Способ получения микропористых материалов с покрытием из оксида редкоземельного металла

Изобретение относится к способу получения каталитического микропористого мелкодисперсного материала, который используется в таких процессах, как очистка нефтяных фракций, очистка сточных вод, каталитическая конверсия выхлопных газов, выходящих из двигателей внутреннего сгорания. Способ позволяет получить каталитический микропористый мелкодисперсный материал с покрытием из оксида редкоземельного металла, у которого количество оксида металла, нанесенного на него, является высоким без риска для эффективности материала. При этом оксид редкоземельного металла нанесен на наружные поверхности указанного материала и может находиться в интервале 20-70 мас.% по отношению к общему эквивалентному содержанию оксида редкоземельного металла и микропористого мелкодисперсного материала. Способ заключается в комбинировании количества коллоидной дисперсии гидрата оксида редкоземельного металла с совместимым микропористым мелкодисперсным материалом с образованием суспензии и термообработки указанной суспензии для фиксации оксида редкоземельного металла на наружных поверхностях указанного материала. Причем указанный микропористый мелкодисперсный материал имеет средний размер пор менее 20 Å, а указанная коллоидная дисперсия имеет размер частиц не менее 20 Å. Также заявлен каталитический свободносыпучий мелкодисперсный материал с покрытием из оксида редкоземельного металла, содержащий цеолитный мелкодисперсный материал, оксид редкоземельного металла. При этом указанный цеолитный мелкодисперсный материал имеет средний размер пор меньше, чем размер частиц указанного оксида редкоземельного металла, и более 20 мас.% указанного оксида редкоземельного металла находится на наружных поверхностях указанного цеолитного мелкодисперсного материала по отношению к общему эквивалентному содержанию оксида редкоземельного металла и цеолита. Цеолитный свободносыпучий мелкодисперсный материал, имеющий высокое содержание оксида редкоземельного металла, имеет тенденцию быть очень стабильным. 3 н. и 28 з.п. ф-лы, 3 табл.

Реферат

Описание

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу получения каталитического микропористого мелкодисперсного материала с покрытием из оксида металла и к связанным с ним продуктам.

Предпосылки создания изобретения

Пористые мелкодисперсные материалы, несущие каталитически активные элементы, являются известными в технике. Указанные материалы используются во многих процессах, таких как очистка нефтяных фракций или очистка сточных вод, например каталитическая конверсия выхлопных газов, выходящих из двигателей внутреннего сгорания.

Катализаторы обычно содержат носитель, получаемый формованием пористого материала, такого как глинозем. Таким образом, носитель может принимать различные формы, такие как сферы, цилиндрические экструдированные профили или экструдированные профили, имеющие многолепестковое поперечное сечение или поперечное сечение различных форм, таких как колесо.

Обычно используемыми пористыми материалами являются глинозем, кремнезем, цеолиты или подобное. Указанные носители обычно имеют большую удельную площадь поверхности, например свыше 20м2/г, для обеспечения большой площади поверхности, которая становится каталитически активной при нанесении на нее каталитически активных элементов.

Различные элементы обычно вводят пропиткой в пористый материал. Например, патент США 5232889 относится к катализатору, полученному пропиткой пористого материала, предпочтительно глиноземными сферами с коллоидной дисперсией наносимого металла. Коллоидная дисперсия должна иметь размер частиц не больше размера пор пористого материала. Когда коллоидная дисперсия проникает в поры носителя, реакционные поверхностные участки носителя изменяют рН дисперсии, вызывая отложение металла в пористом материале. Патент США 6040265 также относится к пропитке пористого материала, такого как глинозем или цеолиты, раствором первичного ацетата металла, по меньшей мере, одного вторичного ацетата металла и органическим агентом осаждения, таким как растворимые сахар, сахариды, полисахариды или их производные, с образованием в результате пропитанного пористого материала. Кроме того, Канадский патент 2033291 относится к катализатору для конверсии оксидов азота в высокотемпературном отработанном газе. Катализатор состоит из цеолита (мольное отношение SiO2/Al2O3 > 20), который содержит 0,5-10 мас.% оксида церия. Катализатор может быть получен либо пропиткой цеолита водным раствором нитрата, галоида или сульфата церия, либо он может быть получен осуществлением ионного обмена. Смесь затем сушат и прокаливают при 300-600°C.

