Оптическая система обработки банкнот по излучению, испускаемому защитными элементами

Иллюстрации

Показать все

Изобретение относится к средствам оптического распознавания объектов с оптическим кодированием. Техническим результатом является обеспечение управления местоположением и ориентацией светоактивных материалов, используемых при распознавании. Банкноту со светоактивным защитным элементом перемещают вдоль траектории транспортировки, облучают источником стимулирующего воздействия и распознают местоположение защитного элемента путем регистрации излучения от защитного элемента, направляют источник возбуждения в распознанное местоположение и облучают защитный элемент, регистрируют дополнительное излучение от светоактивного защитного элемента, полученное в ответ на свет из источника возбуждения. Этап распознавания выполняют камерой с однострочным сканированием, ось сканирования которой параллельна или перпендикулярна оси транспортировки. Зарегистрированное дополнительное излучение может представлять собой оптический код для распознавания, по меньшей мере, одного отличительного признака банкноты. 3 н. и 22 з.п. ф-лы, 15 ил.

Реферат

Область техники

Это изобретение относится, в общем случае, к способам и устройствам оптического распознавания объектов и, в частности, к способам и устройствам распознавания объектов с оптическим кодированием.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

В патенте США №5448582 раскрыта многофазная усиливающая среда, имеющая излучающую фазу (например, молекулы красителя) и рассеивающую фазу (например, двуокись титана, TiO2). В некоторых вариантах осуществления также может быть предусмотрено наличие и третьей фазы. Веществами, пригодными для матричной фазы, являются, в том числе, растворители, стекла и полимеры. Указанная усиливающая среда служит для обеспечения резкого сужения ширины спектральной линии излучения при превышении определенной энергии импульса накачки подобно тому, как это происходит в лазере. Описанная в патенте усиливающая среда предназначена для кодирования объектов посредством кодов с множеством длин волн и предназначена для использования в совокупности с рядом материалов подложки, в том числе с полимерами и с текстильными материалами.

Существует категория производственных задач, в которых необходимо осуществлять разделение, распознавание, подсчет и/или сортировку большого количества изделий. Существующие в настоящее время способы охватывают собой широкий спектр вариантов решений. Один из вариантов решения, который может быть использован для макроскопических и визуально распознаваемых изделий, содержит в себе процесс, выполняемый вручную, при котором рабочие осуществляют последовательный отбор изделий из многих изделий в группе путем распознавания характерных признаков, присущих изделию, или посредством визуального считываемой системы кодирования, содержащейся в изделии. После отбора изделий их направляют, либо вручную, либо с использованием средства транспортировки, в то место, где осуществляют хранение или дополнительную обработку изделий, обладающих общим отличительным признаком. В тех случаях, когда важно осуществлять контроль за состоянием запасов, может быть выполнен подсчет отобранных изделий и сведение данных в таблицу либо вручную путем некоторых прямых действий рабочего, либо автоматически при проходе отобранного изделия через счетное устройство.

Например, в отрасли коммерческих прачечных возврат и стирку предметов одежды, выдаваемых напрокат, осуществляют в виде групп без сортировки. Рабочие отбирают отдельные предметы одежды, развешивают предметы одежды на вешалки, а затем помещают их на транспортер, который подает предметы одежды в одну из нескольких складских зон для хранения. Выбор соответствующей зоны из нескольких складских зон для отдельного предмета одежды осуществляют на основе считываемого человеком кода, прикрепляемого на предмет одежды, обычно на внутренней стороне воротника, посредством которого обозначают некоторый отличительный признак, общий для всех предметов одежды, находящихся в данной ячейке склада. Отличительные признаки, как правило, содержат в себе, например, день недели, номер маршрута или имя конечного потребителя. Аналогичным образом, в отрасли доставки белья доставку белья в прачечную осуществляют в виде больших групп без сортировки. Рабочие отбирают отдельные бельевые изделия из группы и распознают каждое изделие по его характерным признакам, например цвету, форме и/или размеру. Затем отобранное и распознанное изделие направляют в соответствующую зону для стирки конкретным составом для стирки.

