Сборка катод-электролит-анод для твердооксидного топливного элемента

Иллюстрации

Показать все

Изобретение относится к твердооксидным топливным элементам. Техническим результатом изобретения является снижение омического сопротивления сборки. Сборка катод-электролит-анод (КЭА) для твердооксидного топливного элемента содержит на своей задней стороне электроды, используемые для установления контакта между плоской соединительной пластиной и выступающей структурой, которая выполнена таким образом, что вместе с указанной пластиной она формирует каналы для циркуляции газа. Сборка КЭА и соединительные пластины могут иметь отверстия для создания внутренних трубок для входа и выхода газа. Граница раздела электролит/электрод может также быть выполнена в виде выступающей структуры, увеличивающей отношение площади поверхности в целом к площади ее проекции. 2 н. и 23 з.п. ф-лы, 9 ил.

Реферат

Изобретение относится к области твердооксидных топливных элементов, которые обычно обозначаются как SOFC (от англ. Solid Oxyde Fuel Cell).

Топливный элемент имеет анод и катод, которые разделяются электролитом, который переносит ионы, но не проводит электронов. Сборка катод-электролит-анод обычно обозначается как PEN (от англ. Positive-Electrolyte-Negative, т.е. положительный-электролит-отрицательный). Электролит состоит из оксида металла в твердом непористом виде, например, оксида циркония, который способен переносить анионы кислорода. Анод, который является пористым, представляет собой место, где газообразное топливо, обычно водород или даже органическое топливо (метанол; т.н. «легкое топливо», т.е. различные виды топлива на основе легких фракций нефти; природный газ) вместе с водородом, извлекаемым из них путем риформинга, подвергается реакции окисления. Кислород воздуха подвергается реакции восстановления на катоде, который является пористым. Реакция является непрерывной при наличии непрерывной подачи топливных газов и окислительных газов, дает два электрона на молекулу водорода и обеспечивает потенциал примерно от 0,6 до 1,2 В, а также тепло. Для получения более высокого выходного напряжения необходимо последовательное соединение нескольких SOFC. Согласно концепции планарных SOFC формируется батарея («стопка»), в которой каждая единица содержит одну или несколько керамических и/или металлических пластин, имеющих толщину от нескольких десятых миллиметра до нескольких миллиметров, объединяющих все электрохимически активные конструктивные элементы PEN, и соединительную пластину, которая иногда упоминается как биполярная пластина.

В частности, настоящее изобретение относится к PEN для SOFC с катодом, содержащим пористый катодный слой и активный катодный слой, с анодом, содержащим активный анодный слой и пористый опорный анодный слой, составляющий механическую опору PEN, и с по меньшей мере одним слоем непористого электролита, расположенным между указанными активными анодным и катодным слоями.

Документ "Status of Sulzer Hexis solid oxide fuel cell (SOFC) system development", R. Diethelm et al., Third European Solid Oxide Fuel Cell Forum, P. Stevensed., Nantes, June 1998, p. 87-93, описывает SOFC, разработанный компанией Sulzer Hexis (CH). Топливные газы и окислительные газы подаются к электродам посредством соединительной пластины, представляющей собой диск из обогащенного хромом металлического сплава (94% Cr, 5% Fe, 1% Y2O3), снабженный сквозным центральным отверстием и структурированный посредством механической обработки на двух своих лицевых сторонах, причем последние альтернативно имеют отверстия в направлении наружу и в направлении центрального отверстия. В батарее этого типа топливо циркулирует в центральной трубке, а затем диффундирует по направлению к лицевой стороне анода каждого элемента посредством отверстий, оставляемых структурой соединительной пластины. Топливо не может проникать по направлению к катодной стороне, поскольку соединительная пластина покрывает весь внутренний край катода на ширину в несколько миллиметров. Воздух инжектируется снаружи через отверстия, которые проделаны в соединительных пластинах и выровнены в вертикальном направлении, что делает возможным направление воздуха через П-образные профили, которые прижимаются к батарее. Воздух проходит через внутреннюю полость соединительной пластины, что делает возможным его нагрев за счет тепла, отдаваемого топливными элементами. Затем воздух проходит через структурированную лицевую поверхность соединительной пластины, расположенную напротив катода. На катодной стороне соединительной пластины с помощью плазменного напыления в вакууме (VPS, от англ. Vacuum Plasma Spraying) осажден тонкий керамический слой с тем, чтобы предотвратить испарение хрома в виде CrO3. Наружный диаметр соединительных пластин PEN-сборок составляет примерно 120 мм, а диаметр внутреннего отверстия - 22 мм. Батарея содержит примерно 70 топливных элементов и имеет высоту примерно 50 см; получаемая электрическая мощность составляет 1 кВт при 40 В. Соединительные пластины этого типа батарей являются сложными при производстве и дорогими. Мощность и электрическое напряжение, получаемые с помощью этого устройства, являются функциями соответственно площади поверхности и количества топливных элементов и, следовательно, площади поверхности и количества соединительных пластин, стоимость которых препятствует рентабельному получению электрической энергии с помощью этого типа устройств.