Уровень техники также показывает, что другие элементы могут образовать агрегацию с пористым материалом с получением каталитического материала. Например, патент США 5804526 относится к адсорбенту, который показывает превосходную адсорбционную способность по отношению к оксидам азота. Адсорбент может быть получен, например, агрегированием оксида церия и цеолита. Содержание оксида церия в катализаторе находится в интервале 10-80 мас.% по отношению к общему эквивалентному содержанию цеолита и оксида церия. Адсорбент получают из смеси кристаллических частиц оксида церия и цеолитных частиц деалюминизированного цеолита ZSM-5, где кристаллические частицы оксида церия состоят из поликристаллических агрегатов, имеющих средний размер кристаллических зерен менее 500Å. В агрегированном состоянии кристаллические частицы оксида церия являются прилегающими к поверхностям цеолитных частиц.

Имеются несколько патентов, которые рассматривают использование каталитического покрытия на пористой металлической или подобной подложке для удаления газов. Патент США 4900712 относится к адсорбции одного или более каталитически активных оксидов на глиноземе с высокой площадью поверхности. Способ получения каталитического покрытия включает использование метода коллоидного нанесения однородно легированных оксидов на глинозем с высокой площадью поверхности. Коллоидные дисперсии получают, взяв водный раствор соли нитрата металла и превращая соль нитрата металла в коллоид оксида металла ионообменной смолой. Коллоидную дисперсию оксида суспендируют с глиноземом, где коллоидные частицы оксида адсорбируются на глиноземе. Для того чтобы сохранить сцепление каталитического покрытия на подложке и обеспечить сохранение высокой площади поверхности на катализаторе, легирующий оксид ограничивают до менее примерно 20 мас.% по отношению к общему эквивалентному содержанию глинозема и легирующего оксида.

Патенты США 5431887 и 5556819 относятся к фильтрам с пламягасящим покрытием для использования в каталитических устройствах удаления дыма жаровен. Фильтр покрывают суспензией глинозема (может быть использован цеолит или смесь обоих) и коллоидно диспергированным оксидом церия; причем оксид церия действует как связующее. Коллоидную дисперсию оксида церия получают с использованием высоких температур в течение длительных периодов времени, как описано в вышеуказанном патенте США 4900712.

Имеется, однако, потребность в способе, который дает стабильный свободносыпучий каталитический микропористый мелкодисперсный материал с покрытием из оксида металла с различным содержанием и устраняет недостатки уровня техники.

Краткое описание изобретения

Настоящее изобретение предусматривает эффективный способ получения стабильного каталитического микропористого мелкодисперсного материала для использования в очистке ряда газообразных и пылевидных выделений в различных областях техники.

Согласно аспекту настоящего изобретения предусматривается способ получения каталитического микропористого мелкодисперсного материала с покрытием из оксида редкоземельного металла, имеющего более 20 мас.% оксида редкоземельного металла, нанесенного на наружные поверхности указанного микропористого мелкодисперсного материала, по отношению к общему эквивалентному содержанию оксида редкоземельного металла и микропористого мелкодисперсного материала, содержащий стадии:

i) комбинирования количества коллоидной дисперсии гидрата оксида редкоземельного металла с совместимым микропористым мелкодисперсным материалом с образованием суспензии, причем количество коллоидной дисперсии является достаточным для обеспечения при термообработке на стадии (ii) более 20 мас.% оксида редкоземельного металла, причем указанный микропористый мелкодисперсный материал имеет средний размер пор менее 20 Å, и указанная коллоидная дисперсия имеет размер частиц не менее 20 Å с размещением в результате указанной коллоидной дисперсии на указанных наружных поверхностях указанного микропористого мелкодисперсного материала;

(ii) термообработки указанной суспензии при температуре ниже примерно 200°C, выше примерно 400°C или последовательной их комбинации, где указанную суспензию подвергают термообработке, во-первых, при температурах ниже примерно 200°C и, во-вторых, выше примерно 400°C для фиксации полученного оксида редкоземельного металла на указанных наружных поверхностях указанного микропористого мелкодисперсного материала с получением свободносыпучего мелкодисперсного материала.

Согласно другому аспекту настоящего изобретения предпочтительно микропористым мелкодисперсным материалом является совместимый алюмосиликат. Наиболее предпочтительно микропористым мелкодисперсным материалом является совместимый цеолит.

Согласно другому аспекту настоящего изобретения предпочтительно оксид редкоземельного металла выбран из группы, состоящей из оксидов лантанидных металлов, иттрия, скандия и их смеси. Наиболее предпочтительно оксидом редкоземельного металла является оксид церия.