Понятно, что использование ручного труда для распознавания, подсчета, сортировки изделий (например, бельевых изделий и/или предметов одежды) и обобщения данных о них в виде таблицы имеет множество ограничений. Здесь особое значение имеет ограничение по производительности при обработке. В некоторых прачечных за одну 8-часовую рабочую смену необходимо осуществлять обработку приблизительно 100000 отдельных изделий или более. Поскольку для выполнения множества операций в отношении каждого изделия (например, распознавания, подсчета и сортировки) необходимы рабочие, то обычный рабочий за 8-часовую рабочую смену может выполнить обработку только ограниченного количества изделий. Кроме того, необходимость выполнения множества операций в отношении каждого изделия вручную может также приводить к ошибкам в процессах распознавания, сортировки и подсчета.

Были предприняты попытки поиска автоматизированных вариантов решений для устранения или, по меньшей мере, минимизации ограничений в указанных выше процессах, выполняемых вручную. Была осуществлена разработка стандартных автоматизированных способов повышения точности и минимизации трудозатрат, необходимых для распознавания, подсчета и сортировки отдельных изделий. Для достижения этих результатов в прачечных применяли, например, метки со штриховым кодом (состоящим обычно из чередующихся двух из пяти символов) и радиочастотные (РЧ) микросхемы. Однако эти способы имеют ограниченный срок службы, в частности, потому, что метки и микросхемы подвергают воздействию жесткой окружающей среды, существующей в промышленной прачечной. Кроме того, вариант решения, в котором используют метки со штриховым кодом, обладает недостатком, заключающимся в том, что для его выполнения требуется значительное время, и иногда бывает чрезвычайно сложно обнаружить метки на большом изделии в том случае, когда метка не выровнена надлежащим образом относительно устройства считывания штрихового кода, то есть не находится в его поле обзора. Несмотря на то что для РЧ микросхем отсутствует проблема выравнивания, применение РЧ микросхем вызывает затруднения вследствие того, что они имеют неопределенный срок службы и высокую стоимость.

В патенте США №5881886, выданном 16 марта 1999 г., раскрыт альтернативный способ распознавания изделий. В этом альтернативном способе к предметам одежды и белью могут быть прикреплены светоактивные материалы, например, в виде заплат, меток и нитей. Для создания оптически распознаваемых кодов используют соответствующий набор материалов, посредством каждого из которых, например, осуществляют генерацию отличающегося от других и однозначно распознаваемого узкополосного оптического излучения, подобного лазерному. Коды позволяют осуществлять распознавание предметов одежды, бельевых и иных изделий. В одном из вариантов осуществления для введения оптически закодированной информации в предметы одежды, бельевые и иные изделия используют два или большее количество включаемых в состав этих изделий волокон или нитей, именуемых ниже "Лазерная нить" (товарный знак) (LaserThread™), излучение от которых можно обнаружить. Например, "Лазерная нить" (LaserThread™) может быть включена в состав меток предметов одежды для обеспечения однозначного распознавания выдаваемого напрокат предмета одежды или его отличительных признаков при обработке. Аналогичным образом, "Лазерная нить" (LaserThread™) может быть вшита в кромку бельевых изделий, например в кант скатерти или салфетки, для обеспечения однозначного распознавания бельевых изделий и/или их отличительных признаков. Как указано в этом патенте США, "Лазерная нить" (LaserThread™) при ее возбуждении, например, лазером, имеющим определенную длину волны, энергию импульса и длительность импульса, испускает излучение, подобное лазерному. Лазер, необходимый для возбуждения, обычно имеет длину волны в области видимого спектра от красного до синего и может формировать плотность энергии излучения порядка, например, около 10 миллиджоулей на квадратный сантиметр при направлении на "Лазерную нить" (LaserThread™) импульса длительностью 10 наносекунд. Примерами источников возбуждения являются, например, лазеры на иттрий-алюминиевом гранате с неодимом (Nd:YAG) с ламповой накачкой, модуляцией добротности и с удвоением частоты; лазеры на иттрий-алюминиевом гранате с неодимом (Nd:YAG) с диодной накачкой, модуляцией добротности и с удвоением частоты и источники, являющиеся производными от других нелинейных устройств, содержащих в себе, главным образом, лазеры на иттрий-алюминиевом гранате с неодимом (Nd:YAG) или на иных лазерных кристаллах.

