Способ и устройство для тестирования трафика и вспомогательных каналов в системе беспроводной передачи данных

Иллюстрации

Показать все

Заявлены способы тестирования производительности терминалов и пунктов доступа в системах данных МДКР (например, стандарта cdma 2000). Обеспечивается структура протокола и сообщений для поддержания систематического тестирования производительности терминалов и для гарантирования совместимости интерфейсов. Эта структура содержит протокол прямого тестового приложения для тестирования прямых каналов и протокол обратного тестового приложения для тестирования обратных каналов. Также предложены способы для: (1) тестирования различных типов каналов (к примеру, каналов трафика, а также вспомогательных каналов), (2) тестирования передач пакетных данных, (3) поддерживающего «устойчивость» тестирования, (4) принудительных установок некоторых вспомогательных каналов, и (5) сбора, регистрации и описания различных статистик, которые могут быть использованы для выделения метрик производительности, таких как пропускная способность и коэффициент пакетных ошибок. Техническим результатом является проверка производительности терминалов и пунктов доступа в системах МДКР. 21 н. и 47 з.п. ф-лы, 8 ил., 22 табл.

Реферат

Область техники

Настоящее изобретение относится к передаче данных и, в частности, к способам тестирования различных типов каналов в системе беспроводной передачи данных (к примеру, cdma2000).

Существующий уровень техники

Системы беспроводной передачи данных, такие как системы множественного доступа с кодовым разделением каналов (МДКР) (CDMA), системы множественного доступа с временным разделением каналов (МДВР) (TDMA), системы множественного доступа с частотным разделением каналов (МДЧР) (FDMA) и другие широко используются для обеспечения различных видов связи, таких как речевая связь, передача данных и т.д. Для этих систем в высшей степени желательно использовать доступные ресурсы (т.е. доступные диапазон рабочих частот и мощность передачи) как можно эффективнее. Это чаще всего влечет за собой передачу столь большого объема данных стольким пользователям в столь короткий период времени, насколько это обеспечивается условиями линии связи.

Чтобы достичь этой цели, может оказаться необходимым оценивать производительность терминалов на заводе и/или в полевых условиях. Терминалы могут проверяться в ходе процесса производства, чтобы гарантировать, что они отвечают определенным минимальным критериям производительности. А в полевых условиях производительность терминалов может быть охарактеризована и использована, чтобы диагностировать РЧ покрытие и проблемы производительности в системе беспроводной передачи данных.

В одном традиционном способе определения производительности терминала известная комбинация данных (например, генерируемая генератором псевдослучайных чисел) передается пунктом доступа (или базовой станцией), принимается терминалом и посылается назад к пункту доступа. Этот метод кольцевой проверки может быть прост для воплощения, но обеспечивает ограниченные возможности тестирования.

Многие системы связи МДКР нового поколения способны к гибкой работе. К примеру, данные могут передаваться к терминалам в пакетах, различные виды данных могут передаваться по разным типам каналов, скорость передачи данных может изменяться от кадра к кадру на конкретном канале, обработка данных может также изменяться (например, от кадра к кадру и/или от канала к каналу) и т.д. Традиционный метод кольцевой проверки обычно используется для проверки единственного канала трафика на основании определенного набора параметров и может оказаться неспособным проверять различные аспекты систем МДКР нового поколения.

Кроме того, разные поставщики оборудования могут поддерживать и/или воплощать различные интерфейсы для проверки терминалов. В результате понятно, что оборудование от одного поставщика может оказаться протестированным не должным образом по сравнению или в комбинации с оборудованием от другого поставщика из-за их несовместимых интерфейсов.

Поэтому в технике имеется необходимость в способах проверки производительности терминалов и пунктов доступа в системах МДКР.

Сущность изобретения

Аспекты изобретения обеспечивают способы проверки производительности терминалов и пунктов доступа в системах МДКР. Для поддержания проверки терминалов предлагается структура протоколов и сообщений, и эта структура обеспечивает совместимость интерфейсов. В варианте выполнения эта структура содержит протокол прямой тестовой прикладной программы (ППТП) (FTAP) для тестирования прямых каналов и протокол обратной тестовой прикладной программы (ПОТП) (RTAP) для тестирования обратных каналов. ППТП поддерживает тестирование канала прямого трафика и сбор, регистрацию и составление отчета о различных статистиках, которые могут использоваться для определения производительности, а ПОТП поддерживает тестирование канала обратного трафика и сбор связанной с этим статистики.

