной плоскости в горизонтальной системе координат. По полученным данным формируют сигналы стабилизации подвижного носителя от колебаний его относительно центра масс в горизонтальной плоскости, в вертикальной плоскости и по крену, а также сигналы самонаведения подвижного носителя, пропорциональные перегрузкам соответственно в горизонтальной и в вертикальной плоскости. 2 н.п. ф-лы, 6 ил.

Реферат

Предлагаемое техническое решение относится к области систем самонаведения для самодвижущихся объектов.

Оно предназначено для:

- измерения ускорений, скоростей, расстояний, угловых положений подвижного носителя бортовой системы самонаведения, горизонтального и вертикального угла визирования, азимута и угла места (наклона) визируемых объектов;

- формирования сигналов стабилизации и самонаведения для управления подвижным носителем

и может быть использовано в системах:

- определения параметров взаимного положения подвижного носителя и объекта визирования (подвижного или неподвижного) при их сближении;

- обеспечения управления подвижными носителями при самонаведении на объект визирования не только при наличии их локационного контакта, но и при его отсутствии;

- с повышенными угловой и линейной разрешающей способностью, точностью, дальностью действия, помехоустойчивостью и помехозащищенностью;

- пеленгации и автосопровождения объектов визирования (подвижных и/или неподвижных) по направлению и по дальности.

Известны различные способы наведения ракет и устройства систем наведения (патент RU №2239769 2002.11.27, кл. F41G 7/20; DE №19740888 A1 17.09.97, кл. F41G 7/00), где предлагаются технические решения по автономному управлению в одном случае вращающегося артиллерийского снаряда, а в другом случае по формированию управляющих сигналов при самонаведении в процессе локационного контакта с целью с использованием информации об угловой скорости поворота линии визирования.

Известна также система для точного определения вертикальной скорости ракеты и ее положения в пространстве (патент US №6082666 А 03.12.97, кл. F41G 7/00), содержащая радар, инерциальный блок, фильтр Калмана и линию обратной связи. Система обеспечивает оценку ошибок в измерении скорости, полученной от инерциального блока и вычислительной цепи.

Известны, кроме того, способ и устройство наведения ракеты на подвижную цель (WO №9939150 A1 20.01.99, кл. F41G 7/20), в которых точка перехвата, где ожидается встреча ракеты с целью, вычисляется на основании прогнозирования будущего движения цели и вычисления времени встречи ракеты с целью.

Указанные выше аналоги обладают общими недостатками: они не обеспечивают необходимые точность наведения, помехозащищенность, угловую и линейную разрешающую способность.

Известен блок управления наведением ракеты (патент JP №2848238 В2 7294196 А 27.04.94, кл. F41G 7/22), где на начальном участке наведения управляет ракетой автопилот, обеспечивая заданную траекторию полета в соответствии с программой при использовании выходной информации из инерциального блока. При достижении дальности до цели, на которой происходит захват цели, головка включается в режим поиска с использованием блока, создающего большую управляющую силу для разгона и торможения головки. Управление головкой при захвате цели осуществляется в соответствии с заданным изображением цели.

Из известных аналогов наиболее близким по технической сущности и назначению является способ формирования сигналов для стабилизации и самонаведения подвижного носителя, осуществляемый с помощью этого блока управления наведением ракеты.

Способ и устройство по патенту JP №2848238, однако, не отвечают современным повышенным требованиям к формированию сигналов стабилизации и сигналов самонаведения высокоточных подвижных носителей и к бортовым системам самонаведения, предназначенным для их оснащения, так как обладают следующими основными недостатками:

- не обеспечивают необходимую точность самонаведения подвижного носителя из-за отсутствия в системе информации о проекциях вектора кажущегося линейного ускорения и о проекциях вектора абсолютной угловой скорости поворота линии (вектора) визирования в антенной базовой системе координат Oxyz, особенно при повышенной дальности действия подвижного носителя (т.е. при повышенном времени работы устройства-прототипа);

- недостаточные угловая и линейная разрешающие способности, которые должны быть сопоставимы с размерами обнаруживаемого (в том числе и малоразмерного) ОВ и которые необходимы для решения задачи самонаведения подвижного носителя на ОВ с малой эффективной поверхностью рассеивания (ЭПР) и при наличии гидрометеоров на трассе движения носителя;

- конструктивно ограничены углы прокачки наружной и внутренней рамок двухосного карданова подвеса при заданном ограниченном диаметре отсека размещения устройства вследствие переменной электрической редукции между углами поворота параболического зеркала относительно центра излучения неподвижного многоканального облучателя и соответствующими углами поворота линии (вектора) визирования, что, в свою очередь, ограничивает диапазон угла наклона траектории на автономном, например, баллистическом участке траектории движения носителя, снижая его тактико-технические характеристики.

