Ген новой сериновой протеазы, родственной dppiv

Иллюстрации

Показать все

Изобретение относится к области биотехнологии и может быть использовано в фармакологии и медицине. Клонирована и определена последовательность ДНК, кодирующая новый вид сериновой протеазы человека (DPRP-2), родственной дипептидилолигопептидазе IV, гомология между которыми на уровне выведенной аминокислотной последовательности определена как 39%. С помощью технологии рекомбинантных ДНК получена рекомбинантная форма DPRP-2 и исследованы кинетические свойства нового фермента (субстратная специфичность, значения Km, ингибиторы активности и т.п.). Осуществление изобретения обеспечивает новые возможности при поиске и создании новых терапевтических средств для лечения широкого круга заболеваний человека. 2 н. и 3 з.п. ф-лы, 4 ил., 6 табл.

Реферат

Область техники, к которой относится изобретение

Данное изобретение относится к новым сериновым протеазам, родственным дипептидилпептидазе IV (DPPIV), и к выделенным нуклеиновым кислотам, кодирующим эти протеазы, все из которых применимы для обнаружения новых терапевтическиих средств, для измерения протеазной активности и для определения ингибиторной активности соединений против этих протеаз.

Уровень техники

Протеазы и пептидазы являются ферментами, которые катализируют гидролиз пептидных амидных связей. Протеазы играют важную роль в регуляции биологических процессов в почти любой форме жизни от бактерий до вирусов и до млекопитающих. Они выполняют критические функции, например, в пищеварении, свертывании крови, апоптозе, активации иммунных реакций, активации зимогенов, созревании вирусов, секреции белков и транспорте белков. Они могут быть классифицированы в соответствии с рядом критериев, таких как сайт действия, предпочтительность субстратов и механизм действия. Так, например, аминопептидазы действуют преимущественно на N-концевые остатки пептида, тогда как карбоксипептидазы действуют преимущественно на С-конце и эндопептидазы действуют по сайтам, удаленным от этих двух концов. Среди карбокси- и аминопептидаз, пептидилпептидазы отщепляют единственный аминокислотный остаток от субстрата, дипептидилпептидазы отщепляют дипептидную единицу (две аминокислоты) от субстрата и трипептидазы отщепляют три аминокислоты от субстрата. Предпочтительность субстрата часто выражается в терминах аминокислотного остатка, расположенного непосредственно в N-концевом направлении относительно сайта расщепления. Например, трипсиноподобные пептидазы будут предпочтительно расщеплять пептид по соседству с основной аминокислотой (аргинином или лизином), т.е. где гидролизуемая связь является связью Arg/Lys-Xaa. В качестве другого примера, семейство химотрипсиноподобных пептидаз преимущественно гидролизует пептиды по соседству с ароматическим остатком. Механистически, пептидазы классифицируются как серин-зависимые, цистеин-зависимые, аспаргиновая кислота-зависимые или цинк-зависимые.

Поскольку пептидазы и протеазы участвуют в регуляции многих физиологических процессов, они являются привлекательными мишенями для разработки терапевтических средств. Ингибиторы протеаз и пептидаз применимы, например, в лечении гипертонии, нарушений свертывания крови и вирусной инфекции.

Протеолитические ферменты, которые используют серин для своей каталитической активности, встречаются повсеместно, будучи обнаруживаемыми в вирусах, бактериях и эукариотах. Свыше 20 семейств (обозначаемых S1-S27) сериновых протеаз были идентифицированы; они сгруппированы в 6 кланов (SA, SB, SC, SE, SF и SG) на основе структурного сходства и других функциональных признаков. Структуры известны для четырех из этих кланов (SA, SB, SC и SE); они являются, по-видимому, совершенно неродственными, что предполагает по меньшей мере четыре эволюционных пути происхождения сериновых пептидаз и, возможно, гораздо большего их числа (Rawlings and Barret, Meth. Enzymol. 244:19-61 (1994)).

Семейство пролилолигопептидаз состоит из ряда эволюционно родственных пептидаз, каталитическая активность которых, по-видимому, обеспечивается системой переноса заряда, сходной с системой переноса заряда трипсинового семейства сериновых протеаз, которая, однако, развилась в результате независимой конвергентной эволюции. Экспериментально было показано, что консервативный остаток серина (в протеазе II Е. coli, а также в свиной и бактериальной РЕ) является необходимым в каталитическом механизме. Этот серин, который является частью каталитической триады (Ser, His, Asp), обычно расположен на расстоянии 150 остатков от С-конца этих ферментов (все из которых являются белками, содержащими около 700-800 аминокислот).