В еще одном аспекте настоящего изобретения коллоидная дисперсия является кристаллической и имеет рН менее 4,2.

В еще одном аспекте настоящего изобретения способ содержит дополнительную стадию (iii), которая включает измельчение указанного микропористого мелкодисперсного материала с покрытием из оксида редкоземельного металла с получением размеров частиц в интервале 1-25 мкм.

В еще одном аспекте настоящего изобретения суспензию предпочтительно подвергают термообработке с использованием технологии сушки распылением, сушки на поддонах, сушки вымораживанием, сушки с удалением растворителя, распылительной сушки в вакууме или их комбинации.

В еще одном аспекте настоящего изобретения коллоидную дисперсию предпочтительно сушат до геля и затем восстанавливают в воде с образованием указанной коллоидной дисперсии, используемой на стадии (i).

Согласно другому аспекту настоящего изобретения предусматривается способ получения каталитического мелкодисперсного цеолитного материала с покрытием из оксида редкоземельного металла, имеющего не менее 1 мас.% указанного оксида редкоземельного металла, нанесенного на наружные поверхности указанного цеолитного мелкодисперсного материала, по отношению к общему эквивалентному содержанию оксида редкоземельного металла и цеолита, содержащий стадии:

i) комбинирования количества коллоидной дисперсии гидрата оксида редкоземельного металла с совместимым цеолитным мелкодисперсным материалом с образованием суспензии, причем количество коллоидной дисперсии является достаточным для обеспечения при термообработке на стадии (ii) более 1,0 мас.% оксида редкоземельного металла, причем указанный цеолитный мелкодисперсный материал имеет средний размер пор менее 20 Å, и указанная коллоидная дисперсия имеет размер частиц не менее 20 Å с размещением в результате указанной коллоидной дисперсии на указанных наружных поверхностях указанного цеолита;

(ii) термообработки указанной суспензии при температуре ниже примерно 200°C для фиксации полученного оксида редкоземельного металла на указанных наружных поверхностях указанного цеолитного мелкодисперсного материала с получением свободносыпучего мелкодисперсного материала.

Согласно другому аспекту настоящего изобретения предусматривается способ получения каталитического мелкодисперсного цеолитного материала с покрытием из оксида редкоземельного металла, имеющего не менее 1 мас.% указанного оксида редкоземельного металла, нанесенного на наружные поверхности указанного цеолитного мелкодисперсного материала, по отношению к общему эквивалентному содержанию оксида редкоземельного металла и цеолита, содержащий стадии:

i) комбинирования количества коллоидной дисперсии гидрата оксида редкоземельного металла с совместимым цеолитным мелкодисперсным материалом с образованием суспензии, причем количество коллоидной дисперсии является достаточным для обеспечения при термообработке на стадии (ii) более 1,0 мас.% оксида редкоземельного металла, причем указанный цеолитный мелкодисперсный материал имеет средний размер пор менее чем приблизительно 20Å, и указанная коллоидная дисперсия имеет размер частиц не менее чем приблизительно 20 Å с размещением в результате указанной коллоидной дисперсии на указанных наружных поверхностях указанного цеолита;

(ii) термообработки указанной суспензии при температуре ниже примерно 200°C, выше примерно 400°С до примерно ниже 550°C или последовательной их комбинации, где указанную суспензию подвергают термообработке, во-первых, при температурах ниже примерно 200°C и, во-вторых, выше примерно 400°C, но ниже примерно 550°C, для фиксации полученного оксида редкоземельного металла на указанных наружных поверхностях указанного цеолитного мелкодисперсного материала с получением свободносыпучего мелкодисперсного материала.

Согласно другому аспекту настоящего изобретения предусматривается способ получения каталитического мелкодисперсного цеолитного материала с покрытием из оксида церия, имеющего не менее 1 мас.% указанного оксида церия, нанесенного на наружные поверхности указанного цеолитного мелкодисперсного материала, по отношению к общему эквивалентному содержанию церия и цеолита, содержащий стадии:

i) комбинирования количества коллоидной дисперсии гидрата оксида церия с совместимым цеолитным мелкодисперсным материалом с образованием суспензии, причем количество коллоидной дисперсии является достаточным для обеспечения при термообработке на стадии (ii) более 1,0 мас.% оксида церия, причем указанный цеолитный мелкодисперсный материал имеет средний размер пор менее чем приблизительно 20 Å, и указанная коллоидная дисперсия имеет размер частиц не менее чем приблизительно 20Å с размещением в результате указанной коллоидной дисперсии на указанных наружных поверхностях указанного цеолита;