Документы JP 04 169071 и JP 04 079163 описывают соединительное устройство, которое может располагаться между двумя PEN-сборками, причем это устройство отличается от устройства элемента Шульцера (Sulzer) в том, что оно изготавливается из трех деталей: планарная центральная пластина несет на каждой стороне слой из материалов электродов, в котором проделываются каналы для циркуляции газов. Дополнительное электрическое сопротивление, создаваемое контактом между этим слоем и непосредственно самим электродом, который лежит напротив него, является высоким, хотя оно может быть понижено с помощью дополнительного переходного слоя, изготовленного из проводящего материала.

Документ JP 03 134964 также описывает соединительное устройство, состоящее из трех керамических слоев, один из которых имеет каналы для циркуляции газа. Кроме того, PEN-сборка лежит на пластине-подложке, которая на стороне, противоположной PEN-сборке, имеет каналы для циркуляции другого газа.

Патент США № 5256499 (Allied Signal Aerospace) описывает батарею SOFC, состоящую из стопки керамических пластин, которые имеют несколько сквозных отверстий, причем эти отверстия располагаются вблизи краев пластин; расположение отверстий напротив друг друга образует боковые проходы для подачи и отвода топливных и окислительных газов, а активные элементы PEN располагаются в центральной части. Каждый топливный элемент состоит из образующей электролит пластины, окруженной с каждой стороны по меньшей мере одной пластиной, образующей соответственно анод и катод, а также двумя пластинами со сквозными отверстиями, имеющими размеры анода и катода и такую же толщину, как эти два электрода, окружающих последние, с формированием трубчатой секции. Эта PEN-сборка заключена между двумя планарными соединительными пластинами. Каждый электрод сам по себе образован либо из пластины, имеющей каналы или выступы, либо из сборки планарной пластины и волнистой пластины. Соединительные пластины этого устройства являются более простыми и не такими дорогими, как пластины упомянутого выше устройства Шульцера, однако каждый топливный элемент требует двух дополнительных окружающих электроды элементов для формирования трубок. Эти элементы, которые являются почти полностью полыми, являются хрупкими, и поэтому трудно осуществлять герметизацию между электродами и этими элементами. Структуру, образующую каналы, получают на электролите путем спекания, а это означает, что компенсация дефектов планарности топливного элемента является невозможной. Кроме того, в этом устройстве представляющая собой электролит пластина образует механическую опору PEN-сборки. По этой причине она должна быть относительно толстой и, как следствие, имеет относительно высокое омическое сопротивление. Для увеличения эффективности SOFC омическое сопротивление должно понижаться настолько, насколько это возможно, путем использования электролита малой толщины, что невозможно для тех структур, где электролит образует опору.

С целью уменьшения омического сопротивления SOFC в документе WO 00/69008 предлагается использовать в качестве механической опоры PEN относительно толстый пористый анод и наносить электролит в виде тонкого слоя (от 10 до 40 мкм), а также относительно тонкий противоэлектрод на эту анодную опору. Однако эта PEN-сборка требует для образования батареи наличия соединительных пластин со сложной структурой, содержащей трубки для подачи и отвода газов, и, таким образом, довольно толстых. По этой причине эта структура является невыгодной, принимая во внимание ее толщину и стоимость соединительных пластин.

