Способ обработки для оптического волокна

Иллюстрации

Показать все

Изобретение относится к способу обработки оптического волокна. Способ включает размещение оптического волокна внутри камеры обработки; введение дейтерийсодержащего газа в камеру обработки и на стадии дейтериевой обработки подвергание оптического волокна воздействию среды дейтерийсодержащего газа. На стадии дейтериевой обработки вычисляют концентрацию D дейтерия в камере обработки во время дейтериевой обработки по исходному значению А концентрации дейтерия в дейтерийсодержащем газе внутри камеры обработки, концентрации В кислорода в окружающей среде камеры обработки и концентрации С кислорода в дейтерийсодержащем газе внутри камеры обработки. Регулируют концентрацию дейтерия в камере обработки на основании вычисленной концентрации D дейтерия. Согласно изобретению также могут быть использованы другие газы, такие как водородсодержащий газ и азотсодержащий газ. Технический результат - точность регулировки концентрации дейтерия даже в случае, когда газ, служащий носителем дейтерийсодержащего газа, представляет собой газ, иной, чем воздух, а процентный состав газа, служащего носителем, флуктуирует. 3 н. и 21 з.п. ф-лы, 5 ил.

Реферат

Описание уровня техники

После укладки оптических волокон в кабель и прокладки волоконно-оптического кабеля потери на прохождение в оптическом волокне в области длины волны около 1400 нм возрастают и характеристики пропускания оптического волокна ухудшаются.

Для предотвращения такого ухудшения характеристик пропускания оптического волокна предварительно используют способ обработки для оптических волокон, в котором оптическое волокно подвергают воздействию водорода или дейтерия.

Однако при осуществлении способа обработки, в котором оптическое волокно подвергают воздействию водорода (водородная обработка), имеется проблема, заключающая в том, что исходные потери на прохождение оптического волокна в области длины волны около 1383 нм возрастают. В отличие от этого при осуществлении способа обработки, в котором оптическое волокно подвергают воздействию дейтерия (дейтериевая обработка), такая проблема не наблюдается. Поэтому водородная обработка или дейтериевая обработка должны выбираться и использоваться в зависимости от задачи.

Применительно к оптическому волокну были предложены различные способы дейтериевой обработки. В одном способе (см., например, нерассмотренную патентную заявку Японии, первая публикация №2003-137580) газ, который содержит газообразный дейтерий (ниже называемый «дейтерийсодержащим газом»), непрерывно протекает в герметизируемую камеру обработки, и среда в камере обработки заменяется дейтерийсодержащим газом. В другом способе (см., например, нерассмотренную патентную заявку Японии, первая публикация №2004-226979) после снижения давления внутри камеры обработки внутреннюю часть камеры обработки заполняют дейтерийсодержащим газом и тем самым среду внутри камеры обработки заменяют дейтерийсодержащим газом. В последнем способе возможен возврат в оборот дейтерийсодержащего газа.

Кроме того, водородный тестовый способ, оговоренный требованиями МЭК60793-2-50, является примером способа водородной обработки применительно к оптическому волокну. В этом водородном тестовом способе оптическое волокно подвергают воздействию среды с 1% газообразного водорода или среды со 100% газообразного водорода при комнатной температуре, пока потери на прохождение на длине волны 1240 нм равны или больше чем 0,03 дБ/км. Однако в этом водородном тестовом способе конкретные условия способов обработки (условия обработки) не оговорены.

В случае, когда дейтериевую обработку применяют для оптического волокна, при использовании способа, в котором дейтерийсодержащий газ непрерывно втекает в камеру обработки, обработку применяют при элиминировании дейтерийсодержащего газа до тех пор, пока внутри камеры обработки не достигается предварительно заданная концентрация дейтерия. Поэтому каждый раз, когда применяют дейтериевую обработку, в камере обработки можно поддерживать заданную концентрацию дейтерия.

Однако для повышения эффективности производства обработка должна применяться одновременно к оптическому волокну, имеющему большую длину, и в соответствии с этим объем камеры обработки, предназначенной для применения обработки к оптическому волокну, становится большим. В зависимости от того, насколько большим становится объем камеры обработки, количество дейтерийсодержащего газа, необходимого для замены среды в камере обработки, возрастает, и в результате этого также повышаются затраты.

