Способ получения высших жирных хлорированных кислот
Изобретение относится к химии производных хлорированных углеводородов, а именно к усовершенствованному способу получения высших жирных хлорированных кислот общей формулы R(CHCl)nCOOH, где R - алифатический углеводородный радикал, содержащий 9-22 атомов углерода; n=1-4, путем окисления хлорпарафинов в присутствии катализатора, который смешивают с хлорпарафинами в присутствии кислорода воздуха при температуре 120-125°С, а окисление проводят кислородом воздуха при температуре 105-110°С и атмосферном давлении в течение 30-32 ч, где в качестве катализатора используют стеарат кобальта в количестве 1,5-1,7 мас.% от реакционной массы. Техническим результатом является увеличение скорости проведения реакции, а также упрощение способа. 1 табл.
Реферат
Способ получения высших жирных хлорированных кислот относится к химии производных хлорированных углеводородов, а именно к новому способу получения высших жирных хлорированных кислот общей формулы: R(CHCl)nCOOH, где R - алифатический углеводородный радикал, n=1-4, которые являются важными продуктами химической промышленности.
Известен способ получения монохлоруксусной кислоты, заключающийся в окислении этиленхлоргидрина азотной кислотой. Соотношение этиленхлоргидрин: NHO3=1:4 (А.с. №173221, С07С 53/16, 1965).
Недостатками данного процесса являются возможность получения данным способом только монохлоруксусной кислоты, а также использование в качестве окислителя 98%-ной азотной кислоты, получение которой достаточно дорого.
Известен способ получения монохлоруксусной кислоты фотоокислением 1,2-дихлорэтана (А.с. №1004346, С05С 53/16, С07С 5/215, 1983).
Недостатками данного процесса являются возможность получения данным способом только монохлоруксусной кислоты, дополнительное усложнение конструкции для облучения реактора, взрывоопасность используемой смеси кислород-хлор.
Известен способ получения монохлоруксусной кислоты окислением озоном 1,4-дихлорбутена-2 (патент Японии №47-30166, кл. 16В 64, С07С, 1972).
Недостатком данного процесса является возможность получения данным способом только монохлоруксусной кислоты, причем окислительный агент - озон - необходимо получать дополнительно.
Наиболее близким к заявляемому способу является способ получения высших жирных хлорированных кислот общей формулы R(CHCl)nCOOH, где R - алифатический углеводородный радикал, содержащий 9-22 атомов углерода; n=1-4, путем окисления хлорпарафинов в присутствии каталитической системы, содержащей стеариновую, уксусную кислоты и водный раствор щелочной соли металла переменной валентности - соли марганца - в количестве 7-8%, при этом хлорпарафины смешивают в присутствии кислорода воздуха с каталитической системой при температуре 120-125°С, а окисление проводят кислородом воздуха при температуре 105-110°С и атмосферном давлении в течение 30-32 ч (патент РФ №2227795, МКИ С07С 53/19, 51/215, 51/225, 2004).
Недостатками данного процесса являются низкая скорость получения высших жирных хлорированных кислот, низкий выход продуктов окисления и технологические трудности, связанные с приготовлением каталитической системы.
Задачей предлагаемого изобретения является разработка технологичного способа получения высших жирных хлорированных кислот с высоким выходом и повышение скорости проведения процесса. Техническим результатом является увеличение скорости проведения реакции, а также упрощение способа.
Поставленный технический результат достигается в новом способе получения высших жирных хлорированных кислот общей формулы R(CHCl)nCOOH, где R - алифатический углеводородный радикал, содержащий 9-22 атомов углерода; n=1-4, путем окисления хлорпарафинов в присутствии катализатора, при этом хлорпарафины смешивают с катализатором в присутствии кислорода воздуха при температуре 120-125°C, а окисление проводят кислородом воздуха при температуре 105-110°С и атмосферном давлении в течение 30-32 ч, причем в качестве катализатора используют стеарат кобальта в количестве 1,5-1,7 мас.% от реакционной массы. Сущностью метода является реакция получения высших жирных хлорированных кислот окислением:
где R - алифатический углеводородный радикал, n=1-4,
kat - стеарат кобальта.