Одной из наиболее интенсивно исследуемых пролилолигопептидаз является дипептидилпептидаза IV (DPPIV, ЕС 3.414.5), гликопротеин типа II, которая является единственной хорошо охарактеризованной аминопептидазой, которая, как известно, локализована на наружной стороне плазматических мембран. Как указано выше, дипептидиламинопептидазы характеризуются их способностью отщеплять N-концевые дипептиды от различных небольших пептидов. Дипептидиламинопептидазы обладают различной субстратной специфичностью и клеточной локализацией, что предполагает различные функции каждой активности в процессинге пептидов. DPPIV характеризуется ее способностью отщеплять N-концевые дипептиды, содержащие пролин или аланин в качестве предпоследнего остатка. Ген DPPIV простирается на приблизительно 70 т.п.н. и содержит 26 экзонов в диапазоне размеров от 45 п.н. до 1,4 т.п.н. Нуклеотидная последовательность (3465 п.н.) кДНК содержит открытую рамку считывания, кодирующую полипептид, содержащий 766 аминокислот. Нуклеотиды, которые кодируют последовательность активного центра (G-W-S-Y-G), распределены между 2 экзонами. Это явно отличает геномную организацию семейства пролилолигопептидаз от геномной организации семейства классических сериновых протеаз.

DPPIV широко распространена в тканях млекопитающих и в большом количестве представлена в почках, эпителии кишечника и плаценте (Yaron, A. and Naider, F., Critical Reviews in Biochem. Mol. Biol. 1993 [1], 31). В иммунной системе человека этот фермент экспрессируется исключительно активированными Т-лимфоцитами CD4+-типа, где этот фермент, как было показано, является синонимом антигена клеточной поверхности CD26. Хотя точная роль DP-IV в физиологии человека все еще не выяснена полностью, недавнее исследование показало, что этот фермент явно играет важную роль в физиологии и патофизиологии человека.

На Т-клетках человека экспрессия DPPIV появляются на поздней стадии дифференцировки тимуса и ограничена преимущественно популяцией клеток CD4+ хелперов/памяти, a CD26 может доставлять мощный сигнал костимуляторной активации Т-клеток. Таким образом, фермент DPPIV, также известный как антиген CD26 активации Т-клеток, играет важную роль в иммунной реакции вследствие ассоциации с CD45 тирозинфосфатазой и, вследствие его способности связывать аденозиндезаминазу (ADA) с поверхностью Т-клетки, защищает Т-клетку от опосредованного аденозином ингибирования пролиферации. Кроме того, регуляция функции хемокинов CD26/DPPIV, по-видимому, является существенной для перемещения лимфоцитов и инфекционности штаммов ВИЧ. DPPIV связана с многочисленными функциями, включающими в себя участие в активации Т-клеток, адгезию клеток, расщепление пролинсодержащих пептидов в почках и кишечнике, инфекцию ВИЧ и апоптоз и регуляцию онкогенности в некоторых меланомных клетках (Pethiyagoda et al., Clin. Exp.Metastasis 2000: 18(5):391-400). Предполагается также, что DPPIV участвует в эндокринной регуляции и метаболической физиологии. Более конкретно, DPPIV отщепляет амино-концевой дипептид His-Ala от GLP-1, приводя к появлению антагониста GLP-1-рецептора, и, следовательно, снижает физиологическую реакцию на GLP-1. Глюкагоноподобный пептид (GLP-1), инкретин, который индуцирует зависимую от глюкозы секрецию инсулина, быстро разрушается DPPIV, и, поскольку полупериод расщепления DPPIV в организме является гораздо более коротким, чем полупериод для удаления GLP-1 из кровотока, существенное увеличение биологической активности GLP-1 (в 5-10 раз) ожидается в результате ингибирования DPPIV. Ингибиторы DPPIV исследуются в настоящее время в клинике в качестве потенциальных терапевтических средств для диабета типа 2 и нарушенной толерантности к глюкозе.

Различные ингибиторы DPPIV были известны в 1993 году. Одним из них является суицидный ингибитор N-Ala-Pro-O-(нитробензоил)гидроксиламин. Другим ингибитором является конкурентный ингибитор е-(4-нитро)бензоксикарбонил-Les-Pro и еще одним ингибитором является поликлональный кроличий иммуноглобулин против DPPIV почки свиньи. С тех пор были разработаны и другие и они описаны подробно в патентах США № 5939560; 6110949 6011155 и 5462928.