Однако серийно выпускаемые источники возбуждения, предназначенные для возбуждения светоактивных материалов, таких как, например, "Лазерная нить" (LaserThread™), могут иметь высокую стоимость. Поэтому понятна важность создания системы распознавания, которая обеспечивает максимальную эффективность использования энергии в импульсе возбуждения. Кроме того, понятно, что максимальная эффективность использования энергии в импульсе возбуждения может быть получена путем жесткого управления местоположением и ориентацией светоактивных материалов, содержащихся в анализируемом изделии. При наличии средств жесткого управления узкий возбуждающий луч, имеющий постоянную ориентацию, может попадать на светоактивные материалы, содержащиеся в изделии, анализ которого осуществляют с прогнозируемой степенью достоверности. В противном случае, при наличии ослабленного управления местоположением и ориентацией светоактивных материалов необходима система наведения для установки изделия, содержащего в себе светоактивные материалы, в положение, обеспечивающее возможность направления возбуждающего луча на материалы, подвергаемые возбуждению.

Как было описано выше, обеспечение возможности жесткого управления ориентацией светоактивных материалов, содержащихся в изделии, подвергаемом анализу, вызывает особые затруднения при выполнении различных операций обработки. Например, область изделия, содержащая в себе вышеуказанный материал, может быть загрязнена или иметь какие-либо иные препятствия для прохождения излучения, что, следовательно, не позволяет осуществлять облучение светоактивных материалов. Поэтому автору изобретения стало понятно, что для процессов разделения, распознавания, подсчета, необязательной сортировки, а также проверки и подтверждения подлинности изделий целесообразным является использование системы наведения и системы распознавания.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Решение вышеуказанных и иных проблем и реализацию целей и преимуществ осуществляют посредством способов и устройств согласно вариантам осуществления настоящего изобретения.

В предпочтительном, но не ограничивающем варианте осуществления исследуемыми изделиями являются банкноты и аналогичные, по существу, плоские изделия, а эту идею изобретения используют при обработке банкнот, например, при проверке правильности и проверке подлинности банкнот и других изделий, содержащих в себе, по меньшей мере, один защитный элемент.

В изобретении описаны способ и устройство обработки банкнот. Способ включает следующие этапы: обеспечивают банкноту, имеющую, по меньшей мере, один светоактивный защитный элемент, причем банкноту перемещают вдоль траектории транспортировки; осуществляют облучение, по меньшей мере, одного защитного элемента светом от источника стимулирующего воздействия; распознают местоположение, по меньшей мере, одного защитного элемента путем регистрации излучения от защитного элемента; направляют источник возбуждения в распознанное местоположение; осуществляют облучение, по меньшей мере, одного защитного элемента светом от источника возбуждения и регистрируют дополнительное излучение от светоактивного защитного элемента, полученное в ответ на свет от источника возбуждения.

Этап распознавания может содержать в себе этап, осуществляемый посредством камеры с однострочным сканированием, ось сканирования которой параллельна оси транспортировки, или посредством камеры с однострочным сканированием, ось сканирования которой перпендикулярна оси транспортировки. Этап распознавания может также включать в себя этап накопления строк сканирования вдоль банкноты в том же самом месте на поперечной оси, что и поле обзора источника возбуждения, выполняемый посредством одноэлементного регистрирующего устройства.

В одном из вариантов осуществления этап направления (источника) содержит в себе этап задержки функционирования источника возбуждения на промежуток времени, который является функцией, по меньшей мере, скорости устройства транспортировки и расстояния между точками облучения источником стимулирующего воздействия и источником возбуждения.