Предлагаются способы проведения разных тестирований на различных типах каналов (например, каналы трафика, а также вспомогательные и служебные каналы). Эти способы поддерживают тесты пакетных передач данных. Предлагаются также способы по сбору, регистрации разных статистик и составления отчетов по ним, а собранная статистика может после этого использоваться для выявления различных метрик производительности, таких как пропускная способность, коэффициент пакетных ошибок (КПО) (PER) и т.д.

Предлагаются также способы для поддержания «стойкости» в тестировании (т.е. непрерывное тестирование при соединении и разъединении с обнулением переменных, используемых для хранения статистической информации, только по команде). Предлагаются также способы для принудительных установок некоторых вспомогательных каналов (например, так, чтобы можно было определить коэффициент ошибок каналов). Различные аспекты и варианты выполнения изобретения описываются более подробно ниже.

Описанные способы могут использоваться для различных применений, таких как тестирование минимальной производительности терминалов систематическим образом (т.е. на заводском или лабораторном оборудовании) и измерение производительности прямой и/или обратной линии (т.е. в полевом оборудовании). Эти способы могут использоваться для разных систем МДКР и беспроводной передачи данных, таких как cdma2000, IS-95 и Ш-МДКР (W-CDMA).

Изобретение также предлагает способы, устройства (к примеру, терминалы и пункты доступа) и иные элементы, которые воплощают различные аспекты, варианты выполнения и признаки изобретения, как подробно описано ниже.

Краткое описание чертежей

Признаки, сущность и преимущества настоящего изобретения поясняются в подробном описании, изложенном ниже, иллюстрируемом чертежами, на которых одинаковые ссылочные позиции относятся к одним и тем же частям по всем чертежам, на которых:

Фиг. 1 - схема системы беспроводной передачи данных;

Фиг. 2А и 2В - блок-схемы варианта выполнения пункта доступа и терминала, соответственно, воплощающих различные аспекты и варианты выполнения изобретения;

Фиг. 3 - диаграмма схемы передачи, используемая для высокоскоростных пакетных данных в системе cdma2000;

Фиг. 4 - вариант выполнения всего процесса проверки канала прямого трафика;

Фиг. 5 - блок-схема алгоритма конкретного варианта выполнения для процесса конфигурирования проверочных параметров ППТП;

Фиг. 6 - схема варианта выполнения процесса извлечения статистической информации из терминала;

Фиг. 7 - схема варианта выполнения всего процесса проверки канала обратного трафика;

Фиг. 8 - блок-схема алгоритма конкретного выполнения для процесса конфигурирования тестовых параметров ПОТП.

Подробное описание

Фиг. 1 представляет собой схему системы 100 беспроводной передачи данных, в которой могут быть воплощены различные аспекты и варианты выполнения изобретения. Система 100 обеспечивает связь для нескольких ячеек, причем каждая ячейка обслуживается соответствующим пунктом 104 доступа. Пункт доступа может также называться базовой станцией, приемопередающей системой базовой станции (ПСБС) (BTS) или узлом В. Различные терминалы 106 распределены по всей системе. Терминал может также называться терминалом доступа, удаленным терминалом, мобильной станцией или пользовательским оборудованием (UE).

В варианте выполнения каждый терминал 106 может осуществлять связь с одним пунктом 104 доступа по прямой линии в любой заданный момент и может осуществлять связь с одним или более пунктами доступа по обратной линии в зависимости от того, находится ли этот терминал в «режиме гибкой передачи обслуживания». Прямая линия (т.е. нисходящая линия) относится к передаче от пункта доступа к терминалу, а обратная линия (т.е. восходящая линия) относится к передаче от терминала к пункту доступа.

На фиг. 1 жирная линия со стрелкой указывает передачу данных для конкретного пользователя (или просто «данных») от пункта доступа к терминалу. Пунктирная линия со стрелкой указывает, что терминал принимает из пункта доступа пилотный и другие сигналы, но не передачу данных для конкретного пользователя. Как показано на фиг. 1, пункт 104а доступа передает данные на терминал 106а по прямой линии, пункт 104b доступа передает данные на терминал 106b, пункт 104с доступа передает данные на терминал 106с и т.д. Связь по обратной линии на фиг. 1 не показана для простоты.

Система 100 может быть сконструирована для поддержания одного или нескольких стандартов МДКР, таких как cdma2000, IS-95, Ш-МДКР и иных. Эти стандарты МДКР известны в уровне техники и включены в настоящее описание посредством ссылки. Некоторые системы МДКР нового поколения (например, системы cdma2000 1xEV) способны передавать данные в пакетах и при переменных скоростях передачи данных (например, поддерживаемых линией связи). Описанные здесь способы тестирования могут обеспечить более эффективное определение параметров линии связи для этих систем.