Помимо его каталитической активности серинового типа, но независимо от нее, фермент DPPIV прочно связывается с растворимым внеклеточным ферментом аденозиндезаминазой (ADA), действуя в качестве рецептора и, как предполагают, опосредует трансдукцию сигнала. Структура DPPIV характеризуется двумя внеклеточными доменами, α/β-складчатым гидролазным доменом и 7-лопастным бета-пропеллерным доменом, состоящим из повторяющихся бета-складок из приблизительно 50 аминокислот. Недавно было показано, что, наряду с селекцией субстратов по размеру, бета-пропеллерный домен, содержащий 10 из 12 высококонсервативных остатков цистеина, вносит вклад в катализ, осуществляемый пептидазным доменом. Кроме того, этот богатый цистеином домен является ответственным за связывание DPPIV с коллагеном I и с внеклеточной ADA. Сообщалось также, что DPPIV играет роль в опосредованных фибронектином взаимодействиях клеток с внеклеточным матриксом. Недавние исследования показали, что протеазная активность DPPIV не требуется для его антиинвазивной активности, так как мутанты DPPIV, которые не имеют внеклеточной активности сериновой протеазы, сохраняют такую активность.

Ряд белков, которые имеют сходство с DPPIV, были описаны в литературе. Несколько из этих белков клонировали, в том числе DPP-I, DPP-II, DPP-III, DPP-X и белок активации фибробластов (FAP). Они были идентифицированы и охарактеризованы либо молекулярным клонированием и функциональными исследованиями экспрессированных белков, либо по биохимическим активностям в экстрактах тканей. DPPIV-бета и другие новые пептидазы с функциональным сходством с DPPIV еще не были клонированы. Идентификация, характеристика и/или подходящая классификация дополнительных членов семейства пролилолигопептидаз, выяснение их физиологической (и, в особенности, патофизиологической роли) и применение этого знания для разработки новых терапевтических средств являются важными задачами.

Сущность изобретения

Данное изобретение обеспечивает белки с пролилолигопептидазными (расщепление после пролина) активностями, которые составляют три новых члена семейства белков, родственных DPPIV, включая полноразмерные белки, формы альтернативного сплайсинга, субъединицы и мутанты, а также кодирующие их нуклеотидные последовательности. Данное изобретение обеспечивает также способы скрининга, направленного на субстраты, взаимодействующие белки, агонисты, антагонисты или ингибиторы вышеуказанных белков и, кроме того, фармацевтические композиции, содержащие белки и/или их мутанты, производные и/или аналоги и/или лиганды к ним.

Эти новые белки, имеющие значительную гомологию последовательности с DPPIV, обозначены как белки 1, 2 и 3, родственные дипептидилпептидазе IV (DPRP-1, DPRP-2 и DPRP-3). Аминокислотные последовательности DPRP-1, DPRP-2 и DPRP-3 представлены последовательностями SEQ ID NO:1, 3 и 5, соответственно. Дополнительно описаны последовательности нуклеиновых кислот, кодирующие эти белки (SEQ ID NO:2, 4 и 6). Таблица 1 иллюстрирует гомологию (т.е. сходство) между новыми белками DPRP-1, DPRP-2 и DPRP-3 и другими известными сериновыми протеазами.

Таблица 1
Сравнение последовательностей трех новых белков с DPPIV и другими членами клана SC, семейства S9 и членами подсемейства В
Семейство протеазНазвание протеазыЧисло аминокислотГомология с DPPIVТМ-районТриада Ser-Asp-HisЛокализация генаОптимальный pH
Клан СА, Семейство С1DPPI463нетнетнетllq14.1-q14.3-
Клан SC, Семейство S28DPPI500нетнетнет-4.5-6.0
QPP492нетнетнет-4.5-7.5
РСР496нетнетнет--
НеклассифицированныеDPPIII737нетнетнет--
Клан SC, Семейство S9, подсемейство ВDPPIV766100дада2q24.37.5-8.0
DPPVI86552даМутация7-
FAP76070дада2q237.5-8.0
DPRP-188241нетда15q22.1-15q22.27.5-8.0
DPRP-286439нетда19p13.37.5-8.0
DPRP-379654даМутация2q12.3-2q14.1-

Наивысшая гомология между DPRP-1, DPRP-2 и DPPIV наблюдается в С-концевых последовательностях. На основе гомологии последовательности с DPPIV (см. фигуру 1) можно предсказать, что эти белки DPRP могут иметь функции, которые включают в себя функционирование в качестве ферментов, но не ограничиваются ими. Клонирование, экспрессия, биохимическая и молекулярная характеристика подтвердили эту гипотезу.