В отличие от этого при использовании способа, в котором камеру обработки заполняют дейтерийсодержащим газом после того, как давление в камере обработки снижают, поскольку создание глубокого вакуума внутри камеры обработки является затруднительным, воздух, который остается в камере обработки от каждой обработки, смешивается с дейтерийсодержащим газом. По мере возрастания числа обработок концентрация дейтерия в возвращаемом дейтерийсодержащем газе становится низкой.

Когда концентрация дейтерия в дейтерийсодержащем газе становится низкой, также возникает беспокойство относительно того, что не только продолжительное время необходимо до тех пор, пока дейтерий в достаточной степени не проникнет сквозь оптическое волокно, но также относительно того, что дейтериевая обработка может стать неэффективной. Поэтому, чтобы предотвратить некачественную дейтериевую обработку, необходимо контролировать концентрацию дейтерия при применении дейтериевой обработки к оптическому волокну.

Пламенный газовый детектор, оптический газовый плотномер и т.п. представляют собой примеры приборов, которыми измеряют концентрацию дейтерия. При использовании дейтерийсодержащего газа, переносимого воздухом, такими измерительными приборами можно измерять концентрацию дейтерия. Отметим, что в настоящей заявке любой газ, процентный состав которого аналогичен процентному составу атмосферы, называется «воздухом».

Однако, когда воздух примешан к дейтерийсодержащему газу и процентный состав газа отличается от процентного состава атмосферы, становится невозможно правильно измерять концентрацию дейтерия путем использования измерительных приборов, описанных выше. В плотномере с сжиганием, таком как пламенный газовый детектор, дейтерий сжигается, а концентрация дейтерия вычисляется по количеству теплоты, образующейся во время сжигания. Поэтому в случае, когда вместо воздуха в качестве носителя используется инертный газ, такой как азот, аргон, гелий и т.п., то сгорание становится неполным и, следовательно, концентрация не может быть точно измерена.

В дополнение к этому, в оптическом плотномере, таком как оптический газовый плотномер, концентрация дейтерия вычисляется по относительному показателю преломления дейтерийсодержащего газа. Поэтому в случае, когда процентный состав газа, который служит носителем, флуктуирует, невозможно точно измерить концентрацию дейтерия.

Кроме того, можно определять концентрацию дейтерия путем анализа молекул газообразного дейтерия, содержащегося в дейтерийсодержащем газе. Однако это не является предпочтительным, поскольку для измерения требуется время, и поэтому производственные расходы существенно возрастают.

Сущность изобретения

С учетом проблем, описанных выше, задача изобретения заключается в создании способа обработки для оптического волокна, в котором можно точно регулировать концентрацию дейтерия даже в случае, когда газ, который служит носителем дейтерийсодержащего газа, представляет собой иной газ, а не воздух, а процентный состав газа, который служит носителем, флуктуирует.

Согласно изобретению предложен способ обработки для оптического волокна, включающий в себя размещение оптического волокна внутри камеры обработки; введение дейтерийсодержащего газа в камеру обработки и на стадии дейтериевой обработки подвергание оптического волокна воздействию среды дейтерийсодержащего газа, в котором на стадии дейтериевой обработки вычисляют концентрацию D дейтерия в камере обработки во время дейтериевой обработки по исходному значению А концентрации дейтерия в дейтерийсодержащем газе внутри камеры обработки, концентрации В кислорода в окружающей среде камеры обработки и концентрации С кислорода в дейтерийсодержащем газе внутри камеры обработки и регулируют концентрацию дейтерия в камере обработки на основании вычисленной концентрации D дейтерия.

В способе обработки для оптического волокна концентрация D дейтерия в камере обработки во время стадии дейтериевой обработки может быть вычислена путем использования нижеприведенного уравнения 1:

где: А обозначает исходное значение концентрации дейтерия в дейтерийсодержащем газе внутри камеры обработки;

В обозначает концентрацию кислорода в окружающей среде (воздухе) камеры обработки; и

С обозначает концентрацию кислорода в дейтерийсодержащем газе внутри камеры обработки.

Согласно изобретению также предусмотрен способ обработки для оптического волокна, включающий в себя размещение оптического волокна внутри камеры обработки; введение водородсодержащего газа в камеру обработки и на стадии водородной обработки подвергание оптического волокна воздействию среды водородсодержащего газа, в котором на стадии водородной обработки вычисляют концентрацию δ водорода в камере обработки во время водородной обработки по исходному значению α концентрации водорода в водородсодержащем газе внутри камеры обработки, концентрации β кислорода в окружающей среде камеры обработки и концентрации γ кислорода в водородсодержащем газе внутри камеры обработки и регулируют концентрацию водорода в камере обработки на основании вычисленной концентрации δ водорода.