(ii) термообработки указанной суспензии при температуре ниже примерно 200°C и выше примерно 400°С до примерно ниже 550°C или последовательной их комбинации, где указанную суспензию подвергают термообработке, во-первых, при температурах ниже примерно 200°C и, во-вторых, выше примерно 400°C, но ниже 550°C, для фиксации полученного оксида церия на указанных наружных поверхностях указанного цеолитного мелкодисперсного материала с получением свободносыпучего мелкодисперсного материала.

Еще в одном аспекте настоящего изобретения предусматривается способ получения каталитического мелкодисперсного цеолитного материала с покрытием из оксида редкоземельного металла, имеющего не менее 1 мас.% указанного оксида редкоземельного металла, нанесенного на наружные поверхности указанного цеолитного мелкодисперсного материала, по отношению к общему эквивалентному содержанию оксида редкоземельного металла и цеолита, содержащий стадии:

i) комбинирования количества коллоидной дисперсии гидрата оксида редкоземельного металла с совместимым цеолитным мелкодисперсным материалом, имеющим рН менее примерно 4,2, с образованием суспензии, причем количество коллоидной дисперсии является достаточным для обеспечения при термообработке на стадии (ii) более 1,0 мас.% оксида редкоземельного металла, причем указанный цеолитный мелкодисперсный материал имеет средний размер пор менее чем примерно 20 Å, и указанная коллоидная дисперсия имеет размер частиц не менее чем примерно 20 Å с размещением в результате указанной коллоидной дисперсии на указанных наружных поверхностях указанного цеолита;

(ii) термообработки указанной суспензии при температуре ниже примерно 200°C, выше примерно 400°C или последовательной их комбинации, где указанную суспензию подвергают термообработке, во-первых, при температурах ниже примерно 200°C и, во-вторых, выше примерно 400°C, для фиксации полученного оксида редкоземельного металла на указанных наружных поверхностях указанного цеолитного мелкодисперсного материала с получением свободносыпучего мелкодисперсного материала.

Еще в одном аспекте настоящего изобретения оксид редкоземельного металла, нанесенный на наружную поверхность, находится в интервале примерно 1,0-75 мас.%, предпочтительно, в интервале примерно 20-70 мас.%, по отношению к общему эквивалентному содержанию оксида редкоземельного металла и цеолита.

Еще в одном аспекте настоящего изобретения коллоидную дисперсию получают в определенном регулируемом интервале размеров коллоидных частиц 20-50 Å, 50-70 Å или 100-150 Å.

Еще в одном аспекте настоящего изобретения получение коллоидной дисперсии, имеющей определенный размер частиц приблизительно 20-50 Å, содержит стадии:

а) смешения основания и перекиси водорода с раствором гидролизующейся соли редкоземельного металла с получением раствора гидроксида редкоземельного металла;

b) добавления сильной кислоты к указанному раствору гидроксида редкоземельного металла с получением коллоидной дисперсии гидрата оксида редкоземельного металла, в котором сильная кислота способна деагрегировать коллоидную дисперсию гидрата оксида редкоземельного металла.

Еще в одном аспекте настоящего изобретения получение коллоидной дисперсии, имеющей определенный размер частиц 50-70 Å, содержит стадии:

а) смешения основания с раствором гидролизующейся соли редкоземельного металла, посредством барботирования воздуха через раствор, с получением раствора гидроксида редкоземельного металла;

b) добавления сильной кислоты к указанному раствору гидроксида редкоземельного металла с получением коллоидной дисперсии гидрата оксида редкоземельного металла, в котором сильная кислота способна деагрегировать коллоидную дисперсию гидрата оксида редкоземельного металла.

Еще в одном аспекте настоящего изобретения получение коллоидной дисперсии, имеющей определенный размер частиц 100-150 Å, содержит стадии:

а) смешения основания с раствором гидролизующейся соли редкоземельного металла, где редкоземельный металл имеет два состояния окисления;

b) обеспечения медленного окисления на воздухе раствора гидролизующейся соли редкоземельного металла с получением раствора гидроксида редкоземельного металла;

с) добавления сильной кислоты к раствору гидроксида редкоземельного металла с получением коллоидной дисперсии гидрата оксида редкоземельного металла, где сильная кислота способна деагрегировать коллоидную дисперсию гидрата оксида редкоземельного металла.