Профили экспрессии DPRP и локализация в специализированных эпителиальных клетках и плазматических клетках (клетках Лейдига, эпителиальных клетках предстательной железы, лимфоцитах, В-клетках) согласуются с ролью в дифференцировке, пролиферации и воспалении. Локализация гена DPRP-1 в чувствительных к гормонам раках (молочной железы, предстательной железы и яичек), тканях, регулируемых тестостероном, и обильная экспрессия в слабо дифференцированных раках демонстрируют, что DPRP-активирующие или ингибирующие молекулы будут иметь многочисленные терапевтические применения в лечении заболеваний, характеризующихся нарушенной регуляцией роста, дифференцировки и синтеза и деградации стероидных или полипептидных гормонов. Описанные здесь данные подтверждают гипотезу, что DPRP-1 и DPRP-2 участвуют в регуляции пролиферации в in vitro моделях рака предстательной железы и яичка, хорошо известных специалистам в данной области.

Активности DPRP-1 и DPRP-2, описанные здесь, и их профили экспрессии согласуются с тем, что они имеют функциональные роли в качестве физиологических регуляторов иммунной и нейроэндокринной систем, которые действуют посредством ферментативной модификации биохимических медиаторов, таких как пептиды и хемокины. Многочисленные функции, описанные ранее для DPPIV на основе применения ингибиторов, могут быть обусловлены отчасти его действием и действием родственных белков, подобных DPRP. Таким образом, обнаружение селективных и сильнодействующих ингибиторов DPPIV, DPRP и других родственных протеаз, подобных FAP, считается важнейшим для достижения эффективного и безопасного фармацевтического применения этих и любых недавно идентифицированных ингибиторов сериновых протеаз, а также других активных соединений, которые модифицируют функцию (функции) таких белков.

Таким образом, данное изобретение обеспечивает новые белки или полипептиды, кодирующие их нуклеиновые кислоты, клетки, которые были модифицированы такой нуклеиновой кислотой таким образом, что они экспрессируют эти белки, антитела к этим белкам, способ скрининга для обнаружения новых терапевтических средств, которые являются ингибиторами активности этих белков (или которые являются ингибиторами DPPIV и не являются ингибиторами этих белков), и терапевтические средства, обнаруженные такими способами скрининга. Новые белки и кодирующие их нуклеиновые кислоты могут быть использованы для обнаружения новых терапевтических средств для лечения определенных заболеваний, таких как, например, репродуктивные, воспалительные и метаболические нарушения, а также в получении антител с терапевтической или диагностической ценностью.

В соответствии с одним аспектом данного изобретения обеспечены новые, зрелые, биологически активные белки, в основном человеческого происхождения. Такие белки могут быть выделены в небольших количествах из ткани или биологических жидкостей подходящего животного (в том числе человека) стандартными способами; однако, большие количества более удобно получать в культурах клеток, генетически модифицированных таким образм, что они экспрессируют данный белок.

Согласно другому аспекту данного изобретения, обеспечиваются изолированные молекулы нуклеиновых кислот, кодирующие полипептиды данного изобретения, в том числе их мРНК, ДНК, кДНК, геномные ДНК.

Согласно следующему аспекту данного изобретения обеспечиваются также зонды на основе нуклеиновых кислот, содержащие молекулы нуклеиновых кислот достаточной длины для специфической гибридизации с последовательностью нуклеиновой кислоты данного изобретения.

Согласно еще одному аспекту данного изобретения обеспечиваются способы получения таких полипептидов на основе рекомбининтной технологии, применимые для научных исследований in vitro, например синтеза ДНК и получения ДНК-векторов. Способы получения таких полипептидов включают в себя культивирование рекомбинантных прокариотических и/или эукариотических клеток-хозяев, которые были трансфицированы ДНК-векторами, содержащими нуклеотидную последовательность, кодирующую такой полипептид и/или зрелый белок, в условиях, стимулирующих экспрессию такого белка, и последующее извлечение такого белка или фрагмента этого экспрессированного продукта.

Согласно еще одному аспекту данное изобретение обеспечивает способы применения полипептидов и полинуклеотидов DPRP, в том числе для лечения инфекций, таких как бактериальные, грибковые, вызываемые простейшими и вирусные инфекции, в частности инфекций, вызываемых ВИЧ-1 или ВИЧ-2, боли, диабета, преждевременного полового созревания, бесплодия, ожирения, анорексии, булимии, болезни Паркинсона, острой сердечной недостаточности, гипотонии, гипертонии, задержки мочи, остеопороза, стенокардии, инфаркта миокарда, инсульта, язв, астмы, аллергий, доброкачественной гипертрофии предстательной железы, раков, в том числе чувствительных к гормонам, и андроген-независимых раков, мигреней, рвоты, психотических и неврологических нарушений, в том числе тревожности, шизофрении, маниакальной депрессии, депрессии, слабоумия и тяжелой умственной отсталости и дискинезий, далее называемых общим термином "заболевания".

Согласно еще одному аспекту данного изобретения обеспечивается способ применения таких полипептидов или полинуклеотидов, кодирующих такие полипептиды, для обнаружения соединений, которые ингибируют биологическую активность этих зрелых белков, например, отщеплением N-концевого дипептида, и, следовательно, обеспечиваются также такие ингибиторы.