Преимуществами данного метода являются возможность получения технологичным способом высших жирных хлорированных кислот широкого ассортимента, увеличение скорости протекания реакции, уменьшение количества катализатора и упрощение способа получения (исключается стадия приготовления катализатора).
Использование в качестве катализатора стеарата кобальта существенно увеличивает скорость окисления по сравнению с заявленной ранее каталитической системой по прототипу благодаря более высокому окислительно-восстановительному потенциалу кобальта.
Проведенные исследования показали, что в условиях способа-прототипа реакционная масса имеет большое начальное кислотное число (порядка 30-35) за счет содержащихся в каталитической системе избыточных количеств уксусной и стеариновой кислот.
Начальное кислотное число реакционной массы приближенно рассчитывается следующим образом: кислотные числа стеариновой и уксусной кислот 200 мг КОН/г вещества и 933 мг КОН/г вещества соответственно. Для приготовления каталитической системы по прототипу берут по 3 г кислот (К.Ч=200·3+933·3=3400 мг КОН/г вещества), смешивают со 100 г хлорпарафина, у которого К.Ч≈0. Таким образом, начальное кислотное число реакционной массы равно 34 (3400/100).
В заявляемом же способе начальное кислотное число реакционной массы не более 1. Поэтому конечное кислотное число складывается из кислотного числа высших жирных хлорированных кислот, образующихся в процессе окисления, например, хлорпарафина ХП-30 этим способом и равно 24 (сравнительные данные приведены в таблице).
При осуществлении данного способа образуются высшие жирные хлорированные кислоты того же состава, что и в прототипе.
Как показали проведенные исследования, оптимальными технологическими условиями проведения процесса окисления хлорированных углеводородов кислородом воздуха является его осуществление в среде исходного хлорпарафина при использовании катализатора в количестве 1,5-1,7 мас.%. Меньшее количество катализатора приводит к снижению содержания продукта окисления в хлорпарафине за одно и то же время протекания процесса. Большее количество катализатора не приводит к увеличению содержания продукта окисления в хлорпарафине за одно и то же время протекания процесса.
Оптимальной для реакции является температура 105-110°С. Снижение температуры приводит к значительному увеличению продолжительности процесса окисления, а ее дальнейшее увеличение приводит к изменению цветности, причем повышение температуры не увеличивает содержание продуктов окисления в хлорпарафине и не сокращает время протекания процесса.
Количество образующихся высших жирных хлорированных кислот контролировали по кислотному числу. Кислотное число определяли по методике ТУ 38.301-29-57-93.
Уменьшение времени протекания процесса окисления не позволяет достичь требуемого содержания продуктов окисления в хлорпарафине, а его увеличение не дает значительного роста содержания продуктов окисления в хлорпарафине.
Строение полученных соединений подтверждено ИК-спектроскопией. ИК-спектры хлорпарафинов ХП-30 содержат следующие полосы поглощения (см-1): 2920 - валентные колебания С-Н; 1468, 1392 - деформационные колебания С-Н; 896 - деформационные колебания (-СН2-)n-СН3; 788, 724, 652, 604 - валентные колебания С-Cl. ИК-спектры продуктов окисления хлорпарафинов ХП-30 содержат следующие полосы поглощения (см-1): 2920 - валентные колебания С-Н; 1460, 1380 - деформационные колебания С-Н; 1776, 1716 - валентные колебания С=O, 732 - маятниковые колебания (-СН2-)n; 660, 708 - валентные колебания С-Cl.
Способ осуществляется следующим образом.
К исходному хлорпарафину ХП-30 добавляют катализатор стеарат кобальта в количестве 1,5-1,7 мас.% и в течение 2 часов пропускают кислород воздуха при температуре 120-125°С для образования каталитического комплекса, а затем пропускают кислород воздуха при атмосферном давлении и температуре 105-110°С в течение 30 ч. Полученную смесь высших жирных хлорированных кислот в хлорпарафине ХП-30 после удаления катализатора декантацией без разделения можно использовать в химической промышленности. Содержание продуктов окисления в хлорпарафине составляет 10-12 мас.%.
