Медицинские устройства, устойчивые к инфицированию

Иллюстрации

Показать все

Изобретение относится к медицине. Описан способ профилактики инфицирования микроорганизмами, связанного с медицинскими устройствами, где способ включает стадии получения медицинского устройства и введения в данное медицинское устройство эффективного количества линезолида. Описан улучшенный способ профилактики инфекций, связанных с медицинскими устройствами. 3 н. и 14 з.п. ф-лы, 11 ил., 6 табл.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

Данная заявка заявляет преимущества предварительной патентной заявки США № 60/380656 от 15 мая 2002 и предварительной патентной заявки США № 60/350767 от 22 января 2002.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Область изобретения

Данное изобретение касается в основном противодействия инфицированию микроорганизмами, связанному с имплантированными медицинскими устройствами. В частности, данное изобретение касается применения оксазолидиноновых соединений, таких как линезолид, для профилактики инфицирования, связанного с медицинскими устройствами.

Описание относящейся к делу технологии

Для лечения ряда болезней или других состояний человека часто применяют имплантируемые медицинские устройства, изготовленные из биоматериалов (например, биологически совместимых материалов, известных специалистам в данной области, таких как металлы, полимерные или керамические материалы). Развитие микроорганизмов на поверхностях таких медицинских устройств после имплантации происходит относительно редко, но может вызывать серьезные и дорогие осложнения, такие как необходимость удаления или замены имплантированного устройства или интенсивное лечение вторичных инфекций.

Успехи в создании материалов и в хирургической технике, сопряженные с демографией стареющего народонаселения, предполагают возрастающую потребность в имплантируемых медицинских устройствах в течение нескольких следующих десятилетий. Имплантируемые устройства включают, например, шовные материалы, ортопедические приспособления, стенты, катетеры, проволочные направители, шунты (например, гемодиализные шунты или цереброспинальные шунты), протезы (например, протезы сердечных клапанов или протезы суставов), кардиостимуляторы, нейронные стимуляторы и трансплантаты сосудов. Однако главным ограничительным фактором при использовании имплантируемых устройств является риск развития на биоматериалах микробов, таких как бактерии, с образованием биологических пленок, которые могут быть причиной серьезных инфекций, таких как остеомиелит, эндокардит или септический шок. Такие инфекции могут иметь место, несмотря на профилактическое введение антибиотиков при имплантационной хирургии, что стало стандартной практикой для таких хирургических операций.

Следовательно, эффективное лечение инфекций часто влечет за собой удаление имплантированного устройства. Таким образом, существует потребность в улучшенных способах профилактики инфекций, связанных с медицинскими устройствами.

КРАТКОЕ СОДЕРЖАНИЕ ИЗОБРЕТЕНИЯ

В целом, данное изобретение касается способов профилактики инфекций, связанных с медицинскими устройствами, посредством ингибирования бактериальной адгезии к поверхности устройства. Согласно одному аспекту настоящего изобретения способ получения устойчивого к инфекциям медицинского устройства для применения в организме человека или животного включает стадии получения медицинского устройства и введения в данное медицинское устройство эффективного количества противомикробного агента, содержащего оксазолидиноновое соединение.

Согласно другому аспекту данного изобретения способ ингибирования адгезии бактерий к медицинскому устройству включает стадии получения антибактериального средства, содержащего линезолид или его фармацевтически приемлемую соль, и доставку к данному медицинскому устройству антибактериального средства.

Согласно еще одному аспекту данного изобретения способ ингибирования бактериальной адгезии к имплантированному медицинскому устройству включает стадии имплантации медицинского устройства в организм человека или животного и применения антибактериального средства, содержащего оксазолидинон, или его фармацевтически приемлемую соль, к имплантированному медицинскому устройству.

Согласно еще одному аспекту данного изобретения способ ингибирования бактериальной адгезии к имплантированному медицинскому устройству включает стадии введения пациенту, нуждающемуся в имплантации медицинского устройства, фармацевтической композиции, содержащей оксазолидинон или его фармацевтически приемлемую соль, и имплантации данному пациенту медицинского устройства.

Согласно еще одному аспекту данного изобретения устойчивое к микробной адгезии медицинское устройство для применения в организме человека или животного включает эффективное количество линезолида или его фармацевтически приемлемой соли.

Эти и другие аспекты и преимущества данного изобретения будут ясны из следующего подробного описания.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1 представлен график, иллюстрирующий эффекты субингибирующих концентраций (меньше минимальной ингибирующей концентрации) линезолида и ванкомицина на адгезию S. aureus UC-20205 к полистирольным поверхностям.

На фиг. 2 представлен график, иллюстрирующий эффекты субингибирующих концентраций линезолида и ванкомицина на адгезию S. aureus UC-20206 к полистирольным поверхностям.

На фиг. 3 представлен график, иллюстрирующий эффекты субингибирующих концентраций линезолида и ванкомицина на адгезию S. epidermidis UC-20207 к полистирольным поверхностям.