Согласно еще более конкретному аспекту данное изобретение обеспечивает изолированную нуклеиновую кислоту, которая кодирует: (а) полипептид, который включает в себя аминокислотную последовательность одной из последовательностей SEQ ID NO:1, 3 и 5, или (b) полипептид, имеющий аминокислотную последовательность, которая является на по меньшей мере 70% сходной с указанной аминокислотной последовательностью и проявляет ту же самую биологическую функцию или которая является вариантом альтернативного сплайсинга одной из последовательностей SEQ ID NO:2, 4 и 6, или которая является зондом, содержащим по меньшей мере 14 следующих друг за другом нуклеотидов из указанной нуклеиновой кислоты, кодирующей (а) или (b), или которая комплементарна любой из предыдущих нуклеотидных последовательностей.

Согласно другому конкретному аспекту данное изобретение обеспечивает полипептид, который может быть необязательно гликозилированным, и который: (а) имеет аминокислотную последовательность зрелого белка, представленную любой из последовательностей SEQ ID NO:1, 3 и 5; (b) имеет аминокислотную последовательность зрелого белка, имеющего по меньшей мере 70% сходство с одним из зрелых белков (а), и который проявляет ту же самую биологическую функцию; (с) имеет аминокислотную последовательность зрелого белка, имеющего по меньшей мере приблизительно 90% идентичность со зрелым белком любой из последовательностей SEQ ID NO:1, 3 и 5; или (d) является иммунологически реактивным фрагментом (а).

Согласно еще одному конкретному аспекту данное изобретение обеспечивает способ скрининга, направленного на соединение, способное ингибировать ферментативную активность по меньшей мере одного зрелого белка данного изобретения, причем этот способ включает инкубирование указанного зрелого белка и подходящего субстрата для указанного зрелого белка в присутствии одного или нескольких тестируемых соединений или их солей, измерение ферментативной активности указанного зрелого белка, сравнение указанной активности с активностью, определенной в отсутствие тестируемого соединения, и отбор тестируемого соединения или тестируемых соединений, которые уменьшают эту ферментативную активность, и оно обеспечивает также способ скрининга, направленного на соединение, способное ингибировать ферментативную активность DPPIV, которое не ингибирует ферментативную активность по меньшей мере одного зрелого белка изобретения, причем этот способ включает инкубирование указанного зрелого белка и подходящего субстрата в присутствии одного или нескольких ингибиторов DPPIV или их солей, измерения ферментативной активности указанного зрелого белка, сравнения указанной активности с активностью, определенной в отсутствие ингибитора DPPIV, и отбора соединения, которое не уменьшает ферментативную активность указанного зрелого белка.

Эти и другие аспекты данного изобретения должны быть очевидными для специалистов с квалификацией в данной области из следующего ниже подробного описания.

Перечень фигур

Фиг.1А и 1 В показывают линейное выравнивание DPRP-1, DPRP-2, DPRP-3 и DPPIV, причем затенение использовано для указания идентичных (черный цвет) или сходных (серый цвет) аминокислотных остатков в конкретном положении.

Фиг.2 сходна с Фиг.1 и показывает линейное выравнивание DPRP-2 человека и мыши.

Фиг.3 является графиком, который показывает действие различных тетрапептидных амидных ингибиторов на дипептидилпептидазную ферментативную активность.

Фиг.4а-4с показывают действие трех ингибиторных соединений на пролиферацию клеточных линий рака предстательной железы РС3 в различных дозах.

Сведения, подтверждающие возможность осуществления изобретения

Согласно аспекту данного изобретения обеспечиваются изолированные нуклеотидные последовательности (полинуклеотиды), которые кодируют зрелые полипептиды, имеющие предсказанные аминокислотные последовательности трех DPRP (SEQ ID NO:1, 3 и 5).