Фиг. 2А является блок-схемой варианта выполнения пункта 104 доступа, который способен поддерживать различные аспекты и варианты выполнения изобретения. Для простоты фиг. 2А показывает обработку в пункте доступа для связи с одним терминалом. В прямой линии данные трафика от источника 210 передаваемых (ТХ) данных и тестовые данные из буфера 212 подаются на мультиплексор 214. Мультиплексор 214 выбирает и подает данные трафика на процессор 216 передаваемых данных при работе в нормальном режиме и подает как данные трафика, так и тестовые данные при работе в тестовом режиме. Процессор 216 передаваемых данных принимает и обрабатывает (к примеру, форматирует, перемежает и кодирует) принятые данные, которые затем обрабатываются (например, модулируются накрывающим кодом и кодом расширения спектра) модулятором 218. Обработка (к примеру, кодирование, перемежение, накрытие и т.д.) может быть разной для каждого типа канала. Модулированные данные затем подаются на радиочастотный (РЧ) передающий блок 222 и преобразуются (например, в один или более аналоговых сигналов, усиливаются, фильтруются и модулируются в квадратуре), чтобы генерировать сигнал прямой линии, который направляется через антенный переключатель 224 и передается через антенну 226 к терминалам. Контроллер 220 управляет всем тестированием посредством сообщений сигнализации, которые посылаются через мультиплексор 214.

Фиг. 2В является блок-схемой варианта выполнения терминала 106, который может поддерживать разные аспекты и варианты выполнения по изобретению. Сигнал прямой линии из пункта доступа принимается антенной 252, направляется через антенный переключатель 254 и подается на РЧ приемный блок 256. РЧ приемный блок 256 осуществляет преобразование принятого сигнала (например, фильтрует, усиливает, преобразует с понижением частоты и оцифровывает) и выдает отсчеты. Демодулятор 258 принимает и обрабатывает отсчеты (т.е. осуществляет свертку, снимает накрывающий код и демодулирует), чтобы восстановить символы. Демодулятор 258 может реализовать многоотводный приемник, способный обрабатывать множество сигнальных составляющих в принятом сигнале для формирования восстановленных символов. Процессор 260 принятых (RX) данных декодирует восстановленные символы, тестирует принятые пакеты и подает декодированные данные трафика (через демультиплексор 262) в приемник 264 принятых данных, а декодированные тестовые данные - в контроллер 270. Контроллер 270 управляет всем тестированием посредством сообщений сигнализации, которые посылаются через мультиплексор (MUX) 284.

В обратной линии мультиплексор 284 принимает статистические данные тестирования прямой линии от контроллера 270, данные кольцевой проверки (описанные ниже) от буфера 278, тестовые данные для тестирования обратной линии от буфера 280 и данные трафика от источника 282 передаваемых данных. В зависимости от рабочего режима терминала 106 и конкретного(-ых) выполняемого(-ы) теста(-ов) мультиплексор 284 подает надлежащую комбинацию различных типов данных на процессор 286 передаваемых данных. Затем поданные данные обрабатываются (например, форматируются, перемежаются и кодируются) процессором 286 передаваемых данных, обрабатываются далее (к примеру, накрытием и расширением спектра) посредством модулятора 288 и преобразуются (к примеру, преобразуются в аналоговый сигнал, усиливаются, фильтруются и модулируются в квадратуре) РЧ передающим блоком 290, чтобы генерировать сигнал обратной линии, который затем направляется через антенный переключатель 254 и передается через антенну 252 к одному или более пунктам 104 доступа.

Согласно фиг. 2А сигнал обратной линии принимается антенной 226, направляется через антенный переключатель 224 и подается на РЧ приемный блок 228. Сигнал обратной линии преобразуется (к примеру, преобразуется с понижением частоты, фильтруется и усиливается) РЧ приемным блоком 228 и далее обрабатывается демодулятором 232 и процессором 234 принятых данных дополнительным образом к тому, что выполняется, соответственно, модулятором 288 и процессором 286 передаваемых данных, чтобы восстановить переданные данные. Данные трафика обратной линии подаются через демультиплексор 236 на приемник 238 принимаемых данных, а статистические данные, данные кольцевой проверки и тестовые данные подаются на контроллер 220 для оценивания.