Публикация Международной заявки на патент WO 01/67534 описывает анод, состоящий из множества отдельных керамических столбиков, между которыми может циркулировать газ, причем указанные столбики размещаются между тонким слоем электролита и металлической соединительной пластиной, которая тоже является тонкой. На катодной стороне электролит подобным же образом отделен от соединительной пластины с помощью структуры, сформированной из множества отдельных столбиков, обеспечивающих возможность прохождения газу между ними. Эти состоящие из столбиков структуры производят путем штампования отдельных столбиков в виде полоски сырой керамики и фиксирования этих столбиков на листе бумаги, что дает возможность для манипуляций с ними. Лист сгорает и исчезает во время первого использования батареи после сборки. Это устройство дает возможность для использования планарных соединительных пластин, которые по этой причине являются недорогими. Однако структура из столбиков является сложной для производства, и обращение с конструктивными элементами топливного элемента во время сборки является деликатным. Наконец, это требует дополнительной герметизированной системы для подачи и отвода газов.

Документ JP 08 078040 также описывает систему отдельных керамических столбиков, которые приклеиваются на каждой стороне планарной PEN-сборки, обеспечивая электрическое соединение с соединительными пластинами и делая возможным прохождение газов. Это устройство имеет преимущества и недостатки, рассмотренные выше в связи с документом WO 01/67534.

Документ JP 06 068885 также описывает систему столбиков с расположением, подобным тому, что и в предыдущем рассмотренном документе. Пластины электролита и соединительные пластины составляют механические опоры этой системы, электроды представляют собой очень тонкие электроды, которые наносятся с помощью технологии печати на каждую лицевую сторону пластины электролита, которая, в свою очередь, должна по этой причине быть толстой, что увеличивает омическое сопротивление.

Публикация Международной заявки на патент WO 01/41239 также описывает систему каналов, образованных с помощью множества отдельных столбиков, которые обеспечивают возможность прохождения газа между ними. Структуры, образованные с помощью столбиков, могут производиться путем локального нанесения составляющих электроды материалов до толщины от 0,05 до 0,4 мм на двух лицевых сторонах планарной соединительной пластины с использованием метода печати. Таким образом, столбики образуют электроды. Каждая из соединительной пластины и пластины электролита имеет по меньшей мере одну пару отверстий в своей центральной зоне, при этом каждое из отверстий является окруженным уплотнением попеременно на каждой лицевой стороне соединительной пластины. Отверстия соединительной пластины и пластины электролита совмещаются друг с другом для подачи газов, причем последние протекают в радиальном направлении к краям пластин между столбиками. Соединительная пластина, несущая столбчатые электроды, является недорогой в производстве. Однако обращение с пластиной электролита (толщиной от 0,2 до 0,4 мм) во время укладывания в стопку должно быть деликатным. В этой системе, подобно той, что описана в WO 01/67534, площадь поверхности электродов представляет собой общую площадь фронтальной поверхности столбиков, то есть, так сказать, только некоторую долю от площади поверхности пластин. Омическое сопротивление PEN-сборки по этой причине является большим, чем у PEN такого же состава, у которой ее электроды находятся в контакте со всей площадью поверхности электролита.

Документ WO 01/41239 также предлагает изготавливать системы каналов путем их механического или химического получения в поверхностях соединительной пластины или электродов. Этот вариант является дорогим при осуществлении, как и в случае соединительных описанных выше пластин Шульцера.

Целью настоящего изобретения является создание такой PEN-сборки для SOFC, которая сделает возможным получение батареи, не имеющей недостатков известных из литературы устройств. Целью изобретения является, в частности, получение батарей, которые могут использовать для взаимного соединения SOFC простые и недорогие тонкие металлические пластины. Оно также направлено на получение твердооксидных топливных элементов (SOFC), омическое сопротивление которых является настолько низким, насколько возможно. Оно также направлено на ограничение размера с точки зрения толщины SOFC. Оно также направлено на повышение электрической мощности, получаемой на единицу площади поверхности. Наконец, оно направлено на получение PEN-сборки вместе с ее соединительной системой, которая является простой для производства и простой при обращении во время сборки батареи.

Эти цели достигаются посредством PEN-сборки того типа, который определен во введении, в которой анод содержит коллекторный анодный слой, покрывающий заднюю лицевую сторону опорного анодного слоя, т.е. на стороне, противоположной активному анодному слою, и в которой коллекторный анодный слой имеет на своей задней лицевой стороне, которая предназначена для вступления в контакт с соединительной пластиной, выступающую структуру, которая выбрана таким образом, чтобы формировать каналы для циркуляции газа вместе с планарной пластиной.