Полинуклеотиды данного изобретения были обнаружены с использованием библиотеки кДНК яичка человека (DPRP-1), библиотеки толстой кишки человека (DPRP-2) и библиотеки кДНК гипоталамуса человека (DPRP-3). Изолированная нуклеиновая кислота для DPRP-1 содержит открытую рамку считывания, кодирующую белок длиной приблизительно 882 аминокислоты, который является структурно родственным DPPIV человека, обнаруживая 26% идентичность и 41% сходство на протяжении всей последовательности белка DPPIV человека. Изолированная нуклеиновая кислота для DPRP-2 содержит открытую рамку считывания, кодирующую белок длиной приблизительно 864 аминокислоты, который имеет 39% сходство со всей аминокислотной последовательностью DPPIV. Анализ первичной аминокислотной последовательности DPRP-1 и DPRP-2 с использованием графиков гидрофобности предсказывает, что эти два белка не имеют трансмембранного домена. Несмотря на этот факт, возможно, что эти внутриклеточные сериновые протеазы секретируются при клеточной активации. Пролиндипептидаза покоящихся клеток (QPP) является сериновой протеазой, мишенью которой являются внутриклеточные везикулы, которые отличаются от лизосом (Chiravuri М, et al., J. Immunol. 2000 Nov 15; 165(10):5695-702). Эта гипотеза расширяет потенциальный сайт (сайты) и масштабы вовлеченности DPRP-1 и DPRP-2 в механизмы посттрансляционной регуляции хемокинов, цитокинов, пептидов и полипептидов. Полноразмерная последовательность DPRP-3 содержит 796 аминокислот, сигнальный пептид с 1 по 48 аминокислоты и трансмембранный домен между 34 и 56 аминокислотами. Предсказывается, что зрелый белок является мембранным белком типа II и может быть расщеплен с образованием растворимой формы. Аминокислотная последовательность представлена в SEQ ID NO:5, которая была предсказана на основе SEQ ID NO:6 и имеет 54% сходство с DPPIV.

Выравнивание аминокислотных последовательностей этих полипептидов с членами подсемейства S9B ферментов пролилолигопептидаз показывают, что все три белка DPRP обладают гомологией полной последовательности и структуры гомологии с DPPIV и FAP. Предсказывается, что DPRP являются членами клана SC ферментов (серин как нуклеофил) с каталитическими остатками в следующем порядке Ser, Asp, His и последовательностью активного центра (G-W-S-Y-G).

Таблица 2
Гомология (т.е. сходство) между DPRP 1, DPRP 2, DPRP 3 и членами семейства S9B ферментов пролилолигопептидаз.
DPPIV
41DPRP-1
3974DPRP-2
543940DPRP-3
70413952FAP
5240426854DPPVI

DPRP-1, DPRP-2 и DPRP-3 не обнаруживают сходства последовательности с любыми членами семейств классических сериновых протеаз, химотрипсином и субтилизином. Порядок остатков каталитической триады является различным в этих трех основных родственных семействах клана SC: His-Asp-Ser в химотрипсине, Asp-His-Ser в субтилизине и Ser-Asp-His в пролилолигопептидазах.

Как показано в таблице 2, DPRP-3 имеет наивысшую гомологию с DPPIV (68% гомологию и 51% идентичность). Wada et al. выделили кДНК-клоны для DPPVI, DPPIV-родственного белка, из библиотек головного мозга коровы, крысы (Wada et al., Proc. Natl. Acad. Sci. 89:197-201 (1992)) и человека (Yokotani et al., Hum. Molec. Genet. 2:1037-1039 (1993)). Они показали, что, в противоположность DPPIV, каталитическая триада в DPPVI не содержит в качестве первого остатка серин. В DPRP-3 две аминокислоты в каталитической триаде, характерной для семейства сериновых протеаз, являются консервативными. Однако сам остаток серина заменен глицином. Хотя отсутствие остатка серина, вероятно, препятствует протеазной активности в этом центре, возможно, что множество других функций, опосредованных другими функциональными доменами этого белка, остаются интактными.

Как описано вкратце выше, DPPIV является мультифункциональной молекулой, которая проявляет важные функции в зависимости от экспрессирующих клеток и тканей, наряду с ее каталитической активностью в качестве пептидазы. DPRP-3 и DPPIV также, по-видимому, сохраняют множественные функции, несмотря на отсутствие интактной каталитической триады. Например, предполагалось, что DPPIV участвует в регуляции пластичности нейронов. DPPVI экспрессируется на высоком уровне в гиппокампе, таламусе, гипоталамусе и полосатом теле. Кроме того, считается, что задержка развития и эмбриональная смертность эмбрионов rump white Rw/Rw обусловлена разрушением гена DPPIV. Мутация Rw связана с инверсией сегмента хромосомы, простирающейся на 30 сМ проксимальной части хромосомы 5 мыши. Геномный анализ гена DPPIV на хромосоме Rw помещает точку разрыва инверсии в кодирующую область, что приводит к потере значительной части С-концевой области (Hough R.B. et al., Proc. Natl. Acad. Sci., 95, 13800-13805 (1998)).