Аспекты изобретения обеспечивают способы тестирования производительности терминалов и пунктов доступа в системе МДКР. В одном аспекте обеспечивается структура протоколов и сообщений для поддержания тестирования производительности терминалов. Эта структура гарантирует совместимость интерфейсов (например, среди различных поставщиков оборудования). В другом аспекте обеспечиваются способы выполнения разных тестов в различных типах каналов (например, каналы трафика, равно как и вспомогательные или дополнительные каналы). Поддерживаются тесты для передач пакетных данных. В еще одном аспекте обеспечиваются способы сбора, регистрации и описания различных статистик, и собранные статистики после этого могут использоваться, чтобы извлечь различные метрики производительности, такие как пропускная способность, коэффициент пакетных ошибок (КПО) (PER) и т.д. В еще одном аспекте обеспечиваются способы поддержания «стойкости» в тестировании (т.е. продолжающееся тестирование по соединению и разъединению, с переменными, используемыми для хранения статистической информации, обнуляемой только по команде). В еще одном аспекте обеспечиваются способы введения принудительных установок некоторых вспомогательных каналов (например, так, чтобы можно было определить коэффициент ошибок канала). Разные аспекты и варианты выполнения изобретения подробнее описываются ниже. Для ясности разные аспекты изобретения описываются конкретно для высокоскоростного эфирного интерфейса пакетных данных cdma2000 (или просто ВЭИ cdma2000).

Фиг. 3 представляет собой условную схему передачи в прямой линии для высокоскоростных пакетных данных в cdma2000. Каждый пункт доступа передает пакетные данные к терминалам, которые выбраны для приема данных от этого пункта доступа, на основании интенсивности сигнала, по одному в каждый данный момент времени в режиме мультиплексирования с разделением по времени. Пункт доступа передает пакетные данные к терминалу на максимальном уровне мощности передачи или вблизи него, если вообще передает их. Всякий раз, когда пункту доступа необходимо передать данные, он посылает запрос на пакетные данные в виде сообщения управления скоростью передачи данных (УСПД) (DRC) к выбранному пункту доступа. Терминал измеряет качество сигнала в сигналах прямой линии (к примеру, в пилотных сигналах), принятых из нескольких пунктов доступа, определяет пункт доступа, имеющий наилучшее качество принятого сигнала (т.е. выбранный пункт доступа), идентифицирует наивысшую скорость передачи данных, поддерживаемую наилучшей приемной линией, и посылает значение УСПД, указывающее идентифицированную скорость передачи данных. Это значение УСПД передается по УСПД-каналу и направляется на выбранный пункт доступа через использование УСПД-покрытия, назначенного для этого пункта доступа. Выбранный пункт доступа (или сектор обслуживания) планирует передачу данных к терминалу по прямому каналу трафика согласно своему принципу планирования, который может учитывать различные факторы, такие как принятое значение УСПД, данные в очереди и т.д. На основании статуса передачи принимаемых данных терминал посылает подтверждения приема (АСК) и отрицательные подтверждения (неподтверждения) приема (NACK) по каналу АСК к выбранному пункту доступа. Подробности высокоскоростной схемы передачи пакетных данных для cdma2000 описаны в документе 3GPP2 C.S0024, озаглавленном «Описание высокоскоростного эфирного интерфейса пакетных данных для cdma2000», который здесь и далее именуется Документом ВЭИ и включен сюда посредством ссылки.

Описанные здесь методы можно использовать для тестирования разных типов каналов. Для ВЭИ стандарта cdma2000 эти каналы включают в себя прямой канал трафика, канал УСПД, канал АСК, обратный канал трафика и, возможно, другие. Прямой канал трафика используется для передачи данных от пункта доступа к терминалу, а обратный канал трафика используется для передачи данных от терминала к пункту доступа. Канал УСПД используется для отправки информации, касающейся максимальной скорости, подлежащей использованию для прямого канала трафика, а канал АСК используется для отправки битов подтверждения приема для принятых пакетов.

Описываемые способы можно также использовать для различных применений. Одним таким применением является систематическое тестирование терминалов (к примеру, в производственной или лабораторной среде). Минимальная производительность для терминалов в ВЭИ cdma2000 описывается в документе TIA/EIA/IS-866, озаглавленном «Рекомендуемые стандарты минимальной производительности для высокоскоростных терминалов пакетных данных cdma2000», а минимальная производительность для пункта доступа описывается в документе TIA/EIA/IS-864, озаглавленном «Рекомендуемые стандарты минимальной производительности для высокоскоростной сети доступа пакетных данных cdma2000», которые оба включены сюда посредством ссылки. Другим применением является измерение некоторых метрик производительности прямой и/или обратной линии (например, в полевых условиях), таких как пропускная способность и коэффициент пакетных ошибок (КПО).