Светоактивный защитный элемент может содержать в себе, по меньшей мере, одну нить, планшетку или иную структуру, например ленту, которая содержит в себе вещество подложки и вещество, испускающее и усиливающее электромагнитное излучение, которое служит для создания излучения, подобного лазерному. Эта структура может быть встроена в банкноту или расположена на ней. Зарегистрированное дополнительное излучение может представлять собой оптический код для распознавания, по меньшей мере, одного отличительного признака банкноты.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Вышеуказанные и иные отличительные признаки изобретения станут более очевидными из приведенного ниже подробного описания изобретения при его рассмотрении совместно с сопроводительными чертежами, на которых:

на Фиг.1 изображен источник возбуждения;

на Фиг.2 изображена система наведения луча, вид сверху;

на Фиг.3 изображена система наведения луча согласно Фиг.2, вид сбоку;

на Фиг.4 и фиг.5 представлена иллюстрация способа калибровки;

на Фиг.6А изображена схема калибровочного оборудования, используемого для обеспечения совпадения оптических осей систем наведения и сбора данных;

на Фиг.6Б и фиг.6В представлены примеры калибровочных таблиц;

на Фиг.7А представлено увеличенное перспективное изображение вертикального разреза структуры цилиндрической бусинки, посредством которой осуществляют микрогенерацию лазерного излучения, являющейся пригодной для встраивания в изделие;

на Фиг.7Б представлено увеличенное изображение поперечного сечения структуры цилиндрической бусинки, посредством которой осуществляют микрогенерацию лазерного излучения, согласно Фиг.7А;

на Фиг.8 изображена схема примерного варианта системы распознавания изделий;

на Фиг.9 представлена детальная блок-схема самонаводящегося устройства считывания из системы распознавания, изображенной на Фиг.8;

на Фиг.10А, фиг.10Б и фиг.10В изображены: примерный вариант регистрирующего устройства с однострочным сканированием, ось строки сканирования которого параллельна оси транспортировки изделия, например банкноты; примерный вариант регистрирующего устройства с однострочным сканированием, ось строки сканирования которого перпендикулярна оси транспортировки изделия, и примерный вариант одноэлементного регистрирующего устройства, посредством которого осуществляют накопление строк сканирования вдоль изделия, соответственно, в том же самом месте на поперечной оси, что и поле обзора источника возбуждения.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ

Раскрытие сущности патента США №5448582, выданного 5 сентября 1995 г. и имеющего название "Источники оптического излучения, имеющие усиливающую среду с сильным рассеянием, которая действует подобно лазеру" ("Optical Sources Having a Strongly Scattering Gain Medium Providing Laser-Like Action"), автором которого является Нэбил М. Лоуэнди (Nabil М. Lawandy), включено сюда в полном объеме путем ссылки.

В этом изобретении может быть использовано излучение, подобное лазерному, например, излучение, возникающее в результате сжатия по спектру и времени, или вторичное излучение. Вторичное излучение может представлять собой любое оптическое излучение от светоактивного материала, которое возникает непосредственно в результате поглощения энергии от источника возбуждения. Используемый здесь термин вторичное излучение может охватывать собой как флюоресценцию, так и фосфоресценцию.

Поэтому сначала следует осознать, что сущность этого изобретения может быть использована для распознавания изделий, закодированных посредством веществ, не обладающих действием, подобным действию лазера, например посредством частиц люминофора, красителей (без рассеивающих частиц) и полупроводниковых материалов. Изготовление одного из наиболее целесообразных типов полупроводниковых материалов осуществляют таким образом, чтобы создать структуры с квантовой ямой, которые испускают свет на таких длинах волн, регулировка которых может быть выполнена посредством изменения параметров при его изготовлении.

Одной из отличительных особенностей этого изобретения, по существу, является то, что в нем используют оптическую усиливающую среду, которая может действовать подобно лазеру, или же среду, которая может испускать излучение иного типа, при ее возбуждении источником энергии возбуждения, что раскрыто в вышеуказанном патенте США №5448582. Оптическая усиливающая среда может содержать в себе матричную фазу, например полимер или подложку, которая является, по существу, прозрачной на интересующих длинах волн; и фазу, испускающую и усиливающую электромагнитное излучение, например хромовый краситель или люминофор. В некоторых вариантах осуществления изобретения оптическая усиливающая среда также содержит в себе контрастную фазу, рассеивающую электромагнитное излучение, которая обладает высоким показателем преломления, например частицы окисла и/или рассеивающие центры, находящиеся внутри матричной фазы.

Согласно предпочтительному варианту реализации этого изобретения для проявления электрооптических свойств, сходных с действием лазера, можно использовать краситель или какое-либо другое вещество, которое, возможно, в совокупности с рассеивающими частицами или центрами способно излучать свет, то есть излучение, подобное лазерному, которое при превышении порогового уровня подводимой энергии накачки обладает как более узкой шириной спектральной линии, так и сжатием по времени.