Для простоты описания, в следующем далее тексте термины "фронтальная" лицевая сторона и "передняя" структура электродного слоя PEN-сборки будут относиться соответственно к той ее лицевой стороне или к структуре, которая ориентирована по направлению к электролиту, а термин "задняя" лицевая сторона будет относиться к ее противоположной лицевой стороне, то есть к той лицевой стороне, которая ориентирована по направлению к соединительной пластине.

PEN в соответствии с настоящим изобретением по этой причине делает возможным использование соединительной пластины, которая формируется из простой пластины, которая является планарной и гладкой на анодной стороне. Кроме того, поскольку механическая опора PEN формируется с помощью опорного анодного слоя, то во время сборки толщину электролита между двумя электродами можно уменьшить до тонкого слоя в несколько мкм, имеющего низкое омическое сопротивление.

Предпочтительно, катод также имеет на своей задней лицевой стороне, которая предназначена для вступления в контакт с соединительной пластиной, выступающую структуру, которая выбрана таким образом, чтобы формировать каналы для циркуляции газа вместе с указанной соединительной пластиной. В частности, каждая из выступающих структур анода и катода может содержать множество выступов, которые находятся на некотором расстоянии друг от друга, причем верхние поверхности выступов анода являются по существу копланарными и параллельными верхним поверхностям выступов катода, а последние подобным же образом являются копланарными друг другу. Эти структуры могут подобным же образом содержать уплотняющие кромки, имеющие толщину, которая является такой же, как и высота выступов, по всему периметру задних лицевых сторон электродов.

Вся конструкция PEN-сборки, таким образом, содержится между двумя параллельными плоскостями. Все что требуется для создания батареи, так это уложить PEN-сборки этого типа и планарные металлические пластины в стопку чередующимся образом.

Газы могут преимущественно подводиться посредством по меньшей мере одного первого отверстия и по меньшей мере одного второго отверстия, проходящих аксиально сквозь PEN-сборку, то есть вдоль оси батареи, при этом выступающая структура задней лицевой стороны анода содержит по меньшей мере один первый круговой выступ, который окружает указанное первое отверстие, а выступающая структура задней лицевой стороны катода содержит по меньшей мере один второй круговой выступ, который окружает указанное второе отверстие, причем указанное первое отверстие не окружено указанным вторым круговым выступом, а указанное второе отверстие не окружено указанным первым круговым выступом.

Эти круговые выступы действуют в качестве уплотнений и обеспечивают квазигерметизацию. В собранной батарее отверстия, которые лежат напротив друг друга, образуют трубку, параллельную оси батареи, и присутствие или отсутствие кругового выступа вокруг каждого отверстия обуславливает диффузию одного из газов исключительно к задней лицевой стороне катода, а другого газа - исключительно к задней лицевой стороне анода.

В соответствии с одним из вариантов воплощения каждая из выступающих структур на соответствующих задних лицевых сторонах катода и анода содержит кромку, которая окружает каждую заднюю лицевую сторону, причем каждая из них способна к формированию, во взаимодействии с соединительной пластиной, камеры, которая является герметичной, за исключением открытой части указанных кромок. Эти две открытые части, если смотреть в направлении оси батареи (т.е. оси, вдоль которой SOFC-элементы укладываются в стопку), не имеют зоны перекрывания. Эти открытые зоны сообщаются с боковыми трубками для подачи и отвода газа.

В соответствии с другим предпочтительным вариантом воплощения выступающие структуры задних лицевых сторон двух электродов полностью окружены уплотняющими кромками, а формирующие батарею пластины имеют по меньшей мере два циркуляционных отверстия для каждого газа, а именно одно входное отверстие и одно выходное отверстие, то есть всего по меньшей мере четыре отверстия. Последние образуют набор трубок внутри батареи топливных элементов, а это означает, что больше нет необходимости в наличии боковых отводящих трубок, и, таким образом, стоимость производства понижается.

Преимущественно, фронтальная лицевая сторона анода, которая находится на стороне электролита и которая образует контакт с этим электролитом, также имеет выступающую структуру. Такая фронтальная лицевая сторона имеет развитую площадь поверхности, которая больше, чем площадь поверхности в проекции на ось укладывания в стопку. По этой причине площадь реакционноспособной поверхности значительно увеличена без значительного увеличения размеров устройства в целом.