Согласно другому аспекту настоящего изобретения предусматривается цеолитный свободносыпучий мелкодисперсный материал с покрытием из оксида каталитического редкоземельного металла, содержащий:

цеолитный мелкодисперсный материал;

оксид редкоземельного металла;

где указанный цеолитный мелкодисперсный материал имеет средний размер пор менее 20 Å;

более 20 мас.% указанного оксида редкоземельного металла нанесено на наружные поверхности указанного цеолитного мелкодисперсного материала по отношению к общему эквивалентному содержанию оксида редкоземельного металла и цеолита.

Еще в одном аспекте настоящего изобретения обычно менее 30 мас.% оксида редкоземельного металла (по отношению к общему эквивалентному содержанию оксида редкоземельного металла) выщелачивается в воду, когда свободносыпучий цеолитный мелкодисперсный материал с покрытием из оксида редкоземельного металла суспендируют в воде.

Согласно другому аспекту настоящего изобретения предусматривается способ получения каталитического микропористого мелкодисперсного материала с покрытием из оксида редкоземельного металла, имеющего оксид редкоземельного металла, нанесенный на наружные поверхности указанного микропористого мелкодисперсного материала, содержащий стадии:

i) комбинирования количества коллоидной дисперсии гидрата оксида редкоземельного металла с совместимым микропористым мелкодисперсным материалом с образованием суспензии, причем указанный микропористый мелкодисперсный материал имеет средний размер пор меньше размера частиц указанной коллоидной дисперсии с размещением в результате указанной коллоидной дисперсии на наружных поверхностях указанного микропористого мелкодисперсного материала;

(ii) термообработки указанной суспензии для фиксации оксида редкоземельного металла на наружных поверхностях микропористого мелкодисперсного материала.

В одном варианте указанная термообработка содержит нагревание указанной суспензии при температуре, достаточной для отвода достаточного количества воды из указанной суспензии, с образованием свободносыпучего мелкодисперсного материала. Предпочтительно указанная термообработка дополнительно содержит прокаливание указанного свободносыпучего мелкодисперсного материала.

В другом варианте указанная термообработка содержит нагревание указанной суспензии до сухого прокаленного порошка в одну стадию.

В другом варианте указанная суспензия содержит нитратные ионы, и указанную термообработку проводят при температуре, достаточной для разложения, по меньшей мере, части нитратных ионов на газообразные компоненты.

В другом варианте указанный способ содержит измельчение указанного микропористого мелкодисперсного материала с покрытием из оксида редкоземельного металла с получением размеров частиц в интервале 1-25 мкм. Должно быть отмечено, что могут быть использованы другие интервалы размеров частиц. В частности, измельчением могут быть получены более мелкие частицы, например 0,5-1 мкм частицы. Выбор размера частиц основан на предполагаемом использовании покрытого микропористого мелкодисперсного материала и способности работать с измельченными частицами.

Подробное описание предпочтительных вариантов

Соответственно, настоящее изобретение относится к новому способу, в результате которого получают свободносыпучий каталитический микропористый мелкодисперсный материал, совместимый с покрытием из оксида редкоземельного металла. Предпочтительно совместимым микропористым материалом является совместимый алюмосиликат, такой как совместимый цеолитный мелкодисперсный материал.

В настоящем изобретении редкоземельные металлы определены как скандий, иттрий и лантанидные металлы.

В одном варианте настоящего изобретения способ получения микропористого мелкодисперсного материала с покрытием из оксида редкоземельного металла содержит стадии:

i) комбинирования количества коллоидной дисперсии гидрата оксида редкоземельного металла с совместимым микропористым мелкодисперсным материалом с образованием суспензии, так что количество коллоидной дисперсии является достаточным для обеспечения при термообработке на стадии (ii) определенного процентного содержания по массе оксида редкоземельного металла,

(ii) термообработки указанной суспензии для фиксации полученного оксида редкоземельного металла на наружных поверхностях микропористого мелкодисперсного материала с получением свободносыпучего мелкодисперсного материала.