В одном аспекте обеспечивается структура, позволяющая тестировать разные элементы системы МДКР (к примеру, системы ВЭИ cdma2000). Эта структура, которая здесь именуется «Протокол тестового приложения» (ПТП) (ТАР), содержит Протокол прямого тестового приложения (ППТП) (FTAP) для тестирования прямых каналов и Протокол обратного тестового приложения (ПОТП) (RTAP) для тестирования обратных каналов.

В одном варианте выполнения ППТП (1) обеспечивает процедуры и сообщения, чтобы управлять прямым каналом трафика и конфигурировать обратные каналы, ассоциированные с этим прямым каналом трафика, (2) конкретизирует генерирование и передачу тестовых пакетов и пакетов кольцевой проверки, посылаемых, соответственно, по прямому и обратному каналам трафика, для целей тестирования прямого канала трафика, и (3) обеспечивает процедуры для сбора, регистрации и описания некоторых статистик, как они наблюдаются на терминале. Меньшие, дополнительные и/или отличающиеся способности также могут поддерживаться посредством ППТП, что также входит в объем изобретения.

В одном варианте выполнения ПОТП (1) обеспечивает процедуры и сообщения, чтобы управлять и конфигурировать обратный канал трафика, и (2) конкретизировать генерирование тестовых пакетов, посылаемых по обратному каналу трафика для тестирования этого канала. Меньшие, дополнительные и/или отличающиеся способности также могут поддерживаться посредством ПОТП, что также входит в объем изобретения.

ТПП генерирует и направляет тестовые пакеты в потоковом слое в направлении передачи и принимает и обрабатывает тестовые пакеты из уровня потока в направлении приема. Блок передачи ППТП находится в пакете ППТП, а блок передачи ПОТП находится в пакете ПОТП. Размеры пакетов ППТП и ПОТП определяются каждый нижними уровнями, согласуемыми во время конфигурирования сеанса. Каждый пакет ППТП или ПОТП включается в полезную нагрузку уровня потока.

ППТП и ПОТП каждый используют сообщения сигнализации для управления и конфигурирования терминала и сети доступа для проведения тестов по прямому и обратному каналам трафика. ППТП и ПОТП используют приложение сигнализации, описанное в вышеупомянутом документе ВЭИ, чтобы посылать сообщения.

ТПП регистрируется для приема от других уровней некоторых указаний, которые используются, чтобы закрыть тестовый сеанс или изменить состояние тестируемого терминала. В варианте выполнения нижеследующие указания принимаются посредством ППТП и/или ПОТП (как показано в скобках справа от указания):

- СоединенноеСостояние.СоединениеЗакрыто [принято в ППТП и ПОТП],

- МаршрутОбновить.СвободныйНО [Принято в ППТП],

- МаршрутОбновить.СоединениеПотеряно [принято в ППТП и ПОТП], и

- СвободноеСостояние.СоединениеОткрыто [принято в ППТП и ПОТП].

ТПП также возвращает следующие указания на более высокий уровень сигнализации:

- СинхронизацияКольцевойПроверкиПотеряна [возвращается от ППТП], и

- СинхронизацияПОТППотеряна [возвращается от ПОТП].

Протокол прямого тестового приложения (ППТП)

ППТП обеспечивает процедуры и сообщения, используемые, чтобы конфигурировать, управлять и выполнять разные тесты в прямых каналах, в том числе прямом канале трафика. Процедуры для ППТП можно сгруппировать в следующие категории:

- Конфигурация тестовых параметров ППТП - включает в себя процедуры и сообщения, чтобы управлять тестовыми конфигурациями ППТП в терминале и сети доступа;

- Передача и прием тестовых пакетов ППТП - включает в себя процедуры, чтобы генерировать тестовые пакеты ППТП в сети доступа для передачи по прямому каналу трафика и чтобы обрабатывать принятые пакеты в терминале;

- Передача и прием пакетов кольцевой проверки ППТП - включает в себя процедуры для отправки и приема пакетов кольцевой проверки ППТП по обратному каналу трафика;

- Передача канала АСК - включает в себя процедуры для отправки конфигурированных (с фиксированным значением) битов канала АСК по каналу АСК;

- Передача канала УСПД - включает в себя процедуры для отправки конфигурированных (фиксированных) значений УСПД и/или для использования фиксированного покрытия УСПД по каналу УСПД; и

- Сбор и извлечение статистики ППТП - включает в себя процедуры и сообщения для сбора статистики в терминале и для извлечения их сетью доступа.