Ген DPRP-1 человека с предсказанной длиной 32668 п.н. имеет по меньшей мере 22 экзона и восемь транскриптов. Он картируется на хромосоме 15 (NT_010265) в положении 15q21.1-15q22.1. Длины предсказанных транскриптов вариантов альтернативного сплайсинга варьируют между 602 п.н. и 4523 п.н. (см. SEQ ID NO:7-22). Это согласуется с множественными транскриптами, наблюдаемыми с использованием Нозерн-блот-анализа (см. пример 2). EST, представляющие эти транскрипты, были обнаружены в многочисленных тканях, в том числе стареющих фибробластах, Т-лимфоцитах, В-клетках зародышевого центра, семиноме зародышевых клеток, яичке, меланоцитах, матке, яичнике, молочной железе, поражениях при множественном склерозе, поджелудочной железе и плаценте.

Ген DPRP-2 человека относится к гену с по меньшей мере 27 экзонами и девятью вариантами сплайсинга (см. SEQ ID NO:23-40). Один точечный нуклеотидный полиморфизм (SNP) наблюдали в 3'-нетранслируемой области (3'UTR) (88% (37) С против 12% (5) Т). Ген DPRP-2 картируется в районе 19р13.3 хромосомы 19. В этом месте располагается целый ряд маркеров заболеваний и оно связано с различными нарушениями, в том числе гипокальциурической гиперкалиемией, мозжечковой атаксией типа II, мышечной дистрофией, судорогами, подверженностью атеросклерозу, псориазом, эктодермальной дисплазией и острым миелоидным лейкозом. В соответствии с повсеместным распространением этой мРНК, наблюдаемым при Нозерн-блот-анализе (см. пример 2), DPRP-2 экспрессировался в большом разнообразии тканей при исследовании представленности EST (например, более 64 EST экспрессировались в печени, селезенке, мышцах, меланоцитах, сердце, легком, плаценте, коже, поджелудочной железе, желудке, головном мозге, паращитовидной железе).

Ген DPRP-3 человека относится к гену с по меньшей мере 23 экзонами и двумя вариантами сплайсинга (см. SEQ ID NO:41-44). Этот ген картируется на хромосоме 2 (NT_005445) в положении 2q12.3-2q14.1. Транскрипты DPRP-3 не обнаруживают такого широкого распространения, какое обнаруживают DPRP-1 и DPRP-2. Как показано Нозерн-блот-анализом в примере 2, экспрессия DPRP-3 ограничивается головным мозгом и поджелудочной железой. EST, представляющие мРНК DPRP-3, были представлены в ткани, полученной из поражений множественного склероза, гипоталамуса, всего мозга и нервов, причем небольшое число транскриптов обнаруживали в матке и толстой кишке.

Родство среди протеаз человека и грызунов в клане SC, в том числе DPRP-1, DPRP-2 и DPRP-3, анализировали с использованием способа Neighbor Joining (NJ), см. Saitou and Nei, Mol. Biol. Evol., 4, 406-525 (1987). Филогенетический анализ показывает, что среди протеаз S9, DPRP-1 и DPRP-2, обе не имеющие трансмембранного домена, отличаются от DPPIV и близкородственных ему белков, таких как FAP. Однако показано сходство между DPPIV и FAP и между DPRP-3 и DPPIV, которые все являются мембранными белками типа II.

Поиск в базах данных дополнительных родственных DPRP генов выявил присутствие мышиной последовательности, родственной DPRP-1. Выравнивание этой мышиной последовательности с новыми протеазами человека показывает, что mDPRP-1 проявляет существенную гомологию с его человеческим аналогом (фиг.2). Специалисту в данной области будет понятно, что ген новой мышиной протеазы может быть выделен с использованием информации о последовательности, описанной здесь, и легко включен в состав одной из рутинно применяемых экспрессионных конструкций, которые хорошо известны в данной области. Применение этой описанной последовательности специалистами в данной области для создания трансгенной мышиной модели будет включать разработку векторов для таргетинга генов, например таких, которые приводят к гомологичной рекомбинации в мышиных эмбриональных стволовых клетках. Применение мышей с нокаутом генов является ценным инструментом в последующем анализе функции генов DPRP.

Полинуклеотиды данного изобретения могут быть в форме РНК или в форме ДНК; должно быть понятно, что ДНК включает в себя кДНК, геномную ДНК и синтетическую ДНК. Эта ДНК может быть двухцепочечной или одноцепочечной и, если она является одноцепочечной, она может быть кодирующей цепью или некодирующей (антисмысловой) цепью. Кодирующая последовательность, которая кодирует зрелый полипептид, может быть идентичной кодирующей последовательности, показанной в последовательностях SEQ ID NO:2, 4 и 6, соответственно, или она может быть отличающейся кодирующей последовательностью, кодирующей тот же самый зрелый полипептид, в результате избыточности или вырожденности генетического кода или точечного нуклеотидного полиморфизма. Например, она может быть РНК-транскриптом, который включает в себя полную длину любой из последовательностей SEQ Ю NO:2, 4 и 6.