В соответствии с одним из предпочтительных вариантов воплощения опорный анодный слой имеет выступающую структуру на своей фронтальной лицевой стороне. Сборка из активного анодного слоя, электролита и катода может состоять из тонких слоев, которые покрывают указанную выступающую структуру фронтальной лицевой стороны опорного анодного слоя, причем эта выступающая структура выбирается таким образом, что задняя лицевая сторона катода может формировать каналы для циркуляции газа вместе с планарной соединительной пластиной, с которой она вступает в контакт.

В этом варианте воплощения выступающая структура фронтальной лицевой стороны анода имеет поэтому двойную функцию: с одной стороны, она увеличивает площадь реакционноспособной поверхности PEN-сборки, а, с другой стороны, выступающие области этой поверхности, не будучи заполненными или будучи только слегка заполненными упомянутыми тонкими слоями, которые покрывают опорный анодный слой, создают форму каналов для циркуляции газа на катодной стороне. В этом варианте воплощения структура фронтальной лицевой стороны опорного анодного слоя может быть получена с помощью способа формования, в то время как тонкие слои электролита и катода могут быть получены с помощью способа нанесения (осаждения). Эта выступающая структура фронтальной лицевой стороны анода может, в частности, состоять из множества выступов, имеющих высоту в пределах между 0,2 и 2 мм, при этом расстояние между боковыми краями соседних выступов находится в пределах между 0,1 и 2 мм.

В соответствии с другим вариантом воплощения PEN-сборки, в которой опорный анодный слой имеет переднюю выступающую структуру на своей фронтальной лицевой стороне, активный анодный слой, электролит и активный катодный слой состоят из тонких слоев. Пористый катодный слой, который покрывает их и который полностью или частично сглаживает выступающие области позади активного катодного слоя, имеет на своей задней лицевой стороне, которая предназначена для вступления в контакт с соединительной пластиной, вторую выступающую структуру, которая выбирается таким образом, чтобы образовывать каналы для циркуляции газа вместе с указанной соединительной пластиной. В этом варианте воплощения передняя выступающая структура фронтальной лицевой стороны опорного анодного слоя и выступающая структура задней лицевой стороны пористого катодного слоя могут быть выбраны с различными конфигурациями, причем выступающие области структуры задней лицевой стороны катода должны быть достаточными для формирования каналов для циркуляции газа, в то время как фронтальная лицевая сторона анода может обладать только микроструктурированием, предназначенным для увеличения площади ее реакционноспособной поверхности. Эта передняя выступающая структура фронтальной лицевой стороны опорного анодного слоя может быть получена путем штампования или микроформования, в частности технологии микроформования с использованием гелеобразования или "формования геля" исходного материала. Высота выступающих элементов, формирующих выступающую структуру, может составлять от 0,1 до 2 мм. Расстояние между соседними элементами может находиться в пределах между 50 мкм и 2 мм. Отношение между высотой и толщиной этих элементов может находиться в пределах между 1 и 4.

Для получения анода, имеющего, с одной стороны, первую выступающую структуру на своей задней лицевой стороне, а с другой стороны, переднюю выступающую структуру на своей фронтальной лицевой стороне, возможно соединение двух слоев, каждый из которых имеет одну гладкую лицевую сторону и одну структурированную лицевую сторону, их гладкими лицевыми сторонами. Соединение может осуществляться, когда эти два слоя находятся в сыром состоянии. Слой, формирующий каналы для распределения газа и коллектор тока, может наноситься на опорный анодный слой, полученный предварительно путем спекания.

Таким образом можно соединить опорный анодный слой с коллекторным анодным слоем. Является также возможным соединение двух полуслоев, соединение которых создает опорный анодный слой.

Опорный анодный слой, который является структурированным на обеих его лицевых сторонах, может также быть получен путем непосредственного формования, например путем формования под давлением.

Одним общим свойством, которое является желательным для материалов SOFC-элемента, является их способность не изменяться со временем при рабочей температуре элемента (700-1000°C) в соответствующих им окислительных или восстановленных окружающих средах.

Материалы, используемые для формирования катода, в частности пористого катодного слоя, часто имеют структуру перовскита, например такие, как легированные стронцием манганаты лантана (LSM). Такие материалы, как кобальтаты лантана или феррокобальтаты, демонстрируют большую активность, чем LSM-материалы, но склонны к взаимодействию с электролитом на основе оксида циркония.