Цель заявляемых технических решений (способа и устройства для его осуществления) - обеспечение повышенных точности самонаведения подвижного носителя, угловой и линейной разрешающей способности самонаведения при одновременном повышении помехоустойчивости, а также помехозащищенности в условиях внешних мешающих воздействий в простых и сложных метеоусловиях при наличии гидрометеоров на трассе движения носителя и увеличении диапазона угла наклона траектории на автономном, например, баллистическом участке траектории движения носителя.

Сущность предлагаемого изобретения заключается в том, что по предлагаемому способу при предстартовой подготовке подвижного носителя, кроме задания начальных координат цели или/и начального назначения ОВ, формируют начальные условия выставки инерциального измерения параметров вектора визирования цели в виде пакета последовательных информационных слов (информационный массив), содержащего дополнительно начальные значения проекций Vξ0, Vη0, Vζ0, вектора линейной скорости предстартового перемещения подвижного носителя на соответствующие координатные оси горизонтальной системы координат Оξηζ с началом в центре масс подвижного носителя, декартовых координат ξ0, η0, ζ0 цели или/и ОВ, географической долготы λ0 и географической широты ϕ0 подвижного носителя (фиг.1). На борту подвижного носителя преобразуют заданные начальные условия выставки инерциального измерения параметров вектора визирования цели или/и ОВ в сигналы, пропорциональные проекциям Vx0, Vy0, Vz0 вектора линейной скорости предстартового перемещения подвижного носителя на соответствующие координатные оси базовой антенной системы координат Oxyz (фиг.2), в сигналы, пропорциональные углам и визирования цели или/и ОВ соответственно в горизонтальной плоскости и в вертикальной плоскости в горизонтальной системе координат Оξηζ (фиг.3), в сигналы, пропорциональные составляющим и пространственной угловой координаты или/и ОВ в базовой антенной системе координат Oxyz (фиг.2), в сигналы, пропорциональные направляющим косинусам где i, j = 1, 2, 3, определяющим начальное взаимное положение базовой антенной системы координат Oxyz и опорной геоцентрической системы координат Сξ0η0ζ0, связанной одной своей координатной осью Сζ0 с неподвижной целью или/и с ОВ, расположенной, например, на земной поверхности (фиг.1).