Полинуклеотиды, которые кодируют зрелые белки SEQ ID NO:1, 3, 5, соответственно, могут включать в себя, но не ограничиваются ими, кодирующую последовательность только для зрелого белка; кодирующую последовательность для зрелого полипептида плюс дополнительную кодирующую последовательность, такую как лидерная или секреторная последовательность или последовательность пробелка (предшественника белка); и кодирующую последовательность для зрелого белка (и необязательно дополнительную кодирующую последовательность) плюс некодирующую последовательность, такую как интроны или некодирующая последовательность, расположенная в 5'- и/или 3'-направлении от кодирующей последовательности для зрелого белка.

Таким образом, термин "полинуклеотид, кодирующий полипептид" или термин "нуклеиновая кислота, кодирующая полипептид" должны пониматься как охватывающие полинуклеотид или нуклеиновую кислоту, которые включают в себя только кодирующую последовательность для зрелого белка, а также полинуклеотид или нуклеиновую кислоту, которые включают в себя дополнительную кодирующую и/или некодирующую последовательность. Термины полинуклеотид и нуклеиновая кислота используются взаимозаменяемо.

Данное изобретение включает в себя также полинуклеотиды, где кодирующая последовательность для зрелого белка может быть слита в одной и той же рамке считывания с полинуклеотидной последовательностью, которая способствует экспрессии и секреции полипептида из клетки-хозяина; например, может быть слита лидерная последовательность, которая функционирует в качестве секреторной последовательности для регуляции транспорта полипептида из клетки. Полипептид, имеющий такую лидерную последовательность, называется пребелком или препробелком и может иметь лидерную последовательность, отщепляемую клеткой-хозяином с образованием зрелой формы белка. Эти полинуклеотиды могут иметь 5'-удлиненный район, так что он кодирует пробелок, который является зрелым белком плюс дополнительные аминокислотные остатки на N-конце. Продукт экспрессии, имеющий такую пропоследовательность, называют пробелком, который является неактивной формой зрелого белка; однако, как только эта пропоследовательность отщепляется, остается зрелый белок. Таким образом, например, полинуклеотиды данного изобретения могут кодировать зрелые белки или белки, имеющие пропоследовательность, или белки, имеющие как пропоследовательность, так и препоследовательность (лидерную последовательность).

Полинуклеотиды данного изобретения могут также иметь кодирующую последовательность, слитую в рамке считывания с маркерной последовательностью, которая обеспечивает очистку полипептидов данного изобретения. Маркерная последовательность может быть полигистидиновой меткой (tag), гемагглютининовой (НА) меткой, с-myc-меткой или V5-меткой при использовании хозяина-млекопитающего, например клеток COS-1. НА-метка соответствует эпитопу, происходящему из белка гемагглютинина вируса гриппа (Wilson, I., et al., Cell, 37:767 (1984)), а c-myc-метка может быть эпитопом из белка Мус человека (Evans, G.I. et al., Mol. Cell. Biol. 5:3610-3616 (1985)).

Термин "ген" означает сегмент ДНК, участвующий в синтезе полипептидной цепи; он включает в себя районы, предшествующие кодирующему участку и следующие за кодирующим участком (лидер и трейлер), а также промежуточные последовательности (интроны) между отдельными кодирующими сегментами (экзонами). Термин "значительная гомология последовательности" означает, что по меньшей мере 25%, предпочтительно по меньшей мере 40% аминокислотных остатков являются консервативными и что из неконсервативных остатков по меньшей мере 40% являются консервативными заменами.

Фрагменты полноразмерных генов данного изобретения могут быть использованы в качестве гибридизационного зонда для библиотеки кДНК для выделения полноразмерной кДНК, а также для выделения других кДНК, которые имеют значительную гомологию последовательности с данным геном и будут кодировать белки или полипептиды, имеющие сходную биологическую активность и функцию. Под сходной биологической активностью или функцией, для целей этого изобретения, имеют в виду способность отщеплять N-концевой дипептид, имеющий в качестве предпоследнего Ala или Pro остатка или другие аминокислоты. Такой зонд этого типа имеет по меньшей мере 14 оснований (по меньшей мере 14 следующих друг за другом нуклеотидов из одной из последовательностей SEQ ID NO:2, 4 или 6), предпочтительно по меньшей мере 30 оснований, и такой зонд может содержать, например, 50 или более оснований. Такой зонд может быть также использован для идентификации кДНК-клона, соответствующего полноразмерному транскрипту, и/или геномного клона или клонов, которые содержат полный ген, включающий в себя регуляторные и промоторные области, экзоны и интроны. Меченые олигонуклеотиды, имеющие последовательность, комплементарную последовательности гена данного изобретения, применимы для скрининга библиотеки кДН