Термопластичная полимерная композиция, содержащая гиперразветвленный полимер, и изготовляемые из этой композиции изделия

Иллюстрации

Показать все

Изобретение относится к термопластичной полимерной композиции, к изделиям из нее, и к применению гиперразветвленного (со)полимера. Композиция содержит матрицу М, включающую, по меньшей мере, один термопластичный (со)полимер и, по меньшей мере, одну добавку. Добавка представляет собой функционализированный гиперразветвленный (со)полимер, который применяют в качестве модификатора реологических свойств. Функционализированный гиперразветвленный (со)полимер выбирают из группы, включающей сложные полиэфиры, сложные полиэфирамиды, полиамиды. По меньшей мере, 50% концевых групп гиперразветвленного (со)полимера функционализированы радикалом R2, где R2 означает замещенный или нет углеводородный радикал силиконового типа, линейный или разветвленный алкил, ароматический, арилалкильный, алкиларильный или циклоалифатический радикал, который может включать одну или несколько ненасыщенных связей и/или один или несколько гетероатомов. Из композиции получают изделия путем литья, литья под давлением, литья под давлением с раздувом, экструзии с раздувом, экструзии или прядения. Изобретение позволяет повысить реологические и механические свойства композиции. 3 н. и 19 з.п. ф-лы, 9 табл., 3 ил.

Реферат

Изобретение относится к области термопластичных полимерных композиций, содержащих матрицу из термопластичного полимера и, по меньшей мере, одну добавку, являющуюся модификатором реологических свойств.

В смысле данного контекста, термин "полимер" означает как гомополимер, так и также сополимер.

Термопластичные полимеры представляют собой исходные материалы, которые путем литья, литья под давлением, литья под давлением с раздувом, экструзии, экструзии с раздувом или прядения могут быть превращены, в частности, в многочисленные изделия, такие как получаемые путем раздува, экструзии или литья детали (например, для кузова), нити, волокна или пленки и т.д.

Существуют, по меньшей мере, два главных условия в случае всех этих фильер для превращения термопластичного полимера.

Первым из этих условий является то, что используемые термопластичные полимеры должны характеризоваться, в расплавленном состоянии, вязкостью или реологическими свойствами, совместимыми с вышеуказанными способами формования. Эти термопластичные полимеры должны быть в достаточной степени текучими в расплавленном состоянии для того, чтобы их можно было легко и быстро направлять и манипулировать с ними в некоторых формовочных машинах.

Второе условие, имеющее значение для композиций на основе термопластичных полимеров, связано с механическими свойствами, которыми они должны обладать после плавления, формования и отверждения путем охлаждения. Этими механическими свойствами, в частности, являются ударная прочность, модуль упругости при изгибе, разрывающее напряжение при изгибе.

Кроме того, обычным для улучшения механических свойств термопластичных полимеров является добавление к ним упрочняющих наполнителей (волокон или нитей), как, например, минеральные наполнители, наполнители из стекла, из углерода, с целью получения композитных материалов.

Одной из технических проблем, имеющих значение в отношении этих двух условий: реологические свойства в расплавленном состоянии и механические свойства формованного и находящегося в отвержденном состоянии продукта, является то, что они априори являются противоречивыми.

Действительно, для снижения вязкости в расплавленном состоянии хорошо известно, что нужно выбирать термопластичные полимеры с небольшими молекулярными массами. Однако это преимущество в том, что касается реологии, оказывается в ущерб механическим свойствам формованного и отвержденного полимера.

Для того чтобы попытаться исправить это положение, также в обычной практике в матрицы из термопластичных полимеров вводят различные добавки, подходящие для модификации их реологических свойств в расплавленном состоянии. Эти добавки тем более полезны, когда полимеры включают упрочняющий наполнитель.

Дилемма, с которой сталкиваются в случае этих добавок, заключается в том, что они должны быть одновременно инертными или не реагирующими с матрицей, чтобы не вызывать значительных изменений химической структуры (как, например, сшивка), являясь полностью диспергируемыми в этой матрице для придания ей подобным образом требуемых функциональностей.

Однако первое требование отсутствия реакционной способности скорее вызывает стремление вернуться к молекулам добавок, несовместимым с таковыми матрицы, тогда как второе требование диспергируемости ориентирует специалиста скорее на использование добавок со структурой, совместимой с таковой матрицы.

Кроме того, модифицирующие реологию добавки должны обладать способностью улучшать свойства термопластичного полимера и подвергаться литью, инжекции или экструзии.