В момент времени старта подвижного носителя обновление начальной информации прекращается, одновременно измеряют сигналы, пропорциональные проекциям nзх, nзy, nзz вектора кажущегося линейного ускорения движения и проекциям ωзх, ωзy, ωзz вектора абсолютной угловой скорости поворота зеркала антенны на соответствующие координатные оси системы координат Охзyзzз, связанной с зеркалом антенны, где Охз - оптическая ось зеркала. По этим измеренным сигналам с учетом переменной электрической редукции определяют сигналы, пропорциональные проекциям nx, ny, nz вектора кажущегося линейного ускорения движения и проекциям ωx, ωy, ωz вектора абсолютной угловой скорости поворота вектора (линии) визирования цели на соответствующие координатные оси базовой антенной системы координат Oxyz. По полученным сигналам с учетом начальной информации назначения цели или/и ОВ и начальных условий выставки инерциального измерения параметров вектора визирования формируют сигналы, пропорциональные текущим значениям параметров вектора визирования цели, а именно: проекций Vx, Vy, Vz вектора абсолютной линейной скорости сближения подвижного носителя с целью на соответствующие координатные оси базовой антенной системы координат Oxyz, наклонной дальности L сближения подвижного носителя с целью, составляющих e1 и е2 пространственной угловой координаты цели в базовой антенной системе координат Oxyz (фиг.2), направляющих косинусов βij, где i, j = 1, 2, 3, взаимного углового положения базовой антенной системы координат Oxyz и опорной геоцентрической системы координат Сξ0η0ζ0, связанной одной своей координатной осью Сζ0 с неподвижной целью или/и с ОВ, расположенной, например, на земной поверхности (фиг.1). При отсутствии локационного контакта с целью или/и с ОВ преобразуют полученные сигналы, пропорциональные соответствующим текущим значениям параметров вектора визирования цели, в управляющие сигналы, по которым осуществляют поворот зеркала антенны по углу наклона и по азимуту , которые регистрируют и затем с учетом переменной электрической редукции преобразуют в сигналы, пропорциональные углам поворота вектора (линии) визирования по углу наклона и по азимуту относительно корпуса подвижного носителя до совмещения его направления с направлением на цель, и совмещают метку (подвижный строб) дальности с целью. При этом формируют сигналы, пропорциональные скорости изменения углов визирования цели в горизонтальной и в вертикальной плоскости в системе координат Оξηζ (фиг.3), а также сигналы, пропорциональные скорости изменения угла наклона и азимута (скорости изменения пеленгов цели) в связанной системе координат Ox1y1z1 (фиг.4). Одновременно преобразуют сигналы, пропорциональные проекциям ωx, ωy, ωz вектора абсолютной угловой скорости поворота базовой антенной системы координат Oxyz, в сигналы, пропорциональные его проекциям на соответствующие координатные оси связанной системы координат Ox1y1z1. По полученным сигналам определяют сигналы, пропорциональные скорости изменения соответственно рыскания , тангажа , крена подвижного носителя, по которым формируют сигналы, пропорциональные соответственно рысканию ψ, тангажу ϑ, крену γ с учетом их начальных значений, полученных при предстартовой подготовке подвижного носителя. При этом определяют сигналы, пропорциональные проекциям вектора углового ускорения подвижного носителя на соответствующие координатные оси связанной системы координат Ox1y1z1. Наконец, по полученным сигналам формируют сигналы стабилизации подвижного носителя от его колебаний относительно своего центра масс в горизонтальной плоскости δг, в вертикальной плоскости δв и по крену δк, а также сигналы самонаведения подвижного носителя на цель, пропорциональные перегрузкам nв и nг, которые являются функциями, например, текущих значений сформированных углов положения подвижного носителя в вертикальной плоскости и в горизонтальной плоскости, функциями текущих значений модуля наклонной скорости сближения подвижного носителя с целью и составляющих и вектора угловой скорости поворота вектора (линии) визирования цели соответственно в вертикальной и в горизонтальной плоскости в системе координат Сξηζ. Полученную информацию преобразуют в управляющие сигналы, которые поступают в виде информационного массива стабилизации и управления по информационной линии связи во внешнюю аппаратуру управления рулевым приводом подвижного носителя.