Между пористым катодным слоем и электролитом может быть расположен тонкий (от 2 до 5 мкм) и плотный (>80%) активный слой, который состоит, например, из смеси CeO2 или оксида циркония с LSM-материалом. Выбор этого материала делает возможным создание на электролите тонкого слоя материала, который является гибридным проводником ионов и электронов.

Электролит представляет собой плотный материал с высокой ионной проводимостью, но с нулевой или очень низкой электронной проводимостью. Материал, который используют чаще всего, представляет собой оксид циркония, который стабилизирован, например, с помощью 8 мол.% Y2O3 (8 YSZ), или частично стабилизирован, например, с помощью 3 мол.% Y2O3 (3 YSZ).

Композиты никеля и оксида циркония, часто упоминаемые как «керметы», являются предпочтительными материалами для формирования анода SOFC-элемента. В качестве примера, возможно использование кермета Ni - 8 YSZ с 35-45 мас.% фазы металлического никеля.

В электрохимически активном (от 0,5 до 5 мкм) анодном слое, который находится в контакте с электролитом, можно попытаться ограничить плотность тока в металлической фазе и увеличить количество частиц металлической фазы, принадлежащих к электрически перколирующей сетке (решетке), и, таким образом, увеличить активность электрода путем замены части ионопроводящей керамической фазы, то есть 8 YSZ, электронопроводящей керамикой, которая не восстанавливается до металла в атмосфере водорода при рабочей температуре топливного элемента, то есть примерно при 800°C. В качестве примера такой проводящей керамики можно упомянуть CeO2, легированный U2O3 (от 1 до 10%) или Nb2O5 (от 1 до 10%), или же легированный 10-40 мол.% Gd или Y, либо, кроме того, U2O3, легированный Y2O3 (от 1 до 10%), или TiO2, легированный Nb или Ta (от 1 до 10%).

Опорный анодный слой является пористым и состоит из электронопроводящего материала. Для увеличения его стабильности можно попытаться уменьшить долю электронопроводящей фазы, например Ni, по сравнению с керамической фазой, например, оксидом циркония. Для сохранения достаточной электронной проводимости затем необходимо организовать пространственное распределение электронопроводящей фазы:

- электронопроводящая фаза может распределяться вокруг частиц керамической фазы, имеющих средний диаметр, который в три-десять раз больше, чем средняя толщина пленки, образуемой электронопроводящей фазой. Эта структура может быть получена путем распыления дисперсии мелкодисперсных частиц оксида циркония, например, 0,1<D50<0,3 мкм, среди частиц большего размера, например 15<D50<30 мкм, и смешивания этих частиц с дисперсией мелкодисперсных частиц, например, 0,1<D50<0,3 мкм, проводящей фазы;

- является также возможным предпочтительное размещение электронопроводящей фазы на стенках пор, сформированных в структуре. Чтобы сделать это, электронопроводящая фаза, такая как Ni или NiO, наносится предварительно, например, с использованием химического осаждения или выпадения соли в осадок, на поверхности относительно больших частиц, например 5<D50<30 мкм, из вещества, которое может быть пиролизовано при 250-400°C, таких как частицы целлюлозы, угля или крахмала, которые после пиролиза делают возможным поддержание пор в структуре опорного анодного слоя;

- является также возможным получение на первой стадии частиц, имеющих размер 2<D50<50 мкм и плотность, меньшую или равную 2 г/см3, и содержащих никель или любой другой переходной металл (например, Fe, Co) в виде оксида или соли (например, оксалата или карбоната) и, необязательно, оксид циркония и органическую фазу. Они могут быть получены, например, путем распыления дисперсии мелкодисперсных частиц из рассмотренных выше материалов. Затем эти частицы добавляют в количестве примерно 35 об.% к частицам оксида циркония. Эта смесь служит в качестве основы для получения анодной опоры. Во время спекания последней в содержащих никель частицах образуются поры. Эта пористость делает возможным повторное окисление никеля без разрушения структуры анодной опоры.

Таким образом, анод может содержать на стороне соединительной пластины тонкий (от 1 до 10 мкм) или структурированный коллекторный слой, обогащенный электронопроводящим материалом, например никелем. Этот слой делает возможным уменьшение омических потерь в коллекторе тока.