Как было указано выше, еще одной отличительной особенностью этого изобретения является использование вторичного излучения, которое может представлять собой любое оптическое излучение от светоактивного материала, возникающее непосредственно в результате поглощения энергии от источника возбуждения. Вторичное излучение может содержать в себе как излучение флюоресценции, так и излучение фосфоресценции.

Изобретение может быть использовано для создания изделий, например предметов одежды или бельевых изделий, в которых изделие дополнительно содержит в себе, по меньшей мере, одну часть, содержащую в себе усиливающую среду, посредством которой обеспечивают испускание узкополосного (например, около 3 нм) оптического излучения в ответ на превышение порогового значения интегральной плотности потока энергии накачки. Испускаемое узкополосное оптическое излучение позволяет осуществлять распознавание (и возможную сортировку) изделий.

Нитевидная структура в виде удлиненного волокна, например "Лазерная нить" (LaserThread™), содержит в себе вещество, испускающее и усиливающее электромагнитное излучение. Как описано выше, вещество, испускающее и усиливающее электромагнитное излучение, возможно, в совокупности с рассеивающими объектами, создает излучение, подобное лазерному. В одном из вариантов осуществления изобретения на поверхности или внутри, по меньшей мере, одного участка предмета одежды или полотна располагают одну или большее количество удлиненных нитевидных структур, которые имеют диаметр, например, приблизительно 5-50 мкм. Таким способом может быть создано множество длин волн излучения, посредством которых обеспечивают спектральное кодирование предмета одежды или бельевого изделия.

Согласно другой отличительной особенности настоящего изобретения излучение, подобное лазерному, создают посредством описанной выше структуры, в которой используют одну или большее количество пленок оптической усиливающей среды, расположенных вокруг сердцевины. Структура может иметь различную форму, в том числе бусинок, дисков и сфер. Бусинки, диски и сферы встраивают в изделие для обеспечения распознавания и возможной сортировки изделий при выполнении операций обработки. Например, в находящейся в процессе одновременного рассмотрения предварительной заявке на патент №60/086,126 от 2 мая 1998 г., имеющей название "Цилиндрические бусинки, посредством которых осуществляют микрогенерацию лазерного излучения, для комбинаторной химии и иных областей применения" ("Cylindrical Micro-Lasing Beads For Combinatorial Chemistry and Other Applications"), автором которой является Нэбил М.Лоуэнди (Nabil M. Lawandy) и права на которую принадлежат владельцу прав на данное изобретение, раскрыта структура цилиндрических бусинок, посредством которых осуществляют микрогенерацию лазерного излучения, пригодных для практической реализации этой отличительной особенности настоящего изобретения. Раскрытие сущности этих предварительных заявок на патент включено сюда в полном объеме путем ссылки.

На Фиг.7А показано увеличенное перспективное изображение вертикального разреза структуры цилиндрической бусинки 20, посредством которой осуществляют микрогенерацию лазерного излучения. Структура цилиндрической бусинки 20, посредством которой осуществляют микрогенерацию лазерного излучения, содержит в себе цилиндрические диэлектрические слои, которые эквивалентны закрытому двумерному пластинчатому световоду и обеспечивают резонансный режим. При толщине активного слоя, равной приблизительно 1-2 мкм, и диаметре (D), равном приблизительно 5-50 мкм, возможно возникновение мод со значениями добротности Q, превышающими 106. На Фиг.7Б показано увеличенное изображение поперечного сечения структуры цилиндрической бусинки 20, посредством которой осуществляют микрогенерацию лазерного излучения, из Фиг.7А. Область 22 сердцевины окружена слоем или областью 24 усиливающей среды и изолирующим слоем или областью 26. Слой 24 усиливающей среды имеет более высокий показатель преломления, чем область 22 сердцевины и изолирующий слой 26. Вокруг области 22 сердцевины расположено множество слоев усиливающей среды и множество слоев изоляции. Область 22 сердцевины может быть выполнена из металла, полимера или рассеивающего вещества. В предпочтительном варианте слой 24 усиливающей среды представляет собой одну из множества пленок оптической усиливающей среды, которые располагают вокруг сердцевины 22 для создания множества характеристических длин волн излучения.