Изобретение иллюстрируется следующими примерами.
Пример 1.
Окисление образца хлорпарафина ХП-30.
В реактор загружают 80 г хлорпарафина ХП-30, нагревают до температуры 120-125°С. Затем в реактор подают воздух с расходом 6 л воздуха/мин на 1 кг хлорпарафина и приливают 20 г хлорпарафина ХП-30, нагретого до 70°С, с растворенными в нем 1,7 г стеарата кобальта (количество катализатора составляет 1,7 мас.% в расчете на реакционную массу). В течение 2 ч пропускают кислород воздуха при температуре 120-125°С при атмосферном давлении для образования каталитического комплекса, а затем процесс окисления ведут при температуре 105-110°С, при атмосферном давлении и постоянном барботировании кислорода воздуха через реакционную смесь в течение 30 ч. Кислотное число смеси через 32 ч составляет 24 мг КОН/г, что соответствует 12% оксидата в среде хлорпарафина ХП-30.
Пример 2.
Осуществляется аналогично примеру 1. Отличием является количество катализатора 1,5 мас.%. Кислотное число через 32 ч составляет 21 мг КОН/г, что соответствует 10% оксидата в среде хлорпарафина ХП-30.
Пример 3.
Осуществляется аналогично примеру 1. Отличием является количество катализатора 1,6 мас.%. Кислотное число через 32 ч составляет 23 мг КОП/г, что соответствует 11% оксидата в среде хлорпарафина ХП-30.
Пример 4.
Осуществляется аналогично примеру 1. Отличием является количество катализатора 1,4 мас.%. Кислотное число через 32 ч составляет 15 мг КОН/г, что соответствует 8% оксидата в среде хлорпарафина ХП-30.
Пример 5.
Осуществляется аналогично примеру 1. Отличием является количество катализатора 2 мас.%. Кислотное число через 32 ч составляет 24 мг КОН/г, что соответствует 12% оксидата в среде хлорпарафина ХП-30.
Сравнительные характеристики заявляемого способа и способа-прототипа | ||||||||||
№ примера | Начальное К.Ч, мг КОН/г в-ва | Содержание кат. в реакц. массе, мас.% | Изменение К.Ч., мг КОН/г в-ва | Выход высших жирных хлорир. кислот, % | Средняя скорость окисления, мг КОН/г в-ва·ч | Температура образования кат. комплекса, °С | Температура окисления, °С | Время окисления, ч | Стадия приготовления катализатора | |
Заявляемый способ | 1 | 0-1 | 1,7 | 24 | 12 | 0,75 | 120-125 | 105-110 | 32 | отсутствует |
2 | 1,5 | 21 | 10 | 0,66 | ||||||
3 | 1,6 | 23 | 11 | 0,72 | ||||||
4 | 1,4 | 15 | 8 | 0,47 | ||||||
5 | 2 | 24 | 12 | 0,75 | ||||||
Прототип | 32-35 | 7-8 | 12-15 | 5,6-7 | 0,375-0,47 | 120-125 | 105-110 | 32 | присутствует |
Таким образом, средняя скорость окисления в заявляемом способе в 1,6-2 раза больше по сравнению с прототипом. Содержание высших жирных хлорированных кислот в способе-прототипе составляет до 7%, в то время как в заявляемом способе - до 12%. Причем такое количество высших жирных хлорированных кислот удается получить при гораздо более низких концентрациях катализатора (в 5 раз меньше, чем в прототипе).
Способ получения высших жирных хлорированных кислот общей формулы
R(CHCl)nCOOH,
где R - алифатический углеводородный радикал, содержащий 9-22 атомов углерода;
n=1-4,
путем окисления хлорпарафинов в присутствии катализатора, который смешивают с хлорпарафинами в присутствии кислорода воздуха при температуре 120-125°С, а окисление проводят кислородом воздуха при температуре 105-110°С и атмосферном давлении в течение 30-32 ч, отличающийся тем, что в качестве катализатора используют стеарат кобальта в количестве 1,5-1,7% от реакционной массы.