Слои, которые составляют анод, подобно слоям, которые составляют катод, и, в частности, опорный анодный слой, коллекторный анодный слой и пористый катодный слой, могут содержать волокна. Использование содержащего волокна композитного материала имеет множество преимуществ:

- улучшение стабильности по размерам от изготовления до использования, то есть от сырого состояния до структуры при рабочей температуре и до спеченного состояния;

- улучшение окислительно-восстановительной стабильности посредством выбора материалов, из которых сформированы волокна;

- корректировку коэффициентов теплового расширения различных слоев, с особенным улучшением совместимости коэффициента теплового расширения анодной опоры с параметрами других слоев.

Предпочтительным образом будут выбираться волокна, имеющие диаметр в пределах между 1 и 50 мкм и отношение длина/диаметр L/d в пределах между 2 и 30. Предпочтительно, диаметр будет находиться в пределах между 2 и 30 мкм, а отношение L/d будет находиться в пределах между 5 и 25. Волокна, имеющие диаметр в пределах между 5 и 15 мкм и отношение L/d в пределах между 8 и 20, являются особенно предпочтительными.

Для катода, в частности для пористого катодного слоя, является возможным использование керамических волокон с электронной проводимостью или без нее. Является возможным использование волокон из материалов типа легированного стронцием манганата лантана (LSM), например, La0,7Sr0,3MnO3, или типа легированного стронцием кобальтата лантана (LSC), в частности La0,7Sr0,3СоО3.

Для создания анода, в частности коллекторного анодного слоя, является возможным добавление от 5 до 60 об.%, предпочтительно - от 20 до 40 об.%, а особенно предпочтительно - от 25 до 35 об.% керамических или металлических волокон по отношению к общему объему. Материал этих волокон может быть выбран из ZrO2, Al2O3, MgO, Ni или из керамик, которые являются проводящими в окружающей среде Н22O, таких как TiO2, TiO2+5%NbO2,5, CeO2+1%NbO2,5, Nb2TiO7, Nb2O5, SrTiO3, Fe3O4.

Наконец, как вариант, возможно включение в материал анода, вместо волокон или вместе с ними, частиц из рассмотренных выше керамических материалов, имеющих диаметр в пределах между 0,1 и 50 мкм, а предпочтительно - в пределах между 0,3 и 30 мкм. Частицы, имеющие диаметр в пределах между 0,5 и 5 мкм, являются особенно предпочтительными.

В соответствии с одним из предпочтительных вариантов воплощения настоящего изобретения материалы анода, то есть опорного анодного слоя и/или, в частности, коллекторного анодного слоя, могут содержать один или несколько катализаторов с целью риформинга топлива на основе углерода (углеводородного топлива) для обеспечения непосредственного окисления газообразного топлива на основе углерода, например CH4, которое может подвергаться или не подвергаться частичному риформингу, и/или для повышения толерантности SOFC-элемента к присутствию содержащейся в топливе серы. Часть анода, которая является пористой структурой, становится, таким образом, элементом внутреннего риформинга без увеличения высоты батареи. Это было бы невозможным при использовании соединительной пластины, структурированной таким образом, чтобы формировать каналы для циркуляции, и изготовленной из плотной стали.

В качестве катализатора можно использовать Ni или сплав NiCu на керамическом носителе, таком как оксид циркония, оксид алюминия, оксид магния или диоксид церия. В случае никелевого катализатора никель составляет от 1 до 25 мас.% частиц, предпочтительно - от 1 до 10%, а более конкретно - от 1,2 до 5%. В случае катализатора из NiCu содержание меди составляет от 5 до 50%, в частности - от 10 до 30%, а более конкретно - от 15 до 25% металлической фазы. В случае катализатора, использующего оксид магния MgO в качестве носителя, последний может смешиваться с другим оксидом для улучшения его каталитической способности, а также коэффициента теплового расширения и проводимости анодного слоя.

С точки зрения осуществления непосредственного окисления топлива на основе углерода, например CH4, которое не подвергалось риформингу или уже подвергалось частичному риформингу, является возможным добавление к смеси следующих катализаторов: NiCu и хромитов, причем это возможно для содержания хромитов, изменяющегося от 0 до 100% от этой смеси. Оптимальный состав хромитов представляет собой La1-x(Ca, Sr)xCr1-yNiyО3- при x=0-0,15 и y=0-0,5. Смесь также может содержать другой проводящий оксид, например титанаты или ниобаты, имеющие значения проводимости около 300 См/см.