Поскольку речь идет о полиамидах, которые преимущественно представляют интерес в рамках настоящего изобретения, было предложено использовать гиперразветвленные полимеры и, в частности, гиперразветвленные сополиамиды в качестве являющихся модификаторами реологии добавок в матрицах из термопластичных полиамидов.

В заявке на патент Франции №2793252 описываются гиперразветвленные сополиамиды (РАНВ), например, типа таковых с концевыми карбоксильными группами, которые получают путем реакции сополиконденсации в расплаве 1,3,5-бензолтрикарбоновой кислоты (ВТС): молекула-"сердцевина" типа R1-B"3, где B" означает СООН; 5-аминоизофталевой кислоты (AIPA): молекула разветвления типа A-R-B2, где А означает NH2 и В означает СООН; и ε-капролактама (CL): разделитель типа A'-R'-B', где A' означает NH2 и B' означает СООН. Гиперразветвленные полимеры обычно имеют размер от нескольких нанометров до нескольких десятков нанометров. Эти гиперразветвленные полиамиды могут быть функционализированы, в частности, с помощью жирных цепей или гидрофобных и/или гидрофильных цепей в целях использования, например, в качестве модификатора поверхностных свойств линейных или разветвленных полимеров, предпочтительно полиамидов. Эти функциональности могут быть введены в гиперразветвленный полимер за счет введения в реакцию сополиконденсации в расплаве мономера типа R'''-A, представляющего собой агент обрыва цепи.

Согласно уровню техники одной из основных задач данного изобретения является получение добавки, представляющей собой модификатор реологических свойств термопластичного полимера, которая:

- является пригодной для регулируемой модификации реологических свойств термопластичной композиции, в частности вязкости в расплавленном состоянии (псевдоожижение), и это без ухудшения механических свойств формованного и отвержденного термопластичного полимера (ударная прочность);

- предпочтительно не реагирует с термопластичной, преимущественно полиамидной, матрицей, то есть неспособна вызывать изменения химической структуры термопластичной матрицы, выражающиеся, например, в уменьшениях молекулярной массы матрицы;

- предпочтительно является легко диспергируемой в этой матрице.

Другой задачей изобретения является получение термопластичной полимерной композиции, содержащей термопластичную матрицу и, по меньшей мере, одну добавку, выбираемую среди модификаторов реологических свойств в расплавленном состоянии, таким образом, чтобы композиция имела текучесть в расплавленном состоянии, адаптируемую к операциям литья и инжекции (полное заполнение формы), без ухудшения механических свойств и, в частности, ударной прочности.

Следующей задачей данного изобретения является получение термопластичной полимерной композиции, адаптируемой к различным способам формования в расплавленном состоянии, как литье под давлением, литье под давлением с раздувом, экструзия с раздувом, пленкообразование, экструзия, прядение, обладающей, кроме того, высокой механической прочностью и, в случае необходимости, хорошей прозрачностью (незначительная кристалличность).

Другой задачей изобретения является получение термопластичной полимерной композиции, обладающей реологическими (в расплавленном состоянии) и механическими свойствами, требуемыми в промышленности превращения пластиков, так, чтобы используемая для улучшения этих свойств добавка не была слишком дорогостоящей и нарушающей другие свойства термопластиков.

Еще одной задачей изобретения является получение представляющей собой гиперразветвленный полимер добавки, являющейся модификатором реологических свойств, пригодной для регулируемой и оптимизируемой модификации реологических свойств в расплавленном состоянии термопластичных полимерных композиций.

Следующей основной задачей изобретения является получение изделий, изготовляемых путем превращения (литье, литье под давлением, литье под давлением с раздувом, экструзия с раздувом, экструзия или прядение) композиции, такой, как определенная в случае вышеуказанных целей.

Эти задачи, в числе прочих, решают с помощью данного изобретения, которое основано на использовании в качестве являющейся модификатором реологических свойств в расплавленном состоянии добавки в виде специфических разветвленных полимеров.

Из этого следует, что данное изобретение относится, во-первых, к термопластичной полимерной композиции, отличающейся тем, что она содержит:

- матрицу М на основе, по меньшей мере, одного термопластичного полимера;

- и, по меньшей мере, одну, представляющую собой гиперразветвленный полимер добавку, являющуюся модификатором реологических свойств, включающую, по меньшей мере, один функционализированный, гиперразветвленный полимер, причем, по меньшей мере, 50% концевых групп этого гиперразветвленного полимера функционализированы радикалом R2 и R2 означает замещенный или нет углеводородный радикал силиконового типа, линейный или разветвленный алкил, ароматический, арилалкильный, алкиларильный или циклоалифатический радикал, который может включать одну или несколько ненасыщенных связей и/или один или несколько гетероатомов.