Из приведенных выше нескольких примеров вариантов осуществления изобретения понятно, что для распознавания изделия можно использовать оптическую усиливающую среду, способную испускать излучение, подобное лазерному, или вторичное излучение. В общем случае, такими изделиями могут являться бельевые изделия, предметы одежды, или различные типы текстильных изделий, но эти примеры не являются ограничивающими.

В варианте осуществления, который в настоящее время является предпочтительным, изделиями могут являться, в том числе, банкноты, другие типы денег, чеков и банковских платежных поручений, а также изделия других подобных типов, которые имеют, в общем случае, плоскую форму при помещении их в средство транспортировки, например на ленту транспортера, для их транспортировки сквозь или через систему, которая соответствует идее этого изобретения.

Как описано ниже, отличительная особенность идеи этого изобретения заключается в обеспечении устройства распознавания (и возможной сортировки), которая содержит в себе устройство обнаружения, устройство наведения, устройство возбуждения и устройство регистрации. В соответствии с этой отличительной особенностью существа данного изобретения устройство распознавания позволяет осуществлять определение местоположения (то есть обнаружение) светоактивных материалов, находящихся на анализируемом изделии, наводить источник возбуждения на обнаруженные материалы, направлять на них возбуждающее излучение и производить регистрацию оптического отклика светоактивных материалов (излучения, подобного лазерному, или вторичного излучения) на возбуждающее излучение. Таким образом, система "поиска, наведения, выстрела и регистрации" позволяет осуществлять распознавание изделий при выполнении операций обработки.

Следует отметить, что после осуществления распознавания изделия может оказаться желательным выполнение последующей сортировки или отделение распознанного изделия от других изделий. В этом случае к устройству распознавания может быть присоединено отводящее устройство, манипулятор или сортировочное устройство любого подходящего типа, посредством которого осуществляют воздействие на дальнейшую обработку распознанного (или нераспознанного) изделия. Однако выполнение сортировки или какого-либо разделения распознанных объектов между собой либо их отделение от других объектов не является обязательным условием при практической реализации идеи этого изобретения.

На Фиг.8 и Фиг.9 представлен пример варианта осуществления системы с самонаводящимся устройством считывания для дистанционного распознавания изделий, то есть рассмотренной выше системы "поиска, наведения, выстрела и регистрации". Как показано на Фиг.8, распознавание изделий 30, представляющих собой, например, предметы одежды, бельевые изделия, текстильные изделия и иные закодированные материалы, осуществляют при их прохождении через зону 32 обнаружения в устройстве 34 дистанционного распознавания. В одном из вариантов осуществления этого изобретения может быть осуществлено автоматическое пропускание множества изделий 30 через зону 32 обнаружения в направлении, указанном стрелкой "А", путем использования устройства транспортировки, представляющего собой, например, подвижную направляющую или транспортер 36.

Изделия 30 имеют, по меньшей мере, одну область 38, содержащую в себе светоактивные материалы. Как указано выше, светоактивные материалы позволяют осуществлять оптическое кодирование изделий 30 для, например, распознавания и необязательной сортировки изделий 30 при выполнении этапов обработки. По меньшей мере, одна область 38 может представлять собой, например, метку, нашитую, приклеенную или иным образом прикрепленную или присоединенную к изделию 30. Из приведенного выше краткого описания различных вариантов осуществления изобретения понятно, что оптическое кодирование и распознавание изделий 30 могут быть осуществлены путем регистрации однозначно заданного излучения, подобного лазерному, или вторичного излучения, по меньшей мере, от одной области 38, возникающего в ответ на возбуждение.

На Фиг.9 изображена принципиальная схема устройства с самонаводящимся устройством считывания согласно Фиг.8. На Фиг.9 особо выделены четыре функциональных блока устройства считывания. Этими четырьмя функциональными блоками являются, в том числе, устройство 40 обнаружения цели, устройство 42 наведения, устройство 44 возбуждения и приемное или регистрирующее устройство 46, то есть устройства, которые обеспечивают функции "поиска, наведения, выстрела и регистрации" для устройства 34 с самонаводящимся устройством считывания.