При достижении значения наклонной дальности сближения подвижного носителя с целью, равной величине наклонной дальности возможного локационного контакта с ОВ, излучают последовательно зондирующие сигналы сначала основного диапазона волн и затем встроенного более коротковолнового диапазона волн согласно принятой логике поиска ОВ. При этом частота более коротковолнового диапазона волн превышает в четное число раз частоту основного диапазона волн, линейная поляризация основного диапазона волн ортогональна по отношению к линейной поляризации основного диапазона волн, а линии визирования встроенного и основного каналов излучения совмещают между собой и с начальной юстировкой обоих каналов излучения со строительными осями подвижного носителя, причем управление направлением совмещенной линии визирования отрабатывают одним и тем же приводом зеркала антенны основного диапазона волн. Затем осуществляют секторный поиск ОВ по направлению и поиск ОВ по дальности. Принимают отраженные от облучаемых ОВ сигналы, находящиеся в пределах сектора поиска ОВ по направлению и в зоне поиска ОВ по дальности, производят по основному или по встроенному более коротковолновому диапазону обнаружение, выбор и захват ОВ, выбранного из всех обнаруженных в секторе поиска ОВ согласно принятым критериям выбора, на автосопровождение по дальности и по направлению, совмещают информацию, полученную в результате первичной обработки принимаемых отраженных от облучаемого ОВ высокочастотных сигналов по основному или встроенному диапазону волн, подвергают полученные сигналы вторичной (низкочастотной) обработке. В результате этого формируют сигналы по основному или по встроенному каналу излучения, которые пропорциональны составляющим пространственной угловой координаты ОВ и наклонной дальности до ОВ в антенной системе координат Oxyz. При этом по сигналам, пропорциональным измеренным значениям проекций вектора кажущегося линейного ускорения и проекций вектора абсолютной угловой скорости поворота вектора (линии) визирования цели или/и ОВ на соответствующие координатные оси базовой антенной системы координат Ox0y0z0, остановленной в момент времени начала поиска ОВ (или в течение заданного интервала измерения), с учетом линейного смещения фазового центра антенны (или/и центра излучения зондирующих сигналов) относительно центра пересечения осей чувствительности измерения проекций вектора кажущегося линейного ускорения и проекций вектора абсолютной угловой скорости поворота вектора (линии) визирования цели или/и ОВ определяют сигналы, пропорциональные параметрам траекторных флюктуаций и деформирующих (упругих, вибрационных и т.п.) воздействий корпуса подвижного носителя на пространственное положение фазового центра антенны относительно цели или/и ОВ. Причем измеряют сигналы, пропорциональные параметрам движения апертуры антенны относительно наблюдаемого (визируемого) объекта, т.е. цели или/и ОВ, которые являются параметрами траекторного сигнала, в системе координат Oxсмyсмzсм, смещенной относительно фиксированной базовой антенной системы координат на некоторое расстояние, т.е. относительно фазового центра антенны. По этим сигналам формируют сигнал, пропорциональный фазе опорной функции, являющейся функцией модуля вектора визирования цели или/и ОВ в смещенной системе координат Oxсмyсмzсм, т.е. наклонной дальности до цели или/и ОВ, в момент времени начала поиска ОВ (или заданного интервала измерения), а также скорости ее изменения и ускорения за время поиска ОВ (или в течение заданного интервала времени измерения). Затем по полученному сигналу, пропорциональному фазе опорной функции, определяют сигнал, пропорциональный фазовой поправке, компенсирующей в принимаемых сигналах, отраженных от облучаемого ОВ, траекторную нестабильность фазового центра антенны и деформирующие (упругие, вибрационные и т.п.) воздействия корпуса подвижного носителя, перемещающегося по траектории. При автосопровождении ОВ по направлению и по дальности сравнивают сформированные сигналы, пропорциональные текущим значениям параметров вектора визирования цели в базовой антенной системе координат Oxyz, а именно: составляющих пространственной угловой координаты цели и наклонной дальности сближения подвижного носителя с целью, соответственно, с идентичными сигналами автосопровождения ОВ по направлению и по дальности, пропорциональными текущим значениям параметров вектора визирования ОВ в базовой антенной системе координат Oxyz, осуществляют оптимальную адаптивную помехоустойчивую фильтрацию соответствующих сигналов сравнения, формируя сигналы, пропорциональные точным оценкам соответствующих сигналов сравнения, полученным в результате оптимальной адаптивной фильтрации, с помощью которых компенсируют (корректируют) сигналы, пропорциональные соответственно текущим значениям параметров вектора визирования цели. После этого по сигналам, полученным в результате компенсации (коррекции), формируют управляющие сигналы, по которым производят поворот зеркала антенны по углу наклона и по азимуту относительно корпуса подвижного носителя, регистрируют их и затем с учетом переменной электрической редукции преобразуют их соответственно в углы отклонения линии (вектора) визирования по углу наклона и по азимуту относительно корпуса подвижного носителя до совмещения ее (его) с направлением на ОВ, а при автосопровождении по дальности отфильтрованный сигнал рассогласования (ошибки) интегрируют во времени и получат информацию о наклонной дальности и скорости сближения подвижного носителя с ОВ. Одновременно формируют сигналы, пропорциональные скорости изменения соответственно углов визирования ОВ в горизонтальной и в вертикальной плоскости в системе координат Оξηζ, сигналы стабилизации подвижного носителя от колебаний относительно своего центра масс в горизонтальной δг, вертикальной δв плоскости и по крену δк, сигналы самонаведения подвижного носителя на ОВ, пропорциональные перегрузкам соответственно в горизонтальной nг и в вертикальной nв плоскости, которые являются, например, функциями текущих значений модуля скорости изменения наклонной дальности L сближения подвижного носителя с ОВ и скорости изменения углов визирования ОВ соответственно в горизонтальной и в вертикальной плоскости, преобразуют полученные сигналы в сигналы управления рулевым приводом подвижного носителя, обеспечивая стабилизацию и самонаведение подвижного носителя на ОВ согласно принимаемому закону самонаведения.