На фиг. 4 представлен график, иллюстрирующий эффекты субингибирующих концентраций линезолида и ванкомицина на адгезию S. epidermidis UC-20208 к полистирольным поверхностям.

На фиг. 5 представлен график, иллюстрирующий эффекты субингибирующих концентраций линезолида и ванкомицина на адгезию S. epidermidis RP62A к полистирольным поверхностям.

На фиг. 6A-D представлены фотографии, полученные на сканирующем электронном микроскопе, показывающие микроколонии S. aureus UC-20205, прилипшие к полистирольной поверхности: (A) неинфицированный контроль; (B) инфицированный/необработанный контроль; (C) инфицированная культура, обработанная линезолидом при одной четверти МИК и (D) инфицированная культура, обработанная ванкомицином при одной четверти МИК.

На фиг. 7A-D представлены фотографии, полученные на сканирующем электронном микроскопе, показывающие микроколонии S. epidermidis RP62A, прилипшие к полистирольной поверхности: (A) не инфицированный контроль; (B) инфицированный/необработанный контроль; (C) инфицированная культура, обработанная линезолидом при одной четверти МИК и (D) инфицированная культура, обработанная ванкомицином при одной четверти МИК.

На фиг. 8A-F показаны графики ингибирующих эффектов профилактической и отсроченной обработки линезолидом или ванкомицином при терапевтических (равных или больших МИК) и субтерапевтических (одна вторая МИК) концентрациях на адгезию стафилококка к полистирольным плоскостям, как подробно показано в таблице 4.

На фиг. 9A-F показаны графики ингибирующих эффектов профилактической и отсроченной обработки линезолидом или ванкомицином на уровнях МИК и субМИК (одна вторая МИК) на адгезию стафилококка к полистирольным плоскостям, как подробно показано в таблице 5. Существенные отличия от контроля указаны звездочкой (*=p<0,05).

На фиг. 10A-D показаны фотографии, полученные на сканирующем электронном микроскопе, демонстрирующие эффекты профилактической (0 ч) и отсроченных (2, 4 и 6 ч) обработок линезолидом при 1 мкг/мл (одна вторая МИК) колоний S. epidermidis RP62A, прилипших к поверхности из полистирола.

На фиг. 11A-D показаны фотографии, полученные на сканирующем электронном микроскопе, демонстрирующие эффекты профилактической (0 ч) и отсроченных (2, 4 и 6 ч) обработок ванкомицином при 1 мкг/мл (одна вторая МИК) колоний S. epidermidis RP62A, прилипших к поверхности из полистирола.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Оксазолидиноны представляют класс синтетических антибактериальных агентов. Оксазолидиноновые соединения известны в данной области. В некоторых вариантах оксазолидиноновые соединения могут иметь формулу:

или его фармацевтически приемлемой соли, где:

А обозначает структуру i, ii, iii или iv

В выбран из циклоалкила, замещенного циклоалкила, циклоалкенила, замещенного циклоалкенила, арила, замещенного арила, het и замещенного het, или

В и один R3 вместе с атомами углерода фенила, к которым присоединены В и один R3, образуют het, причем het необязательно является замещенным het;

Х обозначает группу, выбранную из -СН2-NH-C(O)-R4, -СН2-R4 и -СН2-Y-R4;

каждый Y обозначает O, S или -NH-;

каждый R1 и R2 независимо выбран из Н, -ОН, амино, алкила, алкокси, алкенила, замещенного амино, замещенного алкила, замещенного алкокси и замещенного алкенила;

каждый R3 независимо выбран из Н, алкила, алкокси, амино, NO2, CN, галогена, замещенного алкила, замещенного алкокси и замещенного амино; и

каждый R4 независимо выбран из Н, -ОН, амино, алкила, замещенного алкила, алкокси, замещенного алкокси, алкенила, замещенного алкенила, циклоалкила, замещенного циклоалкила, циклоалкенила, замещенного циклоалкенила, het, замещенного het, арила и замещенного арила.

Использованы следующие определения, если не определено по-другому.

Содержание атомов углерода различных углеродсодержащих фрагментов указано префиксом, обозначающим минимальное и максимальное количество атомов углерода в данном фрагменте, например, префикс Сi-j обозначает фрагмент с содержанием атомов углерода от "i" до "j" включительно. Таким образом, например, C1-7 алкил обозначает алкил с 1-7 атомами углерода, включительно.

Термин "галоген" относится к атому галогена, выбранному из Cl, Br, I и F.

Термин "алкил" относится к фрагментам как с линейной, так и разветвленной цепью. До тех пор пока специально не указано по-другому, алкильные фрагменты включают от 1 до 6 атомов углерода.

Термин "алкенил" относится к фрагментам с линейной и разветвленной цепью, содержащим, по меньшей мере, одну группу -С=C-. До тех пор пока специально не указано по-другому, алкенильные фрагменты включают от 1 до 6 атомов углерода.

Термин "алкинил" обозначает фрагменты с линейной и разветвленной цепью, содержащие, по меньшей мере, одну группу -CC-. До тех пор пока специально не указано по-другому, алкинильные фрагменты включают от 1 до 6 атомов углерода.

Термин "алкокси" обозначает -O-алкильные группы.

Термин "циклоалкил" обозначает циклический алкильный фрагмент. До тех пор пока специально не указано по-другому, циклоалкильные фрагменты включают от 3 до 9 атомов углерода.

Термин "циклоалкенил" обозначает циклический алкенильный фрагмент. До тех пор пока специально не указано по-другому, циклоалкильные фрагменты включают от 3 до 9 атомов углерода и, по меньшей мере, одну группу -С=C- в циклическом кольце.

Термин "амино" обозначает -NH2.

Термин "арил" обозначает фенил и нафтил.

Термин "het" обозначает моно- или бициклические системы колец, содержащие, по меньшей мере, один гетероатом, выбранный из О, S и N. Каждое моноциклическое кольцо может быть ароматическим, насыщенным или частично ненасыщенным. Бициклическая система колец может включать моноциклическое кольцо, содержащее, по меньшей мере, один гетероатом, конденсированное с циклоалкильной или арильной группой. Бициклическая система колец может также включать моноциклическое кольцо, содержащее, по меньшей мере, один гетероатом, конденсированное с другим het, моноциклической кольцевой системой.

Примеры "het" включают, но не ограничены, пиридин, тиофен, фуран, пиразолин, пиримидин, 2-пиридил, 3-пиридил, 4-пиридил, 2-пиримидинил, 4-пиримидинил, 5-пиримидинил, 3-пиридазинил, 4-пиридазинил, 3-пиразинил, 4-оксо-2-имидазолил, 2-имидазолил, 4-имидазолил, 3-изоксазолил, 4-изоксазолил, 5-изоксазолил, 3-пиразолил, 4-пиразолил, 5-пиразолил, 2-оксазолил, 4-оксазолил, 4-оксо-2-оксазолил, 5-оксазолил, 1,2,3-оксатиазол, 1,2,3-оксадиазол, 1,2,4-оксадиазол, 1,2,5-оксадиазол, 1,3,4-оксадиазол, 2-тиазолил, 4-тиазолил, 5-тиазолил, 3-изотиазол, 4-изотиазол, 5-изотиазол, 2-фуранил, 3-фуранил, 2-тиенил, 3-тиенил, 2-пирролил, 3-пирролил, 3-изопирролил, 4-изопирролил, 5-изопирролил, 1,2,3,-оксатиазол-1-оксид, 1,2,4-оксадиазол-3-ил, 1,2,4-оксадиазол-5-ил, 5-оксо-1,2,4-оксадиазол-3-ил, 1,2,4-тиадиазол-3-ил, 1,2,4-тиадиазол-5-ил, 3-оксо-1,2,4-тиадиазол-5-ил, 1,3,4-тиадиазол-5-ил, 2-оксо-1,3,4-тиадиазол-5-ил, 1,2,4-триазол-3-ил, 1,2,4-триазол-5-ил, 1,2,3,4-тетразол-5-ил, 5-оксазолил, 3-изотиазолил, 4-изотиазолил, 5-изотиазолил, 1,3,4,-оксадиазол, 4-оксо-2-тиазолинил, 5-метил-1,3,4-тиадиазол-2-ил, тиазолдион, 1,2,3,4-тиатриазоле, 1,2,4-дитиазолон, фталимид, хинолинил, морфолинил, бензоксазоил, диазинил, триазинил, хиноксалинил, нафтиридинил, азетидинил, пирролидинил, гидантоинил, оксатиоланил, диоксоланил, имидазолидинил и азабицикло[2.2.1]гептил.

Термин "замещенный алкил" обозначает алкильный фрагмент, включающий 1-4 заместителя, выбранных из галогена, het, циклоалкила, циклоалкенила, арила, -OQ10, -SQ10, -S(O)2Q10, -S(O)Q10, -OS(О)2Q10, -C(=NQ10)Q10, -SC(O)Q10, -NQ10Q10, -C(O)Q10, -C(S)Q10, -C(O)OQ10, -OC(О)Q10, -C(О)NQ10Q10, -C(O)C(Q16)2OC(O)Q10, -CN, =O, =S, -NQ10C(O)Q10, -NQ10C(О)NQ10Q10, -S(О)2NQ10Q10, -NQ10S(O)2Q10, -NQ10S(O)Q10, -NQ10SQ10, -NO2 и -SNQ10Q10-. Причем каждый из het, циклоалкила, циклоалкенила и арила необязательно замещен 1-4 заместителями, независимо выбранными из галогена и Q15.

Термин "замещенный арил" обозначает арильный фрагмент, имеющий 1-3 заместителя, выбранных из -OQ10,-SQ10, -S(O)2Q10, -S(O)Q10, -OS(O)2Q10, -C(=NQ10)Q10, -SC(О)Q10, -NQ10Q10, -C(О)Q10, -C(S)Q10, -C(O)OQ10, -OC(O)Q10, -C(О)NQ10Q10, -C(О)C(Q16)2OC(О)Q10, -CN, -NQ10C(O)Q10, -NQ10C(O)NQ10Q10, -S(О)2NQ10Q10, -NQ10S(О)2Q10, -NQ10S(O)Q10, -NQ10SQ10, -NO2, -SNQ10Q10, алкила, замещенного алкила, het, галогена, циклоалкила, циклоалкенила и арила. Причем het, циклоалкил, циклоалкенил и арил необязательно замещены 1-3 заместителями, выбранными из галогена и Q15.

Термин "замещенный het" обозначает фрагмент het, включающий 1-4 заместителя, выбранные из -OQ10, -SQ10, -S(O)2Q10, -S(O)Q10, -OS(O)2Q10, -C(=NQ10)Q10, -SC(O)Q10, -NQ10Q10, -C(О)Q10, -C(S)Q10, -C(О)OQ10, -OC(O)Q10, -C(O)NQ10Q10, -C(O)C(Q16)2OC(O)Q10, -CN, =О, =S, -NQ10C(О)Q10, -NQ10C(О)NQ10Q10, -S(О)2NQ10Q10, -NQ10S(О)2Q10, -NQ]0S(O)Q10, -NQ10SQ10, -NO2, -SNQ]0Q]0, алкила, замещенного алкила, het, галогена, циклоалкила, циклоалкенила и арила. Причем het, циклоалкил, циклоалкенил и арил необязательно замещены 1-3 заместителями, выбранными из галогена и Q15.

Термин "замещенный алкенил" обозначает алкенильный фрагмент, включающий 1-3 заместителя: -OQ10, -SQ10, -S(О)2Q10, -S(О)Q10, -OS(O)2Q10, -C(=NQ10)Q10, -SC(O)Q10, -NQ10Q10, -C(О)Q10, -C(S)Q10, -C(О)OQ10, -OC(O)Q10, -C(О)NQ10Q10, -C(О)C(Q16)2OC(О)Q10, -CN, -O, -S, -NQ10C(O)Q10, -NQ10C(O)NQ10Q10, -S(О)2NQ10Q10, -NQ10S(О)2Q10, -NQ10S(O)Q10, -NQ10SQ10, -NO2, -SNQ10Q10, алкила, замещенного алкила, het, галогена, циклоалкила, циклоалкенила и арила. Причем het, циклоалкил, циклоалкенил и арил необязательно замещены 1-3 заместителями, выбранными из галогена и Q15.

Термин "замещенный алкокси" обозначает алкокси-фрагмент, включающий 1-3 заместителя: -OQ10, -SQ10, -S(О)2Q10, -S(О)Q10, -OS(O)2Q10, -C(=NQ10)Q10, -SC(O)Q10, -NQ10Q10, -C(О)Q10, -C(S)Q10, -C(О)OQ10, -OC(O)Q10, -C(О)NQ10Q10, -C(О)C(Q16)2OC(О)Q10, -CN, =О, =S, -NQ10C(O)Q10, -NQ10C(O)NQ10Q10, -S(О)2NQ10Q10, -NQ10S(О)2Q10, -NQ10S(O)Q10, -NQ10SQ10, -NO2, -SNQ10Q10, алкила, замещенного алкила, het, галогена, циклоалкила, циклоалкенила и арила. Причем het, циклоалкил, циклоалкенил и арил необязательно замещены 1-3 заместителями, выбранными из галогена и Q15.

Термин "замещенный циклоалкенил" обозначает циклоалкенильный фрагмент, включающий 1-3 заместителя: -OQ10, -SQ10, -S(O)2Q10, -S(O)Q10, -OS(O)2Q10, -C(=NQ10)Q10, -SC(O)Q10, -NQ10Q10, -C(О)Q10, -C(S)Q10, -C(О)OQ10, -OC(O)Q10, -C(O)NQ10Q10, -C(О)C(Q]6)2OC(О)Q10, -CN, -О, =S, -NQ10C(O)Q10, -NQ10C(O)NQ10Q10, -S(O)2NQ10Q10, -NQ10S(O)2Q10, -NQ10S(О)Q10, -NQ10SQ10, -NO2, -SNQ10Q10, алкила, замещенного алкила, het, галогена, циклоалкила, циклоалкенила и арила. Причем het, циклоалкил, циклоалкенил и арил необязательно замещены 1-3 заместителями, выбранными из галогена и Q15.

Термин "замещенный амино" обозначает амино-фрагмент, в котором один или оба аминных водорода замещены группой, выбранной из -OQ10, -SQ10, -S(O)2Q10, -S(О)Q10, -OS(О)2Q10, -C(=NQ10)Q10, -SC(O)Q10, -NQ10Q10, -C(O)Q10, -C(S)Q10, -C(О)OQ10, -OC(О)Q10, -C(О)NQ10Q10, -C(O)C(Q16)2OC(O)Q10, -CN, O, =S, -NQ10C(О)Q10, -NQ10C(О)NQ10Q10, -S(O)2NQ10Q10, -NQ10S(O)2Q10, -NQ10S(O)Q10, -NQ10SQ10, -NO2, -SNQ10Q10, алкила, замещенного алкила, het, галогена, циклоалкила, циклоалкенила и арила. Причем het, циклоалкил, циклоалкенил и арил необязательно замещены 1-3 заместителями, выбранными из галогена и Q15.

Каждый Q10 независимо выбран из -H, алкила, циклоалкила, het, циклоалкенила и арила. Причем het, циклоалкил, циклоалкенил и арил необязательно замещены 1-3 заместителями, выбранными из галогена и Q13.

Каждый Q11 независимо выбран из -H, галогена, алкила, арила, циклоалкила и het. Причем алкил, арил, циклоалкил и het необязательно замещены 1-3 заместителями, независимо выбранными из галогена, -NO2, -CN, =S, =O и Q14.

Каждый Q13 независимо выбран из Q11, -OQ11, -SQ11, -S(O)2Q11, -S(O)Q11, -OS(О)2Q11, -C(=NQ11)Q11, -SC(О)Q11, -NQ11Q11, -C(O)Q11, -C(S)Q11, -C(O)OQ11, -OC(О)Q11, -C(О)NQ11Q11, -C(O)C(Q16)2OC(O)Q10, -CN, =O, =S, -NQ11C(O)Q11, -NQ11C(О)NQ11Q11, -S(O)2NQ11Q11, -NQnS(О)2Q11, -NQ11S(O)Q11, -NQ11SQ11, -NO2 и -SNQ11Q11.

Каждый Q14 обозначает -H или заместитель, выбранный из алкила, циклоалкила, циклоалкенила, фенила или нафтила, каждый необязательно замещен 1-4 заместителями, независимо выбранными из -F, -Cl, -Br, -I, -OQ16, -SQ16, -S(O)2Q16, -S(O)Q16, -OS(O)2Q16, -NQ16Q16, -C(O)Q16, -C(S)Q16, -C(О)OQ16, -NO2, -C(О)NQ16Q16, -CN, -NQ16C(O)Q16, -NQ16C(O)NQ16Q16, -S(O)2NQ16Q16 и -NQi6S(О)2Q16. Причем алкил, циклоалкил и циклоалкенил необязательно дополнительно замещены =O или =S.

Каждый Q15 обозначает алкил, циклоалкил, циклоалкенил, het, фенил или нафтил, каждый необязательно замещен 1-4 заместителями, независимо выбранными из -F,-Cl, -Br, -I, -OQ16, -SQ16, -S(О)2Q]6, -S(O)Q16, -OS(O)2Q16, -C(=NQ16)Q16, -SC(O)Q16, -NQ16Q16, -C(О)Q16, -C(S)Q16, -C(O)OQ]6, -OC(O)Q16, -C(O)NQ16Q16, -C(О)C(Q16)2OC(О)Q16, -CN, -NQ16C(О)Q16, -NQ16C(O)NQ16Q16, -S(O)2NQ16Q16, -NQ16S(O)2Q16, -NQ16S(O)Q16, -NQ16SQ16, -NO2 и -SNQ16Q16. Причем алкил, циклоалкил и циклоалкенил необязательно замещены =O или =S.

Каждый Q16 независимо выбран из -H, алкила и циклоалкила. Причем алкил и циклоалкил необязательно включают 1-3 атома галогена.

Другие примеры оксазолидиноновых соединений и способов получения оксазолидиноновых соединений можно найти, например, в следующих публикациях, которые во всей своей полноте включены здесь в виде ссылок.

Патенты США №№ 5225565; 5182403; 5164510; 5247090; 5231188; 5565571; 5547950; 5952324; 5968962; 5688792; 6069160; 6239152; 5792765; 4705799; 5043443; 5652238; 5827857; 5529998; 5684023; 5627181; 5698574; 6166056; 6051716; 6043266; 6313307 и 5523403.

PCT заявки и публикации PCT/US93/04850, WO94/01110; PCT/US94/08904, WO95/07271; PCT/US95/02972, WO95/25106; PCT/US95/10992, WO96/13502; PCT/US96/05202, WO96/35691; PCT/US96/12766; PCT/US96/13726; PCT/US96/14135; PCT/US96/17120; PCT/US96/19149; PCT/US97/01970; PCT/US95/12751, WO96/15130, PCT/US96/00718, WO96/23788, WO98/54161, WO99/29688, WO97/30995, WO97/09328, WO95/07271, WO00/21960, WO01/40236, WO99/64417 и WO01/81350.

В некоторых вариантах оксазолидинон может иметь следующую формулу:

Оксазолидиноны, подходящие для данного изобретения, обычно являются грамположительными антибактериальными средствами. Некоторые оксазолидиноновые соединения, полезные в данном изобретении, описаны в патенте США № 5688792, полное раскрытие которого включено здесь посредствам ссылки. Другие подходящие оксазолидиноновые соединения имеют следующую формулу II:

или представляют их фармацевтически приемлемые соли, где

n равно 0, 1 или 2;

R выбран из группы, включающей:

водород;

C1-C8 алкил, необязательно замещенный одним или несколькими заместителями, выбранными из группы, включающей F, Cl, гидрокси, C1-C8 алкокси, C1-C8 ацилокси или CH2-фенил;

C3-C6 циклоалкил;

амино;

C1-C8 алкиламино;

C1-C8 диалкиламино или

C1-C8 алкокси;

R5 в каждом случае независимо выбран из группы, состоящей из H, CH3, CN, CO2H, CO2R и (CH2)mR10, где m равно 1 или 2;

R6 в каждом случае независимо выбран из группы, состоящей из H, F и Cl;

R7 представляет собой H, исключая случаи, когда R1 является CH3, тогда R7 представляет собой H или CH3;

R10 выбран из группы, состоящей из H, OH, OR, OCOR, NH2, NHCOR и N(R11)2; и

R11 в каждом случае независимо выбран из группы, включающей H, пара-толуолсульфонил и C1-C4 алкил, необязательно замещенный одним или несколькими заместителями, выбранными из группы, состоящей из Cl, F, OH, C1-C8 алкокси, амино, C1-C8 алкиламино и C1-C8 диалкиламино.

Используемое здесь выражение "фармацевтически приемлемые соли" относится к аддитивным солям органических и неорганических кислот исходного соединения. Примерами солей, полезных для данного изобретения, являются, например, гидрохлорид, гидробромид, гидройодид, сульфат, фосфат, ацетат, пропионат, лактат, мезилат, малеат, малат, сукцинат, тартрат, цитрат, 2-гидроксиэтилсульфат, фумарат и подобные.

Одно подходящее оксазолидиноновое соединение, имеющее структуру:

,

имеет название по IUPAC (S)-N-[[3-[3-фтор-4-(4-морфолин)фенил]-2-оксо-5-оксазолидинил]метил]ацетамид. Данное соединение широко известно как линезолид и демонстрирует особо эффективную антибактериальную активность.

Соединение линезолид можно получить любым подходящим способом, включая, например, общие способы, описанные в патенте США № 5688792. Кратко говоря, гетероарильный заместитель, например оксазиновая или тиазиновая часть, взаимодействует с функционализованным нитробензолом в присутствии подходящего основания, предпочтительно в органическом растворителе, таком как ацетонитрил, тетрагидрофуран или этилацетат. Нитрогруппу восстанавливают либо гидрированием, либо применяя подходящий восстановитель, например, водный гидросульфит натрия, получая анило-соединение. Анило-соединение превращают в его бензил- или метил-уретановое производное, депротонируют литиевым реагентом, получая подходящий литий-содержащий промежуточный продукт, и обрабатывают (-)-(R)-глицидилбутиратом, получая сырое оксазолидиноновое соединение. Подходящий способ получения линезолида более подробно описан в примере 5 патента США № 5688792.

Согласно одному варианту данного изобретения способ получения устойчивого к инфицированию медицинского устройства для применения в организме человека или животного включает стадии получения медицинского устройства и введения в данное медицинское устройство эффективного количества противомикробного средства, содержащего оксазолидиноновое соединение.

Оксазолидиноновое соединение может представлять собой соединение формулы I, которое описано выше. Оксазолидиноновое соединение может быть линезолидом или его фармацевтически приемлемой солью.

Медицинское устройство может представлять собой, например, шовный материал, ортопедическое приспособление, стент, катетер, проволочный направитель, шунт (например, гемодиализный шунт или цереброспинальный шунт), протез (например, протез сердечного клапана или протез сустава), кардиостимулятор, нейронный стимулятор и трансплантат сосуда. Медицинское устройство может быть изготовлено из биоматериалов (например, биологически совместимых материалов, известных специалистам в данной области, таких как металлы, полимерные или керамические материалы). Противомикробное средство можно включить в медицинское устройство согласно способам, известным специалистам в данной области, таким как погружение медицинского устройства в раствор (например, водный раствор), содержащий противомикробное средство, или, например, способами, описанными в одной из следующих ссылок: патент США № 3987797; патент США № 4563485; патент США № 4875479; патент США № 4946870; патент США № 5306289; патент США № 5584877; патент США № 5607685; патент США № 5788979; патент США № 6143037; патент США № 6238687; WO 00/56283 и WO 01/28601, раскрытие которых включено здесь в виде ссылок. Медицинское устройство может включать полимерный материал, и можно провести совместную экструзию данного полимерного материала с антибактериальным средством. Способ получения устойчивого к инфицированию медицинского устройства может также включать стадию нагревания данного медицинского устройства до температуры от примерно 100 до примерно 121°С. Способ может включать стадию нагревания устройства в автоклаве согласно способам, известным специалистам в данной области (например, нагревание устройства до температуры от примерно 100 до примерно 121°С при давлении от примерно 15 до примерно 20 фунт/дюйм2 (от примерно 1,055 до примерно 1,406 кг/см2) в течение примерно 15-20 мин). Обнаружено, что линезолид (оксазолидинон) в противоположность другим антибактериальным соединениям неожиданно является устойчивым к термическому разложению при температурах, по меньшей мере, до приблизительно 121°С.

Для лечения микробных инфекций обычно вводят эффективное количество оксазолидинонового соединения при терапевтической дозе в диапазоне от примерно 0,1 до примерно 100, более предпочтительно от примерно 3,0 до примерно 50 мг/кг веса тела/день. Понятно, что дозировка может варьироваться в зависимости от потребностей пациента, тяжести подлежащей лечению бактериальной инфекции и конкретного применяемого соединения. Можно применять дозировки, обеспечивающие содержание в крови примерно 2-4-кратной минимальной ингибирующей концентрации (МИК) антибактериального средства. Конечно, МИК конкретного противомикробного агента различна для каждого бактериального вида. Благоприятным является то, что оксазолидиноновые соединения неожиданно демонстрируют антиадгезионные свойства при концентрациях значительно ниже МИК. В результате оксазолидиноновые соединения после разового введения дозы ингибируют бактериальную адгезию в течение более длительных периодов времени, чем другие противомикробные средства, которые демонстрируют антиадгезионные свойства при концентрациях, равных или больших, чем МИК таких агентов. Неожиданные свойства оксазолидиноновых соединений особо полезны при ингибировании бактериальной адгезии на поверхностях медицинских устройств, которые помещают в организм человека или животного в области, в которых имеет место меньшая концентрация противомикробного средства по сравнению с другими областями тела, например, в области с низким или слабым кровообращением, или с более высокими вариациями концентрации противомикробного средства после дозирования. Благодаря данным неожиданным свойствам оксазолидиноновых соединений концентрация оксазолидинонового соединения в организме человека или животного около медицинского устройства остается эффективной для действия антиадгезионного средства и составляет величину меньше МИК. Как описано ниже в примерах, обнаружено, что линезолид является неожиданно эффективным для предотвращения бактериальной адгезии на поверхностях биологически-совместимых материалов при концентрациях ниже МИК, даже при концентрациях ниже одной четверти МИК. Данные материалы, если имплантированы, могут быть эффективны для предотвращения бактериальной адгезии при субингибирующих концентрациях. Предотвращение бактериальной адгезии способствует эффективному лечению бактериальных инфекций, в особенности таких, которые происходят на или рядом с местом имплантации медицинских устройств, разрушая типичный бактериальный патогенез, например, адгезию бактерий к биоматериалам с образованием многоклеточного окружения, которое предохраняет бактерии от противомикробных средств, и защите носителя.

Как правило, периодичность, с которой вводят регулярные дозы эффективного количества фармацевтической композиции, содержащей один или более оксазолидиноновых соединений с целью ингибирования бактериальной адгезии, следует регулировать для поддержания концентрации данной фармацевтической композиции у пациента рядом с имплантированным устройством примерно на уровне или выше половины МИК для данной фармацевтической композиции или на уровне или выше одной четверти МИК для данной фармацевтической композиции. Композиции, включающие антибактериальные средства, которые не имеют неожиданных антиадгезионных свойств при концентрациях оксазолидиноновых соединений ниже МИК, требуют более высоких эффективных количеств активного средства и/или более частого введения дозы.

Согласно другому варианту способ ингибирования адгезии бактерий к медицинскому устройству включает стадии получения антибактериального агента, содержащего линезолид или его фармацевтически приемлемую соль, и введения данного антибактериального средства в медицинское устройство. Антибактериальное средство можно включить в медицинское устройство согласно способам, известным специалистам в данной области, таким как погружение медицинского устройства в раствор (например, водный раствор), содержащий противомикробное средство. Данный способ ингибирования адгезии бактерий к медицинскому устройству может включать стадию нагревания данного медицинского устройства до температуры от примерно 100 до примерно 121°С. Например, устройство перед применением можно нагревать в автоклаве с целью стерилизации согласно способам, известным специалистам в данной области (например, нагревая устройство до температуры от примерно 100 до примерно 121°С при давлении от примерно 15 до примерно 20 фунт/дюйм2 (от примерно 1,055 до примерно 1,406 кг/см2) в течение примерно 15-20 мин). Количество оксазолидинонового соединения в организме человека или животного или около медицинского устройства, которое является эффективным для антиадгезионного средства, может быть меньше МИК.

Согласно еще одному варианту способ ингибирования бактериальной адгезии к имплантированному медицинскому устройству включает стадии имплантации медицинского устройства в организм человека или животного и доставку к имплантированному медицинскому устройству антибактериального агента, содержащего оксазолидинон или его фармацевтически приемлемую соль. (Например, антибактериальное средство можно применять, приводя раствор, пасту, гель или гранулы, содержащие антибактериальное средство, в контакт с устройством после его имплантации.)

Согласно еще одному варианту способ ингибирования бактериальной адгезии к имплантированному медицинскому устройству включает стадии введения фармацевтической композиции, содержащей оксазолидинон или его фармацевтически приемлемую соль, пациенту, нуждающемуся в имплантированном медицинском устройстве, и имплантации медицинского устройства пациенту. Фармацевтические композиции можно вводить согласно способам, известным специалистам в данной области, таким как пероральное введение или внутривенное введение. Данные композиции можно вводить до, во время и/или после хирургической операции по имплантации медицинского устройства. Как описано выше, для лечения микробных инфекций эффективное количество оксазолидинонового соединения, такого как линезолид, вводят при обычной терапевтической дозировке. Благоприятным является то, что оксазолидиноновые соединения неожиданно демонстрируют антиадгезионные свойства при концентрациях значительно ниже МИК. В результате оксазолидиноновые соединения после разового введения дозы ингибируют бактериальную адгезию в течение более длительных периодов времени чем другие противомикробные средства, которые демонстрируют антиадгезионные свойства при концентрациях, равных или больших, чем МИК.

Согласно еще одному варианту устойчивое к микробной адгезии медицинское устройство для применения в организме человека или животного включает линезолид или его фармацевтически приемлемую соль. Концентрация линезолида в устройстве меняется. Обычно концентрацию линезолида в устройстве устанавливают на уровне, достаточном для создания концентрации линезолида в организме человека или животного около медицинского устройства, которая составляет, по меньшей мере, половину МИК или, по меньшей мере, одну четверть МИК.

Для разработки устойчивых к инфекциям медицинских устройств и способов авторы сравнивали эффекты линезолида и ванкомицина на адгезию коагулаза-положительных и -отрицательных стафилококков к полистирольным поверхностям. Ванкомицин, гликопептид, который ингибирует синтез клеточных стенок, выбран в качестве сравнительного агента, так как его часто применяют в качестве профилактического агента при имплантации протезных устройств. В качестве прямого измерения адгезии применяют модифицированную методику анализа на микротитровальном планшете, описанную Christensen и др., J. Clin. Microbiol. 22(6): 996-1006 (1985). Данная методика основана на том, что бактериальные клетки прилипают к полимерному материалу и друг к другу, образуя макроколонию, плотность которой измеряют спектрофотометрически после окрашивания красителем кристаллическим фиолетовым. Надежность данного исследования оценивают при помощи прилипающих и не прилипающих стафилококковых штаммов сравнения и подтверждают анализом изображения с применением сканирующей электронной микроскопии.

Важность адгезии к пластикам, как модельного показателя вирулентности, подкреплена некоторыми клиническими исследованиями (см. работы Davenport и др., J. Infect. Dis. 153(2): 332-339 (1986); Deighton и др., J. Clin. Microbiol. 28(11): 2442-2447 (1990)). Стафилококковые штаммы, которые прилипают к биоматериалам и развиваются на них, чаще связаны со значительным инфицированием, чем не прилипающие штаммы.

Многие разнообразные методики используются для изучения эффектов противомикробных средств на бактериальное прилипание, образование биологических пленок и коммуникацию клетка-клетка. В широком смысле способы можно разделить на две группы, статические и динамические. Описанное здесь исследование адгезии является статической моделью, с использованием в качестве подложки полистирол. (При динамическом подходе используют ламинарный поток бактериальной суспензии через перфузионную камеру с каналами, содержащими исследуемые материалы.) В данной статической модели фотографии сравнительного штамма RP62A, полученные на сканирующем электронном микроскопе, показывают многоклеточные макроколонии со структурами типа столбиков, разделенными пространствами, заполненными водой. См. фиг. 7A-D. Данное обнаружение показательно для присутствия биологической пленки. Статические модели позволяют провести быстрое тестирование нескольких клинических изолятов относительно набора противомикробных средств.

На данной модели показано, что линезолид неожиданно является эффективным для профилактики адгезии и образования колоний стафилококков при субтерапевтических концентрациях (то есть концентрациях меньше минимальной ингибирующей концентрации (МИК)). Приведенные ниже прим