Более подробно эти процедуры и сообщения описываются ниже. Меньшего состава, дополнительные и/или отличающиеся процедуры и сообщения также могут обеспечиваться для ППТП, что также входит в объем изобретения.

ППТП поддерживает тестирование различных типов прямых каналов. Подлежащие тестированию конкретные каналы можно выбирать по отдельности, и выбранные каналы могут тестироваться согласованно. В варианте выполнения ППТП поддерживает тестирование прямого канала трафика, прямых каналов МАС, канала УСПД и канала АСК. Таблица 1 перечисляет разные режимы, поддерживаемые в ППТП. Меньшего объема, дополнительные и/или отличающие режимы также могут поддерживаться, что также входит в объем изобретения.

Таблица 1
РежимОписание
Режим кольцевой проверкиРазрешает посылать пакеты кольцевой проверки по обратному каналу трафика
Режим фиксированных битов канала АСКРазрешает посылать биты канала АСК с фиксированными значениями по каналу АСК
Режим фиксированного УСПДРазрешает посылать фиксированные значения УСПД по каналу УСПД
Режим фиксированного покрытия УСПДРазрешает использовать фиксированное покрытие Уолша по каналу УСПД

ППТП поддерживает сбор сетью доступа некоторых статистик, которые можно использовать, чтобы определить разнообразные метрики производительности, такие, к примеру, как пропускная способность прямой линии, коэффициент пакетных ошибок в канале трафика, коэффициент пакетных ошибок в управляющем канале, пропускная способность сектора и т.д. Таблица 2 перечисляет статистики, которые можно собирать и сохранять сетью доступа (например, для каждого сектора), когда разрешен режим кольцевой проверки.

Таблица 2
ПараметрОписание
FTAPTestPktSentЧисло тестовых пакетов ППТП, посланных сетью доступа по прямому каналу трафика
FTAPTestPktRecdЧисло тестовых пакетов ППТП, принятых терминалом по прямому каналу трафика
FTAPMACPktRecdЧисло пакетов уровня МАС прямого канала трафика, принятых терминалом в пакетах физического уровня, содержащих тестовые пакеты ППТП
FTAPLBPktSentЧисло пакетов кольцевой проверки ППТП, посланных терминалом по обратному каналу трафика
FTAPLBPktRecdЧисло пакетов кольцевой проверки, принятых сетью доступа по обратному каналу трафика
FTAPTestTimeДлительность теста ППТП (в кадрах)
FTAPPhysPktSlotsЧисло временных сегментов, в которых пакеты физического уровня, содержащие тестовые пакеты ППТП, принимались терминалом

ППТП поддерживает сбор некоторых статистик терминалом. Эти статистики могут извлекаться сетью доступа. Таблица 3 перечисляет статистики, которые могут собираться и сохраняться терминалом.

Таблица 3
ПараметрОписание
IdleASPChangeЧисло изменений в активном установочном пилот-сигнале в свободном состоянии
IdleTimeИстекшее время (во временных сегментах) в свободном состоянии с начала сбора статистик
ConnectedSSChangeЧисло изменений в секторе обслуживания в состоянии соединения
ConnectedTimeИстекшее время (во временных сегментах) в состоянии соединения с начала сбора статистик
FirstSyncCCPktЧисло первых пакетов уровня СС МАС в синхронных капсулах, успешно принятых терминалом
CCTimeИстекшее время (в циклах управления каналом) с начала сбора статистик

В ВЭИ стандарта cdma2000 пилотный сигнал для каждого сектора характеризуется конкретным ПС (псевдослучайным) сдвигом и каналом МДКР, а пилот-сигнал активного набора (ASP) представляет собой пилотный сигнал из сектора, управляющий канал которого в настоящее время отслеживается терминалом. Пока терминал находится в свободном состоянии, он отслеживает управляющий канал из сектора обслуживания. Параметр IdleASPChange используется для сбора статистик для частоты изменений пилот-сигнала активного набора, а параметр FirstSyncCCPkt используется для сбора статистик для числа пакетов уровня СС МАС в синхронных капсулах, успешно принятых терминалом.

Пока терминал находится в состоянии соединения, он может принимать пакеты их секторов обслуживания. Сектор обслуживания представляет собой сектор, к которому посылается (или указывается) сообщение УСПД. Когда сообщение УСПД перенаправляется из одного сектора в другой, покрытие УСПД передается через ПУСТОЕ (NULL) покрытие. К примеру, если покрытие УСПД изменяется от сектора А через ПУСТОЕ покрытие и к сектору В (при А не равном В), то это считается как одно изменение сектора обслуживания. А если покрытие УСПД изменяется от сектора покрытия А через ПУСТОЕ покрытие и обратно к покрытию сектора А, то это считается как нулевое изменение сектора обслуживания. Параметр ConnectedSSChange используется для сбора статистик для частоты изменений обслуживающего сектора.