Сущность предлагаемого изобретения заключается также в том, что бортовая система самонаведения подвижного носителя, реализующая способ, включает параболическое зеркало, многоканальный облучатель с линейной поляризацией основного диапазона волн, двухосный карданов подвес, управляемый чувствительный и исполнительный элемент следящего гиропривода, датчик угла поворота наружной рамки и датчик угла поворота внутренней рамки двухосного карданова подвеса, три однокомпонентных измерителя линейных ускорений, устройство управления направлением и гиростабилизации линии визирования, суммарно-разностный преобразователь (СРП) сверхвысокочастотных (СВЧ) сигналов и волноводно-коммутирующее устройство (ВКУ) основного диапазона волн, двухканальный гироскопический датчик угловой скорости (ДУС), установленный во внутренней рамке двухосного карданова подвеса так, что в заарретированном положении одна из его осей чувствительности совпадает с нулевым направлением вектора (линии) визирования, а другая его ось чувствительности ориентирована, например, вверх вдоль положительного направления оси вращения внутренней рамки, причем кинетический момент ротора гироскопического ДУС совпадает с положительным направлением оси вращения наружной рамки, причем все три однокомпонентных измерителя линейного ускорения установлены во внутренней рамке двухосного карданова подвеса, а ось чувствительности одного из них взаимно ортогональна по отношению к взаимно ортогональным осям чувствительности двух других однокомпонентных измерителей линейного ускорения, при этом ось чувствительности одного из трех однокомпонентных измерителей линейного ускорения совпадает в заарретированном положении с нулевым направлением линии визирования. Расстояние между каждым из шарниров жестких тяг, размещенных на параболическом зеркале, и центром вращения параболического зеркала равно расстоянию между каждым из шарниров, установленных соответственно на наружной рамке и на внутренней рамке двухосного карданова подвеса, и центром вращения этих рамок. Кроме того, система содержит радионавигационный приемоизмеритель, цифровое вычислительно устройство (ЦВУ), а также малое гиперболическое решетчатое зеркало диаметром в несколько раз меньше (например, в четыре раза) по сравнению с основным параболическим зеркалом. Малое гиперболическое решетчатое зеркало жестко связано с помощью неподвижных волноводов с основанием антенного устройства и, следовательно, с корпусом подвижного носителя. Один из фокусов малого гиперболического решетчатого зеркала, являющийся дальним по отношению к основному параболическому зеркалу, совпадает с фокусом параболического зеркала, а в другом фокусе малого гиперболического решетчатого зеркала, который является ближним по отношению к основному параболическому зеркалу, размещен фазовый центр антенны (или/и центр излучения неподвижного многоканального облучателя прямого облучения) основного диапазона волн с линейной поляризацией, совпадающей с направлением проводников решетки малого гиперболического зеркала. В дальнем фокусе малого гиперболического решетчатого зеркала размещен фазовый центр антенны (или/и центр излучения многоканального облучателя прямого облучения) более коротковолнового диапазона волн с линейной поляризацией, ортогональной относительно направления проводников решетки малого гиперболического зеркала. При этом многоканальный облучатель прямого облучения более коротковолнового диапазона волн жестко связан с основанием антенного устройства и, следовательно, с корпусом подвижного носителя с помощью неподвижных волноводов, соединяющихся с дополнительно введенным СРП СВЧ-сигналов более коротковолнового диапазона волн. СРП соединен с дополнительно введенным ВКУ более коротковолнового диапазона волн, управляемым сигналами сканирования. Приемопередатчик выполнен двухдиапазонным для основного и более коротковолнового диапазона волн. Соответствующие входы приемопередатчика с помощью волноводов соединены с выходами ВКУ более коротковолнового диапазона волн, подключенного своими входами также с помощью волноводов к дополнительно введенному СРП СВЧ-сигналов более коротковолнового диапазона волн. При этом выходы трех однокомпонентных измерителей линейного ускорения, выходы датчиков угла поворота соответственно наружной и внутренней рамок двухосного карданова подвеса, выходы двухканального гироскопического ДУС, выходы устройства управления направлением и гиростабилизации линии (вектора) визирования, а также выход видеосигнала двухдиапазонного передатчика соединены с соответствующими входами ЦВУ, а выходы сигналов рассогласования (ошибки) устройств автосопровождения по углу наклона и по азимуту ЦВУ соединены с соответствующими входами устройства управления направлением и гиростабилизации линии (вектора) визирования. Информационный вход ЦВУ соединен информационной линией связи с радионавигационным приемоизмерителем сигналов спутниковой системы навигации. При этом по данной информационной линии связи в ЦВУ поступает информационный массив сигналов коррекции инерциального измерения параметров вектора визирования цели. Другой информационный вход ЦВУ соединен информационной линией связи с внешней аппаратурой подготовки и управления пуском подвижного носителя заявляемой бортовой системы самонаведения. При этом по этой информационной линии связи в ЦВУ поступает массив предстартового начального назначения ОВ и начальной выставки инерциального измерения параметров вектора визирования. По одному из информационных выходов ЦВУ по соответствующей линии связи выдается информационный массив команд и сигналов управления высокочастотной частью предлагаемой бортовой системы самонаведения, а другой информационный выход ЦВУ соединен информационной линией связи с внешней аппаратурой управления рулевым приводом подвижного носителя.