Совместимый микропористый материал определяется как материал, который поддерживает совместимость с коллоидной дисперсией так, что коллоидная дисперсия остается цельной (т.е. мелкодисперсный материал остается по существу в дисперсной форме). Если коллоидная дисперсия образует хлопья в значительной степени перед сушкой, тогда суспензия может не дать образования свободносыпучего порошка при сушке суспензии (такой как в распылительной сушилке) и продукт может не быть гомогенным. Соответственно, микропористый материал выбирают так, чтобы не вызвать никакого значительного хлопьеобразования коллоидных частиц в дисперсии и предпочтительно никакого или по существу никакого хлопьеобразования коллоидных частиц в дисперсии. Некоторые факторы, которые определяют совместимость микропористого материала и коллоидной дисперсии, включают, но не ограничиваются этим: рН микропористого материала и присутствие ионизующихся солей, таких как нитрат аммония. Если рН является слишком высоким, тогда коллоиды будут образовывать хлопья. В таком случае при снижении рН коллоиды могут диспергироваться в жидкости.

Предпочтительно совместимым микропористым мелкодисперсным материалом является совместимый алюмосиликат и более предпочтительно совместимый цеолитный мелкодисперсный материал. Совместимый цеолитный мелкодисперсный материал, который может быть использован в настоящем изобретении, включает (но не ограничивается этим) силикалитные цеолиты, X, Y и L цеолиты, фоязиты ((Na2, Ca, Mg)29[Al58Si134O384]·240 H2O; кубическая форма), β-цеолиты (Nan[AlnSi64-nO128] с n < 7; тетрагональная форма), морденитные цеолиты (Na8[Al8Si40O96]·24H2O; орторомбическая форма), ZSM цеолиты (Nan[AlnSi96-nO192]·16H2O с n < 27; орторомбическая форма) и их смеси. Предпочтительно цеолиты являются гидрофобными, слабогидрофобными цеолитами или их смесями, которые имеют сродство к гидрофобным и слабогидрофобным органическим соединениям. Цеолиты, имеющие рН менее 4,2, являются также высоко предпочтительными для поддержания совместимости с коллоидной дисперсией. Могут быть использованы цеолиты, имеющие более высокие рН, поэтому цеолит смешивают с водой и добавляют кислоту для снижения рН до желаемого уровня рН.

Используемые цеолитные материалы могут также характеризоваться следующей формулой:

MmM′nM″p[aAlO2•bSiO2•cTO2],

в которой

М представляет одновалентный катион,

M′ представляет двухвалентный катион,

M″ представляет трехвалентный катион,

a, b, c, n, m и р представляют числа, которые отражают стехиометрические пропорции,

c, m, n или р также могут быть нулем,

Al и Si представляют тетраэдрально координированные атомы Al и Si,

Т представляет тетраэдрально координированный атом, способный замещать Al или Si,

отношение b/a цеолита или цеолитоподобного материала имеет значение от примерно 5 до примерно 300, и размер микропор цеолита находится в интервале 5-13 Å.

Предпочтительно используемым оксидом редкоземельного металла является оксид лантанидного металла, иттрия, скандия или их смесь. Более предпочтительно, оксидом редкоземельного металла является оксид церия.

Коллоидные дисперсии редкоземельных металлов, используемые в настоящем изобретении, получают, но, не ограничиваясь этим из следующих солей редкоземельных металлов: YCl3, Y2(CO3)3, Y(C2H3O2)3, Y(NO3)3, CeCl3, Ce2(CO3)3, Ce(C2H3O2)3, Ce(ClO4)3 и Ce(NO3)3. Предпочтительно коллоидную дисперсию редкоземельных металлов получают в определенном интервале размеров частиц от 20 до 150 Å. В общем случае коллоидную дисперсию получают смешением водной суспензии соли редкоземельного металла с кислотой с получением гидролизующейся соли. Предпочтительными кислотами являются азотная кислота и хлористоводородная кислота. Альтернативно, если исходной солью металла является нитрат или хлорид, данная стадия смешения нитратной или хлоридной соли является ненужной. При любом подходе получаемая гидролизующаяся соль, такая как нитрат металла или хлорид металла, гидролизуется. Предпочтительно она гидролизуется и окисляется при добавлении смеси гидроксида аммония и перекиси водорода. Получают гидроксид металла и смешивают с водой и сильной кислотой с получением суспензии. Сильной кислотой может быть, например, азотная кислота, хлористоводородная кислота или перхлорная кислота, и она является способной деагрегировать получаемый нерастворимый гидрат металла. Остаток от суспензии затем смешивают с водой с получением коллоидной дисперсии оксида металла. Когда в качестве сильной кислоты используют азотную кислоту, мольное отношение нитратных ионов к оксиду редкоземельного металла в указанной коллоидной дисперсии находится в интервале 0,1-1,0, предпочтительно 0,1-0,5 и наиболее предпочтительно 0,12-0,25.