Под гиперразветвленным полимером понимают полимер разветвленной структуры, получаемый путем реакции полимеризации в присутствии соединений с функциональностью выше 2 и структура которого совершенно нерегулируема. Часто речь идет о статистических сополимерах. Гиперразветвленные полимеры могут быть получены, например, путем реакции, в частности, между многофункциональными мономерами, например трифункциональными и бифункциональными, причем каждый из мономеров содержит, по меньшей мере, две различные реакционноспособные при полимеризации функциональные группы.

Гиперразветвленный полимер согласно изобретению преимущественно выбирают из сложных полиэфиров, сложных полиэфирамидов и гиперразветвленных полиамидов.

Используемым в качестве добавки гиперразветвленным полимером согласно изобретению предпочтительно является гиперразветвленный полиамид, представляющий собой, по меньшей мере, один гиперразветвленный сополиамид типа таковых, получаемых путем реакции между:

- по меньшей мере, одним мономером следующей формулы (I):

в которой А означает реакционноспособную при полимеризации функциональную группу первого типа; В означает реакционноспособную при полимеризации функциональную группу второго типа и способную реагировать с А; R означает углеводородную группу, возможно включающую гетероатомы; и f означает общее число реакционноспособных функциональных групп В на мономер: f≥2, предпочтительно 2≤f≤10;

- в случае необходимости, по меньшей мере, одним бифункциональным мономером-"разделителем" следующей формулы (II):

или соответствующими лактамами,

в которой A', B', R' имеют такое же значение, как указанное выше, соответственно, для А, В, R в формуле (I);

- в случае необходимости, по меньшей мере, одним мономером-"сердцевиной" формулы (III):

в которой:

R1 означает замещенный или нет углеводородный радикал силиконового типа, линейного или разветвленного алкила, ароматического, алкиларильного, арилалкильного или циклоалифатического, который может включать ненасыщенные связи и/или гетероатомы;

В" означает реакционноспособную функциональную группу той же природы, как В или B';

n≥1, предпочтительно 1≤n≤100;

- и, по меньшей мере, одним мономером функционализации в качестве агента обрыва цепи, отвечающим формуле (IV):

в которой А" означает реакционноспособную функциональную группу той же природы, как А или A'.

Предпочтительно композиция согласно изобретению не содержит представляющих собой гиперразветвленный полимер добавок, вызывающих уменьшение молекулярной массы матрицы М выше или равное 7% по отношению к контрольной композиции, включающей такую же матрицу М без добавки гиперразветвленного полимера, причем измерение молекулярной массы осуществляют согласно определенному протоколу Р. Подробное описание протокола Р для определения молекулярной массы представлено в нижеприводимых примерах.

Согласно изобретению представляющая собой функционализированный гиперразветвленный полимер добавка, следовательно, преимущественно отличается тем, что пригодна для модификации реологических свойств термопластичной полимерной матрицы без нарушения ее структурной целостности и, в частности, без снижения значительным образом ее молекулярной массы. Это свидетельствует о том, что добавка, по-видимому, не реагирует с матрицей.

Согласно данному изобретению молекулярную массу определяют как максимум молекулярно-массового распределения полимерной матрицы с добавкой функционализированного гиперразветвленного полимера, по отношению к эквиваленту полистирола, путем гельпроникающей хроматографии (GPC) при детектировании с помощью рефрактометрии, как это указано в нижеприводимом подробно протоколе Р.

Измерение молекулярной массы осуществляют в случае анализируемой композиции и контрольной композиции, подвергнутых экструдированию, отверждению, затем, в случае необходимости, формованию в виде гранулятов.