В блоке обнаружения цели для определения местоположения области изделия 30 с наибольшей яркостью или с наибольшей интенсивностью излучения используют светоизлучающую способность светоактивного материала, присоединенного к анализируемому изделию 30. То есть определяют местоположение области 50 изделия 30, которая в ответ на возбуждение испускает световое излучение или излучение флюоресценции в одном или в большем количестве характерных диапазонов длин волн.

Изображенный на Фиг.9 соответствующий источник 52 стимулирующего воздействия может быть выполнен в совокупности с линзой 54 или с каким-либо другим средством создания в предпочтительном варианте расходящегося луча 53, которым освещают зону обнаружения в системе 34 считывания. В результате этого светоактивный материал, присоединенный к изделию 30, которое пропускают через эту зону, возбуждают излучением от источника 52 стимулирующего воздействия. Как указано выше, в ответ на возбуждение светоактивный материал испускает световое излучение или излучение флюоресценции в характерном диапазоне длин волн. Понятно, что выбор надлежащих источников 52 стимулирующего воздействия осуществляют в соответствии с областью применения и свойствами флюоресцентных веществ, введенных в состав анализируемых изделий. Целесообразно, чтобы луч 53 был достаточно широким для обеспечения регистрации светоактивного материала при любой его ориентации.

В качестве соответствующих примеров источников 52 стимулирующего воздействия могут служить, например, источники рентгеновского излучения, ксеноновые лампы-вспышки, люминесцентные лампы, лампы накаливания, светодиоды, лазерные диоды и лазерный луч с большой расходимостью. В одном из вариантов осуществления соответствующий источник 52 стимулирующего воздействия может быть создан посредством видоизменения устройства 44 возбуждения.

При этом, со ссылкой на Фиг.1, в режиме возбуждения излучение из лазерного источника 1 возбуждения проходит по траектории 7 луча к системе наведения. В режиме обнаружения из возбуждения создают источник стимулирующего воздействия путем перенаправления излучения источника возбуждения вдоль луча 8 посредством введения подвижного зеркала 5. Зеркало 5 предназначено для прерывания траектории 7 луча посредством исполнительного механизма 2, который имеет вращающийся вал 3, на котором посредством приводного рычага 4 закреплено зеркало 5. Исполнительный механизм 2 может представлять собой соленоид, гальванометр или любое другое устройство, которое может обеспечивать установку зеркала 5 на траектории 7 луча и вне ее, в предпочтительном варианте посредством электрической команды, поступающей из электронных схем управления устройством считывания. После отклонения луча по траектории 8 луча его направляют на входную грань 11 кристалла 10, посредством которого осуществляют смешение мод. В зависимости от конкретных требований, предъявляемых к конструкции, луч может быть направлен на грань 11 кристалла путем отражения от зеркала 6, а для обеспечения ввода всего луча в грань 11 кристалла может потребоваться фокусировка посредством линзы 9. Кристалл 10, посредством которого осуществляют смешение мод, представляет собой световод, форма поперечного сечения которого в предпочтительном варианте является такой же, как и форма поля обзора при обнаружении (то есть, если согласно конструкции поле обзора является квадратным, то поперечное сечение кристалла также является квадратным). В предпочтительном варианте осуществления изобретения все боковые поверхности кристалла полируют таким образом, чтобы свет, распространяющий внутри кристалла, при падении на боковую поверхность и отражении от нее претерпевал бы полное внутреннее отражение. В альтернативном варианте боковые поверхности кристалла 10 могут быть выполнены имеющими высокий коэффициент отражения, что осуществляют путем нанесения на боковые поверхности металлического или диэлектрического покрытия. Входную грань 11 шлифуют с использованием микрозернистого абразивного материала таким образом, чтобы обеспечить рассеяние света, входящего во входную грань, по случайным направлениям внутри кристалла 10. Такое смешение волновых фронтов приводит к тому, что после множественных внутренних отражений от боковых поверхностей кристалла свет равномерно заполняет собой объем кристалла 10. Когда свет доходит до выходной грани кристалла 10, его распределение является равномерным по всей выходной грани и имеет форму поперечного сечения кристалла. К тому же свет выходит из кристалла 10 в широком диапазоне углов, причем случайным образом, а максимальный угол определяется показателями преломления кристалла и окружающей среды (обычно воздуха). Свет, выходящий из кристалла 10, коллимируют посредством линзы 12 и формируют его изображение в области прицеливания, на которую нацелено устройство 14 обнаружения. Линзу 12, посредством которой формируют изображение, выбирают таким образом, чтобы, по существу, вся область прицеливания была заполнена лучами 13, выходящими из кристалла 10 и формирующими изображение.