В вариантах коллоидная дисперсия может быть получена в определенном интервале размеров частиц от 20 до 150 Å. Размер частиц регулируют параметрами осаждения и окисления, используемыми для получения коллоидной дисперсии. В конкретных вариантах основание и, необязательно, перекись водорода добавляют для окисления раствора гидролизующейся соли редкоземельного металла с получением дисперсии гидрата редкоземельного металла, и в зависимости от того:

(i) проводят ли реакцию в горячих или холодных условиях,

(ii) проводят ли реакцию с продувкой воздухом;

(iii) какой концентрации является раствор, содержащий гидрат редкоземельного металла,

(iv) добавляют ли основание к соли, или наоборот,

размер кристаллитов может варьироваться от 20 до 100Å. В других частных вариантах для получения более крупных частиц, таких как 100-150Å, основание добавляют к раствору гидролизующейся соли редкоземельного металла и позволяют медленно окисляться на воздухе.

В одном варианте коллоидную дисперсию получают в определенном интервале размеров частиц 20-50Å. Гидроксид аммония и перекись водорода смешивают с раствором нитрата церия, получая раствор гидроксида церия. Затем азотную кислоту добавляют к раствору гидроксида церия (IV) и получают в результате коллоидную дисперсию 20-50 Å частиц гидрата оксида церия и нитратных ионов. Предпочтительно мольное отношение нитратных ионов к оксиду церия в указанной коллоидной дисперсии находится в интервале 0,12-0,25. Допустимы другие варианты, в которых могут быть использованы взамен любая подходящая гидролизующаяся соль редкоземельного металла или их смеси, могут быть использованы взамен любые подходящие сильные кислоты, способные деагрегировать получаемый нерастворимый гидрат редкоземельного металла, такие как хлористоводородная кислота или перхлорная кислота, и может быть использовано взамен любое подходящее основание, такое как гидроксид натрия, гидроксид калия, гидроксид тетраэтиламмония. Предпочтительно основание имеет рН более 4. Более предпочтительно основание выбрано из группы, состоящей из гидроксида аммония и его производных. Когда в качестве основания используют гидроксид натрия или калия, натрий и калий являются трудными для удаления из осажденных частиц гидрата. Поэтому требуются несколько промывок частиц.

В другом варианте гидроксид аммония смешивают с раствором нитрата церия и смесь продувают воздухом, например, воздух барботирует через смесь. Получают в результате раствор гидроксида церия (IV) и затем добавляют азотную кислоту, образуется коллоидная дисперсия 50-70Å частиц гидрата оксида церия и нитратных ионов. Предпочтительно мольное отношение нитратных ионов к оксиду церия в указанной коллоидной дисперсии находится в интервале 0,12-0,25. Допустимыми являются другие варианты, в которых могут быть использованы взамен любая подходящая гидролизующаяся соль редкоземельного металла или их смеси, любые подходящие сильные кислоты и любое подходящее основание, как указано выше.

В другом варианте гидроксид аммония смешивают с раствором нитрата церия, где смесь медленно окисляется на воздухе, например, при оставлении при комнатной температуре на несколько дней с получением раствора гидроксида церия (IV). Затем к раствору добавляют азотную кислоту и получают в результате коллоидную дисперсию 100-150 Å частиц гидрата оксида церия и нитратных ионов. Предпочтительно мольное отношение нитратных ионов к оксиду церия в указанной коллоидной дисперсии находится в интервале 0,12-0,25. Допустимыми являются другие варианты, в которых могут быть использованы взамен любая подходящая гидролизующаяся соль редкоземельного металла или их смеси, любые подходящие сильные кислоты и любое подходящее основание, как указано выше.

Соли трехвалентного и/или четырехвалентного церия могут быть превращены в коллоиды церия (IV) относительно легко. В другом варианте дисперсию получают смешением водной суспензии карбоната церия с азотной кислотой. Получаемый нитрат церия гидролизуется и окисляется в результате добавления смеси гидроксида аммония и перекиси водорода. Получают гидроксид церия и смешивают с водой и азотной кислотой с получением цериевой коллоидной дисперсии, которая содержит частицы гидрата оксида церия и нитратные ионы. Цериевую коллоидную дисперсию затем добавляют к совместимому цеолиту с образованием суспензии, которую подвергают термообработке при температуре, как описано выше, с получением свободносыпучего мелкодисперсного материала.