Вышеуказанный протокол Р для определения молекулярной массы матрицы М в анализируемой композиции и в контрольной композиции включает экструзию, которая приводит к получению тростинок. Тростинки (предварительно разрезанные с получением гранулятов) затем подвергают собственно определению молекулярной массы. Протокол Р для определения молекулярной массы композиций согласно изобретению и контрольных композиций является следующим:

1/ Композиции на основе матрицы М и функционализированного гиперразветвленного полимера

Матрица М, в частности, из полиамида и функционализированный гиперразветвленный полимер находятся в размолотой или раздробленной форме в виде порошка, чешуек или гранулятов и затем их подвергают предварительному смешению. Смесь вводят в двухшнековый экструдер. Эту смесь расплавляют в экструдере при температуре Q примерно на 30°С выше температуры плавления Qплавления матрицы М. Гомогенизацию смеси матрицы и гиперразветвленного полимера, таким образом, осуществляют в течение 5 минут и на выходе из экструдера получают тростинки, переводимые затем в форму гранулятов.

Собственно определение молекулярной массы осуществляют при использовании гранулятов путем гельпроникающей хроматографии (GPC) в дихлорметане после дериватизации полиамида с помощью ангидрида трифторуксусной кислоты, по отношению к эталонам полистирола. Используемым способом детектирования является рефрактометрия.

2/ Контрольные композиции на основе матрицы М без добавки в виде гиперразветвленного полимера

Для каждой данной композиции на основе матрицы и гиперразветвленного полимера осуществляют определение молекулярной массы той же самой матрицы М в композиции, включающей матрицу М без добавки в виде гиперразветвленного полимера.

Способ осуществляют при использовании гранулятов полимерной матрицы, в частности, из полиамида, получаемых таким же образом, как указано в пункте 1 выше, с тем различием, что грануляты не содержат добавки в виде гиперразветвленного полимера.

Поскольку речь идет о композиции из М и функционализированного гиперразветвленного полимера согласно изобретению, можно заметить, что экструзия представляет собой средство, в числе других, смешения в расплавленном состоянии компонентов М и функционализированного гиперразветвленного полимера.

Радикал R2 функционализации гиперразветвленного полимера предпочтительно не реагирует с матрицей и совершенно неожиданно вызывает в значительной степени псевдоожижение композиции в расплавленном состоянии. В самом деле, получаемые в этом отношении увеличения являются особенно значительными, поскольку они могут составлять, например, по меньшей мере, 10-50%, без ухудшения при этом механических свойств и в особенности ударной прочности термопласта.

Достигаемый компромисс текучесть/ударная прочность представляет большой интерес.

Используемая согласно изобретению добавка в виде функционализированного гиперразветвленного полимера легко применима и экономична.

Согласно предпочтительному варианту осуществления изобретения используемый в качестве добавки функционализированный гиперразветвленный полиамид композиции отличается тем, что

- углеводородные части R, R' мономеров (I) и (II) соответственно включают, каждая,

i. по меньшей мере, линейный или разветвленный алифатический радикал;

ii. и/или, по меньшей мере, циклоалифатический радикал;

iii. и/или, по меньшей мере, ароматический радикал, включающий одно или несколько ароматических ядер;

iv. и/или, по меньшей мере, арилалифатический радикал;

причем эти радикалы (i), (ii), (iii), (iv) могут быть незамещены или замещены и/или могут содержать гетероатомы;

- A, A' означают реакционноспособную функциональную группу типа амина, соли амина или типа кислоты, сложного эфира, галогенангидрида кислоты или амида;

- B, B' означают реакционноспособную функциональную группу типа кислоты, сложного эфира, галогенангидрида кислоты или амида или типа амина, соли амина.

Таким образом, преимущественно содержащимися реакционноспособными при полимеризации функциональными группами А, В, A', B' являются таковые, относящиеся к группе, включающей карбоксильные группы и аминогруппы.

Под функциональной карбоксильной группой в смысле изобретения понимают любую кислотную группу СООН или производную группу типа сложного эфира или ангидрида, галогенангидрида (хлорангидрида) кислоты.

Гиперразветвленный полиамид, являющийся модификатором реологических свойств в композиции, преимущественно может быть образован смесью нескольких различных мономеров (I), нескольких различных мономеров (II) и/или нескольких различных мономеров функционализации (IV).

Бифункциональные мономеры (II) представляют собой элементы "разделения" в трехмерной структуре.

Согласно преимущественному варианту изобретения мономеры-"разделители" (II), являющиеся агентами обрыва цепи, мономеры (IV) и/или мономеры (III) типа "сердцевины" могут находиться в виде форполимеров.

Предпочтительно f=2, так что мономер (I) является трифункциональным: A-R-B2, где А=аминогруппа, В=карбоксил и R=ароматический радикал.