Для повышения толерантности к сере можно добавлять к упомянутым катализаторам диоксид церия CeO2 в пропорции от 5 до 100 мас.% по отношению к катализаторам на основе Ni, предпочтительно - от 10 до 50%, и в особенности - от 15 до 25 мас.%. Присутствие Cu в аноде также повышает толерантность к сере.

Этот катализатор или каталитическая смесь смешивается с материалами, которые составляют анод, обычно в пропорции от 5 до 15 об.%, при этом оставаясь ниже порога перколяции с тем, чтобы не нарушить работу коллектора тока.

Соединительная пластина, вставленная между двумя PEN-сборками, может состоять из ферритового сплава для рабочих температур в пределах между 700 и 800°C, из сплава на основе хрома - для рабочих температур в пределах между 800 и 900°C, или из керамики, такой как хромит лантана - для рабочих температур в пределах между 900 и 1000°C.

Для улучшения долговременной электрической проводимости соединительной пластины и границы раздела катод/соединительная пластина, площадь поверхности соединительной пластины, которая состоит, например, из Fe26Cr, может обрабатываться в соответствии со следующей процедурой: на соединительную пластину наносят водный раствор катионов (в виде, например, нитрата) с тем, чтобы получить после сушки слой, имеющий толщину несколько микрон. Последний затем доводится до высокой температуры в атмосфере, которая может быть восстановительной или иной. Продолжительность обработки может составлять, например, 48 часов при 1000°C в атмосфере аргона и водорода. Используемые катионы выбирают из следующего семейства: La, Ti, Sr, Ca, Mg, Ba, Nb, Mo, Mn, Cu, Ce, Pr. Пара катионов, которые особенно улучшают желаемые свойства, формируется лантаном и стронцием.

Слои и сборки из слоев, рассмотренные выше, могут быть получены с использованием перечисленных выше материалов, диспергированных в воде и/или органических растворителях, к которым добавляют связующие, смачивающие вещества и тому подобное в виде жидкости, суспензии и/или пасты. Среди используемых технологий может быть упомянуто раскатывание, экструзия, литье полос, в частности совместное литье, или формование, причем с гелеобразованием пасты или суспензии или без него. Формирование одного или нескольких тонких слоев на слое опоры, в частности на опорном анодном слое, может быть получено с помощью технологии печати, например, путем нанесения тонкого слоя посредством валика на более толстый слой, который получен ранее с помощью способа литья полосы. Эти технологии известны сами по себе специалистам в данной области техники и описаны более подробно, например, Raphael Ihringer et al., "Solid Oxide Fuel Cells V", U. Stimming, S.C. Singhal, H. Tagawa and W. Lehnert, Editors, PV 97-40, p. 340-347, The Electrochemical Society Proceedings Series, Pennington, NJ (1997), или Mark A. Janney et al., J. Am. Ceram. Soc., 81 (3) 581-91 (1998), или в диссертации № 2307, поданной в 2001 году в Ecole Polytechnique Federale de Lausanne. Они также иллюстрируются с помощью примеров, приведенных ниже.

Другие подробности настоящего изобретения станут ясны специалисту в данной области техники из подробного описания вариантов воплощения и примеров, приведенных ниже со ссылками на чертежи, на которых

- Фиг.1 является схематическим представлением в вертикальном разрезе первого варианта воплощения PEN.

- Фиг.2 является схематическим представлением в вертикальном разрезе второго варианта воплощения PEN.

- Фиг.3 является схематическим представлением в виде сверху первого варианта воплощения задней лицевой стороны электрода.

- Фиг.4 является схематическим представлением в вертикальном разрезе по линии AA' варианта воплощения по фиг.3.

- Фиг.5 является схематическим представлением в вертикальном разрезе третьего варианта воплощения PEN.

- Фиг.6 является схематическим представлением в вертикальном разрезе четвертого варианта воплощения PEN.

- Фиг.7 является схематическим представлением в вертикальном разрезе пятого варианта воплощения PEN.

- Фиг.8 является фотографией под микроскопом части задней лицевой стороны анода согласно настоящему изобретению.

- Фиг.9 является схематическим представлением в виде сверху второго варианта воплощения задней лицевой сто