Свободное и соединенное состояния являются рабочими состояниями терминала в протоколе управления линией радиосвязи, описанном в вышеупомянутом документе ВЭИ.

Фиг. 4 является схемой всего процесса 400 тестирования прямого канала трафика в соответствии с вариантом выполнения изобретения. Процесс 400 можно использовать, чтобы определить различные метрики производительности, такие, к примеру, как пропускная способность прямой линии, коэффициент пакетных ошибок прямого канала трафика, коэффициент пакетных ошибок управляющего канала, секторная пропускная способность прямой линии и т.д.

Сначала сеть доступа на шаге 412 устанавливает соединение с терминалом обычным образом, если между ней нет соединения. Установка соединения для ВЭИ cdma2000 может выполняться, как описано в вышеупомянутом документе ВЭИ. Затем на шаге 414 сеть доступа посылает сообщение ПодтверждениеПриемаПараметраППТП к терминалу для конфигурирования ППТП. Это конфигурирование терминала для тестирования ППТП описывается ниже, и в варианте выполнения режим кольцевой проверки разрешается по умолчанию. Терминал на шаге 416 выполняет необходимое конфигурирование, а затем отвечает сети доступа сообщением ЗавершенПараметрППТП, чтобы указать, что он готов для сконфигурированных тестов.

Сеть доступа и терминал после этого на шаге 418 обмениваются тестовыми пакетами ППТП и пакетами кольцевой проверки ППТП, которое более подробно описываются ниже. Может быть проведен обмен любым числом пакетов, и статистики, подлежащие сбору сетью доступа и/или терминалом, могут быть определены тестовой конфигурацией.

На шаге 420 после того, как собрано достаточно статистик, сеть доступа останавливает отправку тестовых пакетов ППТП и разъединяет соединение. Шаг 420 можно опустить, к примеру, если сеть доступа переходит к выполнению каких-нибудь других тестов или функций. Сеть доступа может использовать собранные ею статистики для вычисления коэффициента пакетных ошибок и средней пропускной способности, как описано ниже. Различные детали процесса 400 описываются ниже.

В варианте выполнения ППТП активируется путем связывания тестового приложения с одним из трех доступных потоков. Конфигурация протокола может инициироваться пунктом доступа или терминалом. В варианте выполнения может быть лишь одна реализация ППТП в каждом терминале.

Конфигурация тестовых параметров ППТП

Сеть доступа или терминал могут активировать ППТП для тестирования прямых каналов. По активации ППТП терминал выполняет процедуру инициализации конфигурации ППТП, которая блокирует флаги для режима кольцевой проверки, режима фиксированных битов канала АСК, режима фиксированного УСПД и режима фиксированного покрытия УСПД.

Фиг. 5 представляет собой блок-схему алгоритма для конкретного воплощения процесса 500 конфигурирования тестовых параметров ППТП. Процесс 500 включает в себя шаги 414 и 416 на фиг. 4. Чтобы инициализировать или изменить тестовую конфигурацию, сеть доступа на шаге 512 посылает сообщение ПодтверждениеПриемаПараметраППТП, которое включает в себя конкретное значение для поля ИдентификаторТранзакции и может далее включать в себя одну или более записей для флагов режима ППТП, сохраненных терминалом. Посредством записей атрибутов в сообщении сеть доступа может управлять выполняемыми тестами.

По получении сообщения НазначениеПараметровППТП из сети доступа терминал на шаге 514 выполняет процедуру инициализации конфигурации ППТП, описанную выше. Затем на шаге 516 терминал устанавливает флаги режима ППТП на основании атрибутов, если они имеются, включенных в принятое сообщение. В частности, принятое сообщение можно включать в атрибут РежимКольцевойПроверки, в атрибут РежимФискированныхБитовКаналаАСК, в атрибут РежимФиксированногоУСПД и в атрибут РежимФиксированнногоПокрытияУСПД.

Атрибут РежимКольцевойПроверки включается в сообщение НазначениеПараметровППТП, если требуется терминал для передачи пакетов кольцевой проверки ППТП по обратному каналу трафика. Атрибут РежимФискированныхБитовКаналаАСК включается, если биты канала АСК подлежат передаче терминалом в каждом временном сегменте и подлежат установке на конкретное фиксированное значение. Атрибут РежимФиксированногоУСПД включается, если УСПД, переданное терминалом, подлежит установке на конкретное фиксированное значение. Атрибут РежимФиксированногоПокрытияУСПД включается, если конкретное фиксированное покрытие УСПД подлежит использованию терминалом для передачи УСПД.