Кроме того, предпочтительным является то, что функционализированный гиперразветвленный полиамид, используемый в качестве добавки, характеризуется молярным соотношением III/I+II+IV, определяемым следующим образом:

III/I+II+IV≤1/150,

предпочтительно III/I+II+IV≤1/100

и еще более предпочтительно III/I+II+IV≤1/50.

Согласно одной особенности изобретения используемый в качестве добавки функционализированный гиперразветвленный полиамид является, например,

- либо "небольшим" (небольшая молекулярная масса), то есть характеризуется соотношением:

1/10≤III/I+II+IV≤1/40,

- либо "большим" (высокая молекулярная масса), то есть характеризуется соотношением:

1/50≤III/I+II+IV≤1/90.

Согласно предпочтительному варианту радикал R2 функционализации гиперразветвленного полимера выбирают из линейных алкилов с 8-30 атомами углерода, предпочтительно с 10-20 атомами углерода, или поликонденсированных или нет, арилов, арилалкилов или алкиларилов.

На практике, и это не является ограничительным, для функционализированного гиперразветвленного полиамида:

- мономер (I) выбирают из группы, состоящей из 5-аминоизофталевой кислоты, 6-аминоундекандиовой кислоты, 3-аминопимелиновой дикислоты, аспарагиновой кислоты, 3,5-диаминобензойной кислоты, 3,4-диаминобензойной кислоты и их смесей;

- бифункциональный мономер формулы (II) выбирают из группы, состоящей из ε-капролактама и/или соответствующей аминокислоты, как аминокапроновая кислота, п- или м-аминобензойной кислоты, 11-аминоундекановой кислоты, лауриллактама и/или соответствующей аминокислоты, 12-аминододекановой кислоты и их смесей;

- мономер-"сердцевину" (III) выбирают из группы, состоящей из 1,3,5-бензолтрикарбоновой кислоты, 2,2,6,6-тетра(β-карбоксиэтил)циклогексанона, 2,4,6-три(аминокапроновая кислота)-1,3,5-триазина, 4-аминоэтил-1,8-октандиамина и их смесей;

- мономер функционализации, являющийся агентом обрыва цепи, (IV) выбирают из группы, состоящей из н-гексадециламина, н-октадециламина, н-додециламина, бензиламина и их смесей.

В отношении более подробных данных об этом гиперразветвленном полиамиде следует сослаться на заявку на патент Франции №2793252 как в том, что касается структурных аспектов, так и также способов получения этого функционализированного гиперразветвленного полиамида.

Поскольку речь идет о мономерах (I), (II) и, в случае необходимости, (III), следует указать, соответственно, 5-аминоизофталевую кислоту (AIPA, молекула разветвления типа A-R'-B2, где А означает NH2), капролактам (обозначаемый как CL, разделитель типа A-R"-B) и 1,3,5-бензолтрикарбоновую кислоту (ВТС, молекула-"сердцевина" типа R-B3, где B означает СООН).

В количественном плане в рамках изобретения предпочтительно, что представляющая собой гиперразветвленный сополимер-добавка содержится в количестве (в мас.% в расчете на сухое вещество по отношению к общей массе композиции) 0,1-50, предпочтительно 1-20 и еще более предпочтительно 2-10.

Кроме того, оказалось особенно интересным, что функционализированный гиперразветвленный полиамид, используемый в композиции согласно изобретению в качестве добавки, являющейся модификатором реологических свойств, представляет собой гиперразветвленный полиамид, в котором содержание концевых карбоксильных групп или аминогрупп (GT) (выраженное в мэкв/кг) составляет от 0 до 100, предпочтительно от 0 до 50 и еще более предпочтительно от 0 до 25.

Согласно особому варианту осуществления изобретения радикалы R2 функционализации гиперразветвленного полимера являются радикалами одного и того же типа во всем гиперразветвленном полимере. Например, гиперразветвленнный полимер может содержать радикалы R2 только алкильного типа, а не смесь нескольких типов радикалов R2.

Функционализированный гиперразветвленный сополиамид типа такового, указанного выше, а именно:

- образованный одной или несколькими функционализированными дендритными структурами за счет мономеров (IV), включающих рассмотренную функциональность или рассмотренные функциональности; и

- типа сополиамидов, получаемых путем реакции между

- по меньшей мере, одним мономером следующей формулы (I):

в которой А означает реакционноспособную при полимеризации функциональную группу первого типа; В означает реакционноспособную при полимеризации функциональную группу второго типа и способную реагировать с А; R означает углеводородную группу, возможно включающую гетероатомы; и f означает общее число реакционноспособных функциональных групп В на мономер: f≥2, предпочтительно 2≤f≤10;

- в случае необходимости, по меньшей мере, одним бифункциональным мономером следующей формулы (II):

или соответствующими лактамами,

в которой A', B', R' имеют такое же значение, как и таковое, указанное выше, соответственно, для А, В, R в формуле (I);

- в случае необходимости, по меньшей мере, одним мономером-"сердцевиной" формулы (III):

в которой:

R1 означает замещенный или нет углеводородный радикал силиконового типа, линейного или разветвленного алкила, ароматического, алкиларильного, арилалкильного или циклоалифатического, который может включать ненасыщенные связи и/или гетероатомы;

В" означает реакционноспособную функциональную группу той же природы, как В или B';

n≥1, предпочтительно 1≤n≤100;

- и, по меньшей мере, одним мономером функционализации в качестве агента обрыва цепи, отвечающим формуле (IV):

в которой:

R2 означает радикал, выбираемый из насыщенных или нет углеводородных радикалов силиконового типа, линейного или разветвленного алкила, ароматического, арилалкильного, алкиларильного или циклоалифатического, которые могут включать одну или несколько ненасыщенных связей и/или один или несколько гетероатомов; и

А" означает реакционноспособную функциональную группу той же природы, как А или А';

получают путем реакции поликонденсации в расплаве между мономерами (I), в случае необходимости, мономерами (II), которые также реагируют между собой и с мономерами (IV) функционализации, и, в случае необходимости, с мономерами (III).

Полимеризацию путем реакции сополиконденсации осуществляют, например, в условиях и по методике, которые эквивалентны таковым, используемым для получения линейных полиамидов, например, из мономеров (II).

Что касается основного компонента, в количественном плане, композиции согласно изобретению, а именно термопластичной матрицы, образующий матрицу термопластичный (со)полимер или образующие матрицу термопластичные (со)полимеры выбирают из группы, состоящей из полиолефинов, сложных полиэфиров, полиалкиленоксидов, полиоксиалкиленов, полигалогеналкиленов, поли(алкилен-фталатов или терефталатов), поли(фенилов или фениленов), поли(фениленоксидов или фениленсульфидов), поливинилацетатов, поливиниловых спиртов, поливинилгалогенидов, поливинилиденгалогенидов, поливинилнитрилов, полиамидов, полиимидов, поликарбонатов, полисилоксанов, полимеров акриловой или метакриловой кислоты, полиакрилатов или полиметакрилатов, природных полимеров, которыми являются целлюлоза и ее производные, синтетических полимеров, таких как синтетические эластомеры, или термопластичных сополимеров, включающих, по меньшей мере, один мономер, идентичный любому из мономеров, включенных в вышеуказанные полимеры, также как смесей и/или "сплавов" всех этих (со)полимеров.

Для уточнения можно указать, что матрица может быть образована, по меньшей мере, одним из следующих полимеров или сополимеров: полиакриламид, полиакрилонитрил, поли(акриловая кислота), сополимеры этилена и акриловой кислоты, сополимеры этилена и винилового спирта, сополимеры метилметакрилата и стирола, сополимеры этилена и этилакрилата, сополимеры (мет)акрилата, бутадиена и стирола (ABS), и полимеры этого же самого семейства; полиолефины, как полиэтилен низкой плотности, полипропилен, хлорированный полиэтилен низкой плотности, поли(4-метил-1-пентен), полиэтилен, полистирол и полимеры этого же самого семейства; иономеры: полиэпихлоргидрин; полиуретаны, такие как продукты полимеризации диолов, как глицерин, триметилолпропан, 1,2,6-гексантриол, сорбит, пентаэритрит, простые полиэфирполиолы, сложные полиэфирполиолы и соединения этого же самого семейства с полиизоцианатами такими как 2,4-толуилендиизоцианат, 2,6-толуилендиизоцианат, 4,4'-дифенилметандиизоцианат, 1,6-гексаметилендиизоцианат, 4,4'-дициклогексилметандиизоцианат и соединения этого же самого семейства; и полисульфоны, такие как продукты реакции между натриевой солью 2,2-бис(4-гидрокси-фенил)пропана и 4,4'-дихлордифенилсульфоном; фурановые смолы такие как полифуран; пластики на основе сложных эфиров целлюлозы, такие как ацетат целлюлозы, ацетат-бутират целлюлозы, пропионат целлюлозы и полимеры этого же самого семейства; силиконы, такие как полидиметилсилоксан, сополимер диметилсилоксана и фенилметилсилоксана, и полимеры этого же самого семейства; смеси, по меньшей мере, из двух вышеуказанных полимеров.

Представляющая собой термопластичный полимер матрица М состоит из сложного полиэфира, такого как полиэтилентерефталат (РЕТ), полипропилентерефталат (РРТ), полибутилентерефталат (РВТ), их сополимеров и смесей.

Еще более предпочтительно термопластичный полимер или термопластичные полимеры выбирают из группы сополиамидов, состоящей из найлона 6, найлона 6,6, найлона 4, найлона 11, найлона 12, полиамидов 4-6, 6-10, 6-12, 6-36, 12-12, их сополимеров и смесей.

В качестве других предпочтительных полимеров согласно изобретению можно назвать полукристаллические или аморфные полиамиды, такие как алифатические полиамиды, полуароматические полиамиды и, более обычно, линейные полиамиды, получаемые путем реакции поликонденсации между насыщенной алифатической или ароматической дикислотой и насыщенным алифатическим или ароматическим первичным диамином; полиамиды, получаемые путем конденсации лактама, аминокислоты; или полиамиды, получаемые путем конденсации смеси из этих различных мономеров.

Более конкретно, этими сополиамидами могут быть, например, полигексаметиленадипамид, полифталамиды, получаемые из терефталевой и/или изофталевой кислоты, такие как полиамид, выпускаемый под торговым названием AMODEL, сополиамиды, получаемые из адипиновой кислоты, гексаметилендиамина и капролактама.

Согласно предпочтительному варианту осуществления изобретения термопластичным (со)полимером или термопластичными (со)полимерами является (являются) полиамид 6,6.

Согласно особому варианту осуществления изобретения термопластичным полимером или термопластичными полимерами является (являются) полиамид 6, относительная вязкость которого, измеряемая при температуре 25°С и концентрации 0,01 г/мл в растворе 96%-ной серной кислоты, составляет выше 3,5, предпочтительно выше 3,8.

Согласно другой преимущественной характеристике изобретения полимерная матрица (М) композиции образована смесью и/или "сплавом" полиамида с одним или несколькими другими полимерами, предпочтительно полиамидами или сополиамидами.

Также предусматривается смесь и/или "сплав" (со)полиамида, по меньшей мере, с одним другим полимером типа полипропиленоксида (РРО), поливинилхлорида (ПВХ), сополимера акрилонитрила, бутадиена и стирола (ABS).

Для улучшения механических свойств композиции согласно изобретению может быть предпочтительным введение в нее, по меньшей мере, одного упрочняющего наполнителя и/или утяжелителя, выбираемого из группы, состоящей из волокнистых наполнителей, таких как стекловолокна, минеральных наполнителей, таких как глины, каолин, упрочняющих наночастиц или наполнителей из термоотверждаемого материала, и порошкообразных наполнителей, таких как тальк.

Включаемая доля упрочняющего наполнителя соответствует стандартам в области композитных материалов. Речь может идти, например, о содержании наполнителя от 1 до 90%, предпочтительно от 10 до 60% и более типично 50%.

Представляющие собой гиперразветвленный полимер добавки, кроме того, могут быть объединены с другими добавками, такими как модификаторы ударной вязкости, как возможно привитые эластомеры.

Естественно, композиция согласно изобретению также может содержать любые другие соответствующие добавки или адъюванты, например утяжелители (SiO2), средства для огнестойкой пропитки, стабилизаторы против ультрафиолетового излучения, термостабилизаторы, матирующие компоненты (TiO2), смазки, пластификаторы, пригодные для катализа синтеза полимерной матрицы компоненты, антиоксиданты, антистатики, пигменты, красители, вспомогательные для литья добавки или поверхностно-активные вещества. Этот перечень не носит никакого ограничительного характера.

Композиции согласно изобретению могут быть использованы в качестве исходного материала в области технических пластиков, например, для получения изделий, изготовляемых путем литья под давлением или путем литья под давлением с раздувом, путем классической экструзии или экструзии с раздувом, или пленок.

Композиции согласно изобретению могут быть также формованы путем прядения из расплава в виде нитей, волокон, филаментов.

Представляющую собой функционализированный гиперразветвленный полимер добавку вводят в матрицу из термопластичного полимера, предпочтительно из полиамида. Для осуществления этого можно использовать любые известные способы введения частиц в матрицу.

Первый способ может состоять в том, что функционализированный гиперразветвленный полимер смешивают с расплавленной матрицей и, в случае необходимости, смесь подвергают значительному сдвигу, например, в двухшнековом экструдере, чтобы получить хорошую дисперсию. Такой экструдер обычно расположен до средств формования расплавленного пластика (литье, экструзия, прядение). Согласно обычному способу осуществления эту смесь экструдируют в форме тростинок, которые после этого разрезают в виде гранулятов. Отливки затем реализуют путем расплавления вышеполученных гранулятов и загрузки композиции в расплавленном состоянии в соответствующие устройства для литья, инжекции, экструзии или прядения. В случае изготовления нитей, волокон и филаментов, получаемую на выходе из экструдера композицию, в случае необходимости, прямо загружают в прядильное устройство.

Вторым способом может быть такой, который состоит в смешении гиперразветвленного полимера с мономерами в среде полимеризации термопластичной матрицы или в процессе полимеризации.

Согласно одному варианту с расплавленной матрицей можно смешивать концентрированную смесь смолы и функционализированного гиперразветвленного полимера, приготовляемую, например, согласно одному из вышеописанных способов.

Согласно другому из аспектов данного изобретения, оно относится также к изделиям, получаемым путем формования, предпочтительно путем литья, литья под давлением, литья под давлением с раздувом, экструзии, экструзии с раздувом или прядения, одной из полимерных композиций с добавкой гиперразветвленного полимера и таких, как указанные выше.

Этими изделиями могут быть нити, волокна, пленки или филаменты.

Речь может идти также об изделиях, получаемых путем литья из композиции согласно изобретению, включающей полимер, в частности полиамид, гиперразветвленный полимер, такой, как указанный выше, и, в случае необходимости, упрочняющие волокна (стекловолокна).

Целью изобретения также является применение, в качестве модификатора реологических свойств состоящей из термопластичного полимера матрицы, функционализированного гиперразветвленного полимера, такого, как указанный выше.

Другие подробности и преимущества изобретения более отчетливо наглядно представлены в нижеприводимых, только в качестве иллюстрации, примерах.

ПРИМЕРЫ

Примеры 1-6: Синтез гиперразветвленного полиамида (РАНВ) на основе ВТС/AIPA/CL/алкил С16 или С18 (примеры 5 и 6).

Пример 7: Характеристика РАНВ согласно примерам 1-4 и 6.

Пример 8: Получение композиций согласно изобретению на основе полиамида (РА) 6,6, стекловолокон и алкилированных РАНВ согласно примерам 1-3 в различных вводимых количествах.

Пример 9: Получение композиции согласно изобретению без стекловолокон на основе полиамида 6,6, РАНВ примеров 1 и 2 согласно двум вводимым количествам.

Пример 10: Получение композиций согласно изобретению на основе РА 6 и РАНВ примера 6.

Пример 11: Получение композиций согласно изобретению на основе высокомолекулярного полиамида 6 и РАНВ примера 6.

Пример 12: Получение композиций согласно изобретению на основе полипропилена и РАНВ примера 6.

Пример 13: Получение композиций согласно изобретению на основе РА 6,6 и функционализированных гиперразветвленных Boltorn® (Perstorp).

Пример 14: Оценка реологических и механических характеристик композиций примеров 8 и 9.

Пример 15: Оценка текучести композиций примеров 10 и 11.

Пример 16: Оценка текучести композиций примера 12.

Пример 17: оценка текучести композиций примера 13.

Пример 18: Измерение величин снижений напорного давления (головка фильеры) во время прядения композиций М/функционализированный РАНВ примеров 2 и 4.

Пример 19: Измерение снижений напорного давления (головка фильеры) во время прядения композиций на основе высокомолекулярного РА 6 и РАНВ примера 6.

Описание фигур

На фиг.1 представлена гистограмма изменения увеличения (заполнения) по отношению к длине спирали для композиций РА 6,6 + 50% стекловолокон + РАНВ/С16 таблицы II.

На фиг.2 представлена гистограмма увеличений (заполнения) по отношению к длине спирали для композиций РА 6,6 + РАНВ/С16 таблицы III.

На фиг.3 представлен компромисс текучесть/ударная прочность при указании ударной прочности в зависимости от длины спирали для композиций таблицы II. Экспликация фиг.3 является следующей