Введение указанных признаков в способ и устройство для его осуществления повышает точность самонаведения подвижного носителя на объект визирования, угловую и линейную разрешающую способность заявляемой бортовой системы самонаведения подвижного носителя, особенно при наведении подвижного носителя на малоразмерные объекты визирования, обладающие малой эффективной поверхностью рассеяния, и при наличии гидрометеоров на трассе движения носителя, а также помехоустойчивость системы и помехозащищенность самонаведения подвижного носителя на ОВ в условиях внешних мешающих воздействий и увеличивает диапазон угла наклона траектории на автономном, например, баллистическом участке траектории движения носителя.

Использование инерциального измерения параметров вектора визирования в предлагаемой бортовой системе самонаведения подвижного носителя и двухдиапазонности ее антенно-волноводного и приемо-передающего модуля с блоком измерителей инерциального канала совместно с ЦВУ в ее составе обеспечивает требуемую повышенную точность самонаведения, повышенную дальность действия подвижного носителя и помехозащищенность системы в условиях мешающих воздействий. Система обеспечивает автономное самонаведение на цель и/или ОВ.

Из уровня техники не выявлено решений, имеющих признаки, совпадающие с отличительными признаками предлагаемых способа и устройства для его осуществления, поэтому можно считать, что предложенные технические решения соответствуют условию изобретательского уровня.

Сущность изобретения поясняется чертежами, где на фиг.1 представлены принятые системы координат, на фиг.2 - положение вектора L визирования ОВ (цели) в базовой антенной системе координат Oxyz, на фиг.3 - взаимное положение базовой антенной системы координат Oxyz и горизонтальной системы координат Оξηζ, на фиг.4 - взаимное положение базовой антенной системы координат Oxyz и связанной системы координат Ox1y1z1, на фиг.5 - взаимное положение системы координат Ox1y1z1 и горизонтальной системы координат Оξηζ, на фиг.6 - структурная схема предлагаемой бортовой системы самонаведения подвижного носителя.

Предлагаемый способ формирования сигналов стабилизации и самонаведения подвижного носителя характеризуется тем, что во время предстартовой подготовки подвижного носителя задают и вводят на борт подвижного носителя сигналы, характеризующие начальные координаты цели или/и начальное назначение ОВ, формируют в виде сигналов пакет последовательных информационных слов, содержащий информацию о начальных значениях дальности до цели и скорости сближения подвижного носителя с целью в предстартовом положении подвижного носителя, угле наклона и азимуте в связанной с центром масс подвижного носителя системе координат, рысканья, тангажа и крена подвижного носителя, а также о первой программной дальности для перехода подвижного носителя после старта на более низкую траекторию и о второй программной дальности излучения зондирующих импульсов, контрольное слово и командное слово, затем проверяют сформированный пакет на отсутствие в нем искажений, преобразуют сигналы, характеризующие пакет, в параллельную форму для счисления на борту подвижного носителя после старта текущей дальности сближения подвижного носителя с целью, по полученному значению начальной дальности до цели формируют зону поиска ОВ на этой дальности, по мере изменения взаимного положения подвижного носителя до его старта и цели пакет последовательных информационных слов непрерывно обновляют, после старта подвижного носителя при отсутствии локационного контакта с целью измеряют продольную составляющую вектора линейного ускорения подвижного носителя в связанной системе координат на его борту и выполняют автономное счисление текущей дальности сближения подвижного носителя с целью двойным интегрированием измеренного ускорения при заданных во время предстартовой подготовки подвижного носителя начальных значениях скорости и дальности его сближения с целью, при достижении подвижным носителем заданной при его предстартовой подготовке первой программной дальности осуществляют переход подвижного носителя на более низкую траекторию его перемещения к цели, при достижении подвижным носителем второй программной дальности, заданной также при его предстартовой подготовке, излучают зондирующие сигналы за счет создания антенной системой одновременно попарно четырех диаграмм направленности с частично перекрывающимися лепестками в двух взаимно перпендикулярных плоскостях и по команде поиска ОВ осуществляют поиск ОВ по дальности и секторный поиск ОВ по направлению, при этом принимают отраженные от облучаемых ОВ сигналы, находящиеся в пределах сформированной зоны поиска ОВ по дальности и в пределах сектора поиска ОВ по направлению, запоминают из всех обнаруженных в секторе поиска ОВ азимут ОВ, выбранного согласно заданным критериям выбора, и фиксируют отклонение выбранного ОВ по дальности от центра сформированной зоны поиска ОВ, а после полного просмотра сектора поиска формируют сигнал разрешения захвата выбранного ОВ на автосопровождение по дальности и по направлению, производят коррекцию значений автономно счисляемых текущей скорости и текущей дальности сближения подвижного носителя с ОВ на величину, пропорциональную отклонению положения ОВ от центра зоны поиска по дальности и по скорости, осуществляют автосопровождение выбранного ОВ по дальности, при этом отраженные от облучаемого ОВ сигналы принимают двумя парами приемных каналов, выполняют суммарно-разностное преобразование принимаемых сигналов, в результате получают суммарный ∑ сигнал и два разностных Δ1 и Δ2 сигнала, которые поочередно с периодом 4·Тп, где Тп - период повторения излучаемых зондирующих сигналов, складывают и вычитают с суммарным ∑ сигналом, формируют суммарно-разностные сигналы (полусуммы и полуразности) т.е. за период 4·Тп формируют сигналы которые детектируют, и затем формируют сигналы, пропорциональные соответственно сигналам рассогласования (ошибкам) автосопровождения по углу наклона (места) и по азимуту, которые являются составляющими пространственной угловой координаты облучаемого ОВ в антенной системе координат. Кроме того, вырабатывают управляющие сигналы, пропорциональные соответственно составляющим вектора угловой скорости поворота линии визирования в направлении ОВ соответственно в вертикальной и в горизонтальной плоскости в горизонтальной системе координат, которые интегрируют, и совмещают линию визирования с ОВ, при этом регистрируют сигналы, пропорциональные отклонениям линии визирования ОВ по углу наклона и по азимуту относительно корпуса подвижного носителя, осуществляют автосопровождение ОВ по направлению. По полученным сигналам, пропорциональным составляющим вектора угловой скорости поворота линии визирования в направлении ОВ в вертикальной и горизонтальной плоскости, сигналам, пропорциональным отклонениям линии визирования ОВ по углу наклона и по азимуту относительно корпуса подвижного носителя, сигналам, пропорциональным текущим значениям дальности сближения подвижного носителя с ОВ и скорости ее изменения, а также сигналам, пропорциональным начальным значениям рысканья (курса), тангажа и крена, формируют сигналы для стабилизации подвижного носителя от его колебаний относительно центра масс и сигналов самонаведения подвижного носителя на ОВ.

При предстартовой подготовке подвижного носителя, кроме задания начальных координат цели или/и начального назначения ОВ, формируют начальные условия выставки инерциального измерения параметров вектора визирования цели или/и ОВ в виде сигналов, характеризующих пакет последовательных информационных слов (информационный массив), содержащий начальные значения проекций вектора линейной скорости предстартового перемещения подвижного носителя на соответствующие координатные оси горизонтальной системы координат Оξηζ с началом в центре масс подвижного носителя, декартовых координат ξ0, η0, ζ0 цели или/и ОВ, географической долготы λ0 и географической широты ϕ0 подвижного носителя (фиг.1). На борту подвижного носителя заданные начальные условия выставки инерциального измерения параметров вектора визирования цели или/и ОВ преобразуют в сигналы, пропорциональные проекциям вектора