В обычном режиме работы устройство считывания функционирует следующим образом. Сначала зеркало 5 располагают на траектории луча 7. При считывании данных об изделии в поле обзора, в котором осуществляют обнаружение, включают источник возбуждения, в результате чего получают равномерное освещение в пределах области прицеливания и, следовательно, изделия. Равномерное освещение вызывает флюоресценцию закодированных материалов на изделии, которую регистрируют посредством камеры, служащей для обнаружения. Зеркало 5 выводят из траектории луча 7, а в систему наведения подают команду осуществить наведение в направлении точки с наибольшей яркостью зарегистрированной флюоресценции. При считывании данных об изделии в области, на которую нацелена система наведения, снова включают источник возбуждения, в результате чего узкий луч возбуждения, направленный на цель, попадает на закодированный материал. После регистрации и анализа закодированного излучения зеркало 5 снова располагают на траектории луча 7, и эта последовательность операций может быть повторена.

Следует понимать, что соответствующий источник 52 стимулирующего воздействия, в общем случае, представляет собой источник электромагнитного излучения, излучение которого поглощается светоактивным материалом, а энергия светового излучения которого является достаточной для индуцирования в светоактивном материале такой флюоресценции, которая может быть обнаружена. Например, в варианте осуществления изобретения, в котором анализируемое изделие 30 содержит в себе вышеуказанную "Лазерную нить" (LaserThread™), целесообразным источником 52 стимулирующего воздействия является ксеноновая лампа-вспышка с суженным посредством фильтра спектром излучения, поскольку флюоресценция "Лазерной нити" (LaserThread™) может возникать в результате поглощения видимого излучения от ксеноновой лампы-вспышки. В другом варианте осуществления, в котором изделие 30 является самоизлучающим в том месте, где оно содержит в себе светоактивный материал, источник 52 стимулирующего воздействия не нужен. Такими самоизлучающими изделиями являются, например, биолюминесцентные и хемилюминесцентные изделия.

Регистрацию светового излучения или излучения флюоресценции от светоактивного материала, как индуцированного, так и собственного, осуществляют, например, посредством системы 56 электронной камеры для регистрации изображений, входящей в состав устройства 40 обнаружения цели. В предпочтительном варианте поле обзора устройства 56, представляющего собой камеру, совпадает с формой расходящегося луча 53 от источника 52 стимулирующего воздействия или является меньшим. В сущности, поле 55 обзора устройства 56, представляющего собой камеру, определяет собой зону 32 обнаружения для устройства 34 считывания.

В одном из вариантов осуществления изобретения излучение флюоресценции от светоактивного материала проходит через фильтр, который, по существу, пропускает излучение флюоресценции, но сильно ослабляет излучение стимулирующего воздействия, возникшее в результате диффузного рассеяния или зеркального отражения сигнала от изделия 30. Путем размещения соответствующих фильтров, то есть фильтров, которые обладают несовпадающими полосами пропускания, на траектории между источником 52 стимулирующего воздействия и камерой 56, обеспечивают то, что камера 56 не регистрирует исходное излучение от источника 52 стимулирующего воздействия после его попадания на изделие 30. Для определения местоположения области 50 изделия 30, обладающей наиболее сильным излучением в пределах поля 55 обзора, может быть осуществлен анализ электронных сигналов от системы 56, представляющей собой камеру для регистрации изображений, который выполняют посредством компьютера или специализированных электронных схем 41 обработки изображений. Для этого может быть использовано обычное программное обеспечение для получения и обработки изображений.

Следует понимать, что в тех вариантах применения, в которых в зоне обнаружения 32 одновременно может находиться только один флюоресцентный участок изделия 30, вместо си