Если принятое сообщение включает в себя атрибут РежимКольцевойПроверки, терминал активизирует флаг режима кольцевой проверки, сохраняет значение поля УстойчивостьКольцевойПроверки атрибута, очищает буфер кольцевой проверки и устанавливает LBPktOverflowBit (младший бит переполнения пакета) на нуль. Если принятое сообщение включает в себя атрибут РежимФиксированныхБитовКаналаАСК, терминал активизирует флаг режима фиксированных битов канала АСК и сохраняет это значение в поле БитКаналаАСК атрибута. Если принятое сообщение включает в себя атрибут РежимФиксированногоУСПД, терминал активизирует флаг режима фиксированного УСПД и сохраняет это значение в поле ЗначениеУСПД атрибута. Если принятое сообщение включает в себя атрибут РежимФиксированногоПокрытияУСПД, терминал активизирует флаг режима фиксированного покрытия УСПД и сохраняет это значение в поле ПокрытиеУСПД атрибута.

По завершении тестовых конфигураций, определенных сообщением НазначениеПараметровППТП, и в пределах ТППТПКонфиг (к примеру, двух секунд) времени приема сообщения терминал на шаге 518 посылает сообщение ЗавершениеПараметраППТП с полем ИдентификаторТранзакции, установленным на то же самое значение, что и принятое в поле ИдентификаторТранзакции в сообщении НазначениеПараметровППТП. Поле ИдентификаторТранзакции используется для идентифицирования конкретной транзакции, указываемой сообщением.

По приему сообщения ЗавершениеПараметровППТП от терминала сеть доступа на шаге 520 выполняет процедуру инициализации тестовых статистик и параметров ППТП, которая устанавливает на нуль переменные FTAPTestPktSent, FTAPTestPktRecd, FTAPMACPktRecd, FTAPLBPktSent, FTAPLBPktRecd, FTAPPhysPktSlots и FTAPTestTime, поддерживаемые для каждого сектора. Сеть доступа далее устанавливает на нуль 14-битовую переменную V(STest), используемую для прослеживания порядкового номера тестовых пакетов ППТП. Затем процесс конфигурации тестовых параметров ППТП завершается.

Терминал возвращает в исходное состояние свои флаги режима ППТП по завершении тестирования ППТП. В варианте выполнения, если протокол принимает индикацию СоединенноеСостояние.СоединениеЗакрыто или МаршрутОбновить.СоединениеПотеряно с уровня соединения, каждая из которых указывает, что соединение завершено, то терминал запрещает флаги для режима фиксированных битов канала АСК, режима фиксированного УСПД и режима фиксированного покрытия УСПД. Терминал далее запрещает флаг режима кольцевой проверки, если он ранее был активизирован и если значение поля УстойчивостьКольцевойПроверки атрибута РежимКольцевойПроверки в последнем сообщении НазначениеПараметровППТП было «00».

Таблица 4 перечисляет поля для сообщения НазначениеПараметровППТП в соответствии с конкретным вариантом выполнения.

Таблица 4
ПолеДлина (битов)Описание
ИдентификаторСообщения8Устанавливается на «00» сетью доступа
ИдентификаторТранзакции8Устанавливается на единицу выше (по модулю 256), чем значение поля ИдентификаторТранзакции последнего сообщения НазначениеПараметровППТП, посланного терминалом
Нуль или более случаев следующей записи:
ЗаписьАтрибутаЗависит от атрибутаЗапись атрибута для режима кольцевой проверки, режима фиксированных битов канала АСК, режима фиксированного УСПД или режима фиксированного покрытия УСПД; простая запись определяется в секции 10.3 Документа ВЭИ

Таблица 5 перечисляет различные поля для записей атрибутов, которые могут быть включены в сообщение НазначениеПараметровППТП, в соответствии с конкретным вариантом выполнения. Первый столбец Таблицы 5 устанавливает четыре различных записи атрибутов, которые могут быть включены в сообщение НазначениеПараметровППТП. Каждая запись атрибута включает в себя три поля - Длина, Идентификатор атрибута и поле зависящих от атрибута данных, и эти три поля показаны в столбцах со второго по четвертый. Поле Длина дает длину записи атрибута (в октетах), исключая длину самого поля. В варианте выполнения длина каждого поля записи атрибута составляет 8 битов, а дл