В общем случае суспензия коллоидной дисперсии гидрата оксида редкоземельного металла и совместимого микропористого мелкодисперсного материала является довольно стабильной. Установлено, что суспензия является устойчивой к коагуляции и химическим изменениям, таким как химические реакции, растворение, изменения рН и изменения проводимости.

Микропористый мелкодисперсный материал имеет средний размер пор, который является меньше среднего размера частиц коллоидной дисперсии, так что коллоидная дисперсия может быть размещена на наружных поверхностях материала. Предпочтительно материал имеет средний размер пор менее чем примерно 20Å, а коллоидная дисперсия имеет средний размер частиц не менее чем примерно 20Å. Более предпочтительно материал имеет средний размер пор менее чем примерно 10Å.

Предпочтительно более 20 мас.% оксида редкоземельного металла (по отношению к общему эквивалентному содержанию микропористого мелкодисперсного материала и оксида редкоземельного металла) нанесено на наружные поверхности микропористого мелкодисперсного материала. Высокое содержание оксида редкоземельного металла, нанесенного на наружную поверхность, обеспечивается предпочтительно в интервале от примерно 20 до примерно 70 мас.% по отношению к общему эквивалентному содержанию оксида редкоземельного металла и микропористого мелкодисперсного материала. Свободносыпучий мелкодисперсный материал, т.е. микропористый мелкодисперсный материал, имеющий высокое содержание оксида редкоземельного металла, является неожиданно вполне стабильным.

Стабильность свободносыпучего мелкодисперсного материала определяют по выщелачиваемости микропористого мелкодисперсного материала с покрытием из оксида редкоземельного металла; низкая выщелачиваемость эквивалентна случаю стабильного мелкодисперсного материала. Выщелачиваемость определяется количеством оксида редкоземельного металла, которое растворяется (выщелачивается) в воде, когда микропористый мелкодисперсный материал с покрытием из оксида редкоземельного металла суспендируют в воде.

Микропористый мелкодисперсный материал с покрытием из оксида редкоземельного металла может быть подвергнут термообработке при ряде температур и комбинаций температур при сохранении своей стабильности. В частных вариантах, когда микропористый мелкодисперсный материал с покрытием из оксида редкоземельного металла подвергают термообработке при температурах ниже примерно 200 °C и суспенспендируют в воде, неожиданно очень мало оксида редкоземельного металла выщелачивается. Поскольку материал обрабатывался при таких низких температурах, ожидалось, что оксид редкоземельного металла полностью растворится в воде. Было установлено, однако, что обычно менее 30 мас.% оксида редкоземельного металла (по отношению к общему эквивалентному содержанию оксида редкоземельного металла) выщелачивается в воде, что показывает, что мелкодисперсный материал является довольно стабильным при термообработке при температурах ниже примерно 200°C. Когда микропористый мелкодисперсный материал с покрытием из оксида редкоземельного металла термообрабатывают при температурах выше примерно 400°C и суспендируют в воде, установлено, что обычно менее 0,1 мас.% оксида редкоземельного металла (по отношению к общему эквивалентному содержанию оксида редкоземельного металла) выщелачивается в воде. Указанные результаты справедливы как для высокого, так и для низкого содержания. В отличие от подхода прототипа настоящий подход работает хорошо с обеспечением ряда содержаний, включая высокие содержания (более примерно 20 мас.% оксида редкоземельного металла) с использованием ряда температур до примерно 900°C, включая последующие температуры, без нарушения высокой площади поверхности или каталитической активности материала.

В предпочтительном варианте получаемая суспензия по способу настоящего изобретения может подвергаться термообработке при температурах ниже примерно 200°C, выше примерно 400°C или их последовательной комбинации, где суспензию обрабатывают, во-первых, при температурах ниже примерно 200°C и, во-вторых, выше примерно 400°C. Предпочтительно суспензию подвергают термообработке при температуре ниже примерно 200°C и затем последовательно при температуре выше примерно 400°C. Более предпочтительно суспензию подвергают термообработке при температуре от примерно 85°C до примерно 105°C и затем последовательно при температуре выше примерно 400°C, где суспензию нагревают со скоростью 100°C/ч до достижения температуры выше примерно 400°C. В данной точке температуру выдерживают не менее 1 ч. Худшие результаты имеют место для микропористого мелкодисперсного материала с покрытием из окси