В способе обработки для оптического волокна концентрацию δ водорода в камере обработки во время стадии водородной обработки вычисляют, используя нижеприведенное уравнение 2:

где: α обозначает исходное значение концентрации водорода в водородсодержащем газе внутри камеры обработки;

β обозначает концентрацию кислорода в окружающей среде (воздухе) камеры обработки; и

γ обозначает концентрацию кислорода в водородсодержащем газе внутри камеры обработки.

В способе обработки для оптического волокна, описанном выше, предпочтительно, чтобы камера обработки представляла собой герметизируемую камеру.

В способе обработки для оптического волокна, описанном выше, предпочтительно, чтобы состояние с пониженным давлением могло создаваться внутри камеры обработки до введения дейтерийсодержащего газа. Предпочтительно, но необязательно, задавать давление в камере обработки во время состояния пониженного давления в пределах диапазона от равного или большего чем 0,01 кПа до равного или меньшего чем 75 кПа.

В способе обработки для оптического волокна, описанном выше, может быть предпочтительным, чтобы парциальное давление дейтерия во время этапа дейтериевой обработки задавалось в пределах диапазона от равного или большего чем 0,1 кПа до равного или меньшего чем 5 кПа, и может быть предпочтительным, чтобы парциальное давление водорода во время этапа водородной обработки задавалось в пределах диапазона от равного или большего чем 0,1 кПа до равного или меньшего чем 4 кПа.

В способе обработки для оптического волокна, описанном выше, может быть предпочтительным, но необязательным, чтобы давление в камере обработки во время этапа дейтериевой обработки или этапе водородной обработки задавалось в пределах диапазона от равного или большего чем 10,1 кПа до равного или меньшего чем 203 кПа.

В способе обработки для оптического волокна, описанном выше, температура внутри камеры обработки может поддерживаться около постоянной температуры в пределах диапазона от равной или большей чем 5°С до равной или меньшей чем 40°С во время этапа дейтериевой обработки или этапа водородной обработки.

Согласно способу обработки для оптического волокна изобретения в случае, когда необходимо регулирование концентрации газа, используемого при обработке оптического волокна, даже в случае, когда непосредственное измерение концентрации невозможно вследствие ограниченных функциональных возможностей устройства для измерения концентрации, можно измерить концентрацию кислорода, примешенного к измеряемому газу внутри камеры обработки, и легко вычислить концентрацию измеряемого газа на основании этой концентрации кислорода. Поэтому для определения концентрации измеряемого газа нет необходимости извлекать измеряемый газ и анализировать измеряемый газ путем использования сложной анализирующей установки, такой как газовый хроматограф. Следовательно, в это же время можно легко определить концентрацию измеряемого газа. Поэтому способ обработки для оптического волокна согласно изобретению является обеспечивающим преимущество способом обработки с производственной точки зрения, поскольку можно сократить затраты и рабочее время.

Краткое описание чертежей

На чертежах:

фиг.1 - схематическая структурная схема, иллюстрирующая пример установки для обработки оптического волокна согласно изобретению;

фиг.2 - график, отражающий зависимость между временем задержки аннигиляции не образующих мостиков кислородных дырочных центров (НОМКДЦ) и давлением среды с пониженным давлением на первом этапе;

фиг.3 - схематическая структурная схема, иллюстрирующая пример установки для обработки оптического волокна согласно изобретению;

фиг.4 - график, отражающий зависимость между количеством обработок и остаточной величиной парциального давления дейтерия в дейтерийсодержащем газе для случая, когда оптическое волокно подвергалось дейтериевой обработке после неоднократного использования дейтерийсодержащего газа; и

фиг.5 - график, иллюстрирующий результаты измерения концентрации дейтерия в тестовых пробах согласно изобретению.

Подробное описание изобретения

Ниже будет подробно пояснен способ обработки для оптического волокна, к которому относятся варианты осуществления изобретения.

Для аннигилирования не образующих мостиков кислородных дырочных центров (ниже в данной заявке сокращенно «НОМКДЦ»), созданных в оптическом волокне в продолжение стадии изготовления оптического волокна, в способе обработки для оптического волокна согласно изобретению сначала дейтериевую обработку или водородную обработку применяют к оптическому волокну (с первого варианта осуществления по четвертый вариант осуществления).

На фиг.1 представлен схематический структурный чертеж, иллюстрирующий пример установки для обработки оптического волокна, в которой использован способ обработки для оптического волокна согласно изобретению.

На фиг.1 позицией 1 обозначена установка для обработки оптического волокна, позицией 1а обозначена реакционная камера, позицией 1b обозначен патрубок для подвода газа, позицией 1с обозначен клапан для открывания и закрывания подвода газа, позицией 1d обозначена подающая газ труба, позицией 1е обозначен выпускной патрубок, позицией 1f обозначен клапан для открывания и закрывания выпуска, 1g обозначает откачивающий насос, позицией 1h обозначен дифференциальный манометр, позицией 2 обозначено оптическое волокно и позицией 3 обозначена катушка. Установка 1 для обработки оптического волокна согласно этому примеру включает в себя, по меньшей мере, реакционную камеру 1а. Реакционная камера 1а представляет собой герметизируемую камеру, в которой может быть размещено оптическое волокно 2, и имеет состояние вакуума около 0,1 кПа и стойкость к давлению и характеристику уплотнения, при которых она может противостоять состоянию повышенного давления от нормального давления до давления, которое равно или меньше чем 250 кПа.

Подающая газ труба 1d присоединена к патрубку 1b для подвода газа реакционной камеры 1а через клапан 1с для открывания и закрывания подвода газа. Дейтерийсодержащий газ может быть подан в реакционную камеру 1а из подающей газ трубы 1d.

В данном случае дейтерийсодержащий газ означает газообразный дейтерий сам по себе или газовую смесь, которая содержит газообразный дейтерий.

Откачивающий насос 1g присоединен к выпускному патрубку 1е реакционной камеры 1а через клапан 1f для открывания и закрывания выпуска. Из реакционной камеры 1а дейтерийсодержащий газ или аналогичный отводится посредством этого откачивающего насоса 1g.

Дифференциальный манометр 1h расположен в реакционной камере 1а, тем самым обеспечивая измерение давления внутри реакционной камеры 1а. На основании значений, измеренных дифференциальным манометром 1h, можно отрегулировать количество дейтерийсодержащего газа и тем самым создать внутри реакционной камеры 1а дейтерийсодержащую газовую среду, которая имеет заданное давление, или запустить или остановить откачивающий насос 1g и тем самым создать среду с пониженным давлением внутри реакционной камеры 1а, которая имеет заданное давление.

Кроме того, реакционная камера 1а включает в себя средство, регулирующее температуру (не показанное), такое как нагреватель или устройство охлаждения, термометр (не показанный) или узел с регулирующий температуру (не показанный). Тем самым путем регулирования внутренней температуры внутри реакционной камеры 1а можно поддерживать состояние постоянной температуры в пределах диапазона от 5°C до 40°С.

Отметим, что вместо клапана 1 с для открывания и закрывания подвода газа реакционная камера 1а может включать в себя электромагнитный клапан (не показанный), выполненный с возможностью регулирования степени расхода газа. Однако может быть использовано любое устройство, которое может регулировать количество дейтерийсодержащего газа, подаваемого в реакционную камеру 1а.

Далее со ссылкой на фиг.1 будет пояснен первый вариант осуществления способа обработки согласно изобретению (аннигиляция не образующих мостиков кислородных дырочных центров) для оптического волокна.

Как пояснено ниже, в способе обработки для оптического волокна этого варианта осуществления на первой стадии оптическое волокно 2 подвергают воздействию среды с пониженным давлением.

Сначала оптическое волокно 2, имеющее предварительно заданную длину, наматывают на катушку 3.

Затем оптическое волокно 2, которое намотано на катушку 3, помещают в реакционную камеру 1а установки 1 для обработки. На оптическое волокно 2 не накладываются особые ограничения, если только оно изготовлено из кварцевого стекла или аналогичного ему, а в остальном может быть использовано оптическое волокно любого типа.

Далее, после того как активируют откачивающий насос 1g, который представляет собой вакуумный насос, открывают клапан 1f для открывания и закрывания выпуска, при этом внутри реакционной камеры 1а создают среду с пониженным давлением, то есть давление внутри пространства, занимаемого оптическим волокном 2, уменьшается при откачивании воздуха изнутри реакционной камеры 1а, и тем самым оптическое волокно 2 подвергают воздействию среды с пониженным давлением.

Как описано ниже, после этого на второй стадии, следующей за первой стадией, оптическое волокно 2 подвергают воздействию дейтерийсодержащей газовой среды.

После того как клапан 1f для открывания и закрывания выпуска закрывают, температуру внутри реакционной камеры 1а регулируют так, чтобы обеспечить состояние постоянной температуры в пределах диапазона от 5°C до 40°С путем использования средства, регулирующего температуру (не показанного), термометра (не показанного) или узла регулирующего температуру (не показанного). Затем клапан 1с открывания и закрывания подвода газа открывают, и дейтерийсодержащий газ поступает в среду с пониженным давлением внутри реакционной камеры 1а. Дейтерийсодержащий газ подают до тех пор, пока внутри реакционной камеры 1а не будет достигнуто предварительно заданное давление, а среда внутри пространства в реакционной камере 1а, в которое помещено оптическое волокно 2, не будет заменена дейтерийсодержащим газом. После этого внутреннюю часть реакционной камеры 1а изолируют путем закрывания клапана 1с для открывания и закрывания подвода газа. Внутри этой реакционной камеры 1а оптическое волокно 2 подвергают воздействию дейтерийсодержащей газовой среды. Таким образом, оптическое волокно 2 подвергают воздействию дейтерийсодержащей газовой среды, а посредством реакции не образующих мостиков кислородных дырочных центров в кварцевом стекле, из которого образовано оптическое волокно 2, с дейтерием (D2) с получением дейтерированных гидроксильных групп (-OD) можно предотвратить образование гидроксильных групп (-ОН). Тем самым можно сдвинуть область длин волн поглощения оптического волокна 2 из диапазона 1,38 мкм, который является областью длин волн поглощения гидроксильной группы, в диапазон 1,87 мкм, который является областью длин волн поглощения дейтерированной гидроксильной группы. Иначе говоря, область длин волн поглощения сдвигается за пределы области длин волн оптической связи. Следовательно, можно препятствовать ухудшению характеристик передачи оптического волокна 2 вследствие потерь на поглощение, обусловленных гидроксильными группами в кварцевом стекле.

Кроме того, в соответствии со способом обработки для оптического волокна согласно этому варианту осуществления скорость дисперсии дейтерийсодержащего газа в реакционной камере 1а может быть повышена путем создания среды с пониженным давлением внутри реакционной камеры 1а, в которую помещено оптическое волокно 2, и подачи дейтерийсодержащего газа в реакционную камеру 1а в этом состоянии среды с пониженным давлением. Тем самым, даже когда оптическое волокно 2 намотано на катушку 3, дейтерийсодержащий газ проходит через мельчайшие промежутки между намотанным оптическим волокном 2 и быстро проникает в места в непосредственной близости от намоточного стержня катушки 3. Следовательно, можно повысить вероятность контакта между оптическим волокном 2 вблизи намоточного стержня катушки 3 и газообразным дейтерием. Поэтому можно осуществить удовлетворительную (равномерную) дейтериевую обработку на протяжении всей длины оптического волокна 2.

Поскольку не образующие мостиков кислородные дырочные центры легко связываются с дейтерием с образованием дейтерированных гидроксильных групп, то реакция, при которой не образующие мостиков кислородные дырочные центры и дейтерий связываются с образованием дейтерированных гидроксильных групп (то есть реакция, при которой аннигилируют не образующие мостиков кислородные дырочные центры), находится под сильным влиянием вероятности контакта между не образующими мостиков кислородными дырочными центрами и газообразным дейтерием.

В способе обработки для оптического волокна согласно этому варианту осуществления, описанному выше, для оптического волокна в непосредственной близости от намоточного стержня катушки 3 можно повысить вероятность контакта между оптическим волокном 2 и дейтерийсодержащим газом и посредством этого можно повысить скорость реакции между не образующими мостиков кислородными дырочными центрами и дейтерием.

Следовательно, путем использования дейтерийсодержащего газа в низкой концентрации даже в случае, если время воздействия небольшое, можно повысить скорость реакции между не образующими мостиков кислородными дырочными центрами и дейтерием на протяжении всей длины оптического волокна 2, которое намотано на катушке 3, и можно аннигилировать не образующие мостиков кислородные дырочные центры на протяжении всего оптического волокна.

Далее способ обработки для оптического волокна согласно этому варианту осуществления будет пояснен подробно на основе экспериментальных результатов.

На фиг.2 представлен график, показывающий связь между временем задержки аннигиляции не образующих мостиков кислородных дырочных центров (НОМКДЦ) оптического волокна 2, которое намотано на катушку 3, и давлением в среде с пониженным давлением на первой стадии, описанной выше.

На фиг.2 ромбами показаны результаты для случая, когда на второй стадии парциальное давление газообразного дейтерия в среде газовой смеси составляло 0,5 кПа, а кружками показан результат для случая, когда на второй стадии парциальное давление газообразного дейтерия в среде газовой смеси составляло 1,0 кПа.

Время задержки аннигиляции не образующих мостиков кислородных дырочных центров отражает разность между временем аннигиляции не образующих мостиков кислородных дырочных центров оптического волокна 2, расположенного в самом внутреннем слое, и временем аннигиляции не образующих мостиков кислородных дырочных центров оптического волокна 2, расположенного в самом наружном слое, то есть разность между временем аннигиляции не образующих мостиков кислородных дырочных центров оптического волокна 2, расположенного в самом внутреннем слое, относительно времени аннигиляции не образующих мостиков кислородных дырочных центров оптического волокна 2, расположенного в самом наружном слое.

Среди участков оптического волокна 2, которое намотано на катушку 3, оптическое волокно 2, расположенное в самом внутреннем слое, характеризует участок оптического волокна 2, непосредственно намотанного на намоточный стержень катушки 3. В противоположность этому среди участков оптического волокна 2, которое намотано на катушку 3, оптическое волокно 2, расположенное в самом наружном слое, характеризует участок оптического волокна 2, расположенного в самом наружном слое.

Меньшая задержка времени аннигиляции не образующих мостиков кислородных дырочных центров означает, что время аннигиляции не образующих мостиков кислородных дырочных центров в оптическом волокне 2, расположенном в самом внутреннем слое, также меньше (реакция, при которой не образующие мостиков кислородные дырочные центры аннигилируют, является быстрой). Время аннигиляции для самого внутреннего слоя приобретает значение, которое является близким ко времени аннигиляции не образующих мостиков кислородных дырочных центров оптического волокна 2, расположенного в самом наружном слое. Это означает, что время, необходимое для аннигиляции не образующих мостиков кислородных дырочных центров на протяжении всего оптического волокна 2, которое намотано на катушку 3, является небольшим.

Время аннигиляции не образующих мостиков кислородных дырочных центров оптического волокна 2 отражает результат измерения следующим способом.

Степень поглощения на 0,63 мкм, которая представляет собой длину волны поглощения не образующих мостиков кислородных дырочных центров, измеряют в оптическом волокне 2, которое подвергалось воздействию газообразного дейтерия в течение заданного времени, а оставшееся количество не образующих мостиков кислородных дырочных центров определяют на основании степени этого поглощения.

Затем находят изменение во времени оставшегося количества не образующих мостиков кислородных дырочных центров по отношению ко времени воздействия на оптическое волокно 2 дейтерийсодержащего газа, оценивают время воздействия дейтерийсодержащего газа, необходимое для полной аннигиляции не образующих мостиков кислородных центров, на основании изменения во времени оставшегося количества не образующих мостиков кислородных дырочных центров и эту оценку используют в качестве времени аннигиляции не образующих мостиков кислородных дырочных центров.

На первой стадии, описанной выше, давление среды с пониженным давлением может быть равно или больше чем 0,01 кПа и равно или меньше чем 75 кПа и также может быть равно или больше чем 0,01 кПа и равно или меньше чем 50 кПа. Создавая давление среды с пониженным давлением, равным или большим чем 0,01 кПа и равным или меньшим чем 75 кПа, можно обеспечить высокую скорость дисперсии дейтерийсодержащего газа и таким образом можно распространить дейтерийсодержащий газ на протяжении всего оптического волокна 2, которое намотано на катушку 3 или аналогичное изделие. Поэтому в оптическом волокне 2 вблизи намоточного стержня катушки 3 можно сделать высокой вероятность контакта между не образующими мостиков кислородными дырочными центрами и газообразным дейтерием и тем самым можно ускорить реакцию между не образующими мостиков кислородными дырочными центрами и газообразным дейтерием (реакцию, при которой аннигилируют не образующие мостиков кислородные дырочные центры). В соответствии с изложенным выше можно сделать небольшим время аннигиляции не образующих мостиков кислородных дырочных центров в оптическом волокне 2, расположенном в самом внутреннем слое, и тем самым, как показано на фиг.2, может быть существенно снижено время задержки аннигиляции не образующих мостиков кислородных дырочных центров.

Кроме того, поскольку можно сделать высокой вероятность контакта между не образующими мостиков кислородными дырочными центрами и газообразным дейтерием, на второй стадии можно аннигилировать не образующие мостиков кислородные дырочные центры на протяжении всего оптического волокна 2 даже в случае, если использовать дейтерийсодержащий газ с низкой концентрацией и сделать время воздействия небольшим.

В частности, в случае, когда давление в среде с пониженным давлением равно или больше чем 0,01 кПа и равно или меньше чем 50 кПа, время задержки аннигиляции не образующих мостиков кислородных дырочных центров обращается в 0 или становится равным около 0, при этом время задержки аннигиляции является пренебрежимо малым. Поэтому не образующие мостиков кислородные дырочные центры реагируют с дейтерием при одной и той же скорости реакции как в оптическом волокне 2, расположенном в самом внутреннем слое, так и в оптическом волокне 2, расположенном в самом наружном слое 2, и в результате этого не образующие мостиков кислородные дырочные центры могут быть аннигилированы.

Кроме того, на второй стадии, описанной выше, предпочтительно, чтобы оптическое волокно 2 подвергалось воздействию дейтерийсодержащего газа, при котором парциальное давление газообразного дейтерия было бы равно или больше чем 0,1 кПа и равно или меньше чем 5 кПа. При этом можно распространить газообразный дейтерий, имеющий концентрацию, которая является достаточной для аннигиляции не образующих мостиков кислородных дырочных центров, на протяжении всего оптического волокна 2, которое намотано на катушку 3 или аналогичное изделие.

Не является предпочтительным парциальное давление газообразного дейтерия меньше чем 0,1 кПа, поскольку концентрация дейтерия будет низкой и, следовательно, будет трудно осуществлять аннигиляцию не образующих мостиков кислородных дырочных центров на протяжении всего оптического волокна 2. В отличие от этого не является предпочтительным парциальное давление газообразного дейтерия больше чем 5 кПа, поскольку необходима высокая концентрация дейтерия и, следовательно, затраты на обработку становятся высокими.

Кроме того, на второй стадии предпочтительно, чтобы дейтерийсодержащий газ подавался в реакционную камеру 1а, в которой размещено оптическое волокно 2, для создания внутри реакционной камеры 1а давления, равного или большего чем 10,1 кПа и равного или меньшего чем 203 кПа, а оптическое волокно 2 подвергалось воздействию дейтерийсодержащего газа при этом диапазоне давлений.

Посредством этого скорость диффузии дейтерийсодержащего газа внутри реакционной камеры 1а становится высокой, дейтерийсодержащий газ может быстро распространяться в непосредственной близости от намоточного стержня катушки 3, и тем самым можно добиться высокой скорости реакции между не образующими мостиков кислородными дырочными центрами и дейтерием.

Случай, когда давление дейтерийсодержащего газа в реакционной камере 1а, в которой оптическое волокно 2 подвергается воздействию, меньше чем 10,1 кПа, не является предпочтительным, поскольку скорость диффузии дейтерийсодержащего газа внутри реакционной камеры 1а будет низкой и, следовательно, для реакции, при которой не образующие мостиков кислородные дырочные центры аннигилируют, требуется продолжительное время.

Кроме того, случай, когда давление дейтерийсодержащего газа в реакционной камере 1а, в которой оптическое волокно 2 подвергается воздействию, меньше чем 203 кПа, не является предпочтительным, поскольку будет необходимо использовать реакционную камеру 1а, имеющую высокую стойкость к давлению, и, принимая во внимание безопасность и аналогичные соображения, обслуживание реакционной камеры 1а станет трудным.

На второй стадии предпочтительно, но необязательно, чтобы время воздействия, в течение которого оптическое волокно 2 подвергается воздействию дейтерийсодержащего газа, составляло один день или меньше. При этом можно аннигилировать не образующие мостиков кислородные дырочные центры на протяжении всего оптического волокна 2, которое намотано на катушку 3.

На второй стадии предпочтительно, но необязательно, чтобы оптическое волокно 2 подвергалось воздействию дейтерийсодержащего газа в состоянии, при котором температура внутри реакционной камеры 1а регулировалась бы так, чтобы поддерживалась постоянная температура в пределах диапазона от равной или большей чем 5°С до равной или меньшей чем 40°С. Тем самым можно ускорить реакцию между не образующими мостиков кислородными дырочными центрами в кварцевом стекле и дейтерием и можно осуществить аннигиляцию не образующих мостиков кислородных дырочных центров за короткий период времени.

Случай, когда температура внутри реакционной камеры 1а выше чем 40°, не является предпочтительным, поскольку поверхностный покровный полимерный слой оптического волокна 2 будет изменяться вследствие нагрева.

На фиг.3 схематически показана структурная схема, иллюстрирующая другой пример установки для обработки оптического волокна, используемой в способе обработки для оптического волокна согласно изобретению.

В этом примере установка 4 для обработки оптического волокна в основном включает в себя реакционную камеру 4а, резервуар 4b для хранения дейтерия и трубу 4с, посредством которой реакционная камера 4а соединена с резервуаром 4b для хранения дейтерия.

Реакционная камера 4а представляет собой герметизируемую камеру (первое пространство), в которой можно разместить оптическое волокно 2, и имеет вакуумное состояние около 0,1 кПа и стойкость к давлению и характеристику уплотнения, позволяющие противостоять состоянию повышенного давления от нормального давления до давления, равного или меньшего чем 250 кПа.

Резервуар 4b для хранения дейтерия представляет собой бак (второе пространство), в котором может храниться дейтерийсодержащий газ, и подобно реакционной камере 4а имеет вакуумное состояние около 0,1 кПа и стойкость к давлению и характеристику уплотнения, позволяющие противостоять состоянию повышенного давления от нормального давления до давления, равного или меньшего чем 250 кПа.

Подающая газ труба 4g присоединена к патрубку 4d для подвода газа резервуара 4b для хранения дейтерия через отверстие для впуска газа и запорный клапан 4f, и из этой подающей газ трубы 4g дейтерийсодержащий газ можно подавать в реакционную камеру 4а.

Реакционная камера 4а и резервуар 4b для хранения дейтерия снабжены отверстиями 4h и 4i для впуска и выпуска газа. Труба 4c связана с этими отверстиями 4h и 4i для впуска и выпуска газа через открывающие и открывающие клапаны 4j и 4k, и реакционная камера 4а и резервуар 4b для хранения дейтерия сообщаются через одну трубу 4с.

Внутренняя сторона (третье пространство) трубы 4с используется как путь потока, и дейтерийсодержащий газ может протекать в реакционную камеру 4а или в резервуар 4b для хранения дейтерия или из них. Переключающий клапан 4n введен по ходу трубы 4с, а выпускная труба 4р и устройство 4q для удаления газа присоединены к этому переключающему клапану 4n.

Любой клапан, который имеет соединительные части, пропускающие в по меньшей мере трех направлениях, и который может переключать путь от соединительной части из одного направления к соединительным частям в любом из других двух направлений, может быть использован в качестве переключающего клапана 4n. Клапан с тремя направлениями или электромагнитный клапан с тремя направлениями может быть примером переключающего клапана 4n.

Кроме того, в качестве устройства 4q для удаления газа может быть использован комбинированный нагнетательный и откачивающий насос, например шнековый вакуумный насос или сухой вакуумный диафрагменный насос.

В приведенном ниже описании участок пути трубы от переключающего клапана 4n до отверстия 4h для впуска и выпуска газа реакционной камеры 4а относится к трубе 4r на стороне реакционной камеры, а участок пути трубы от переключающего клапана 4n до отверстия 4i для впуска и выпуска газа резервуара 4b для хранения дейтерия относится к трубе 4s на стороне резервуара для хранения дейтерия.

В этом варианте осуществления переключающий клапан 4n обеспечивает возможность переключения от одного пути из числа трубы 4r на стороне реакционной камеры, трубы 4s на стороне резервуара для хранения дейтерия и выпускной трубы 4р к любому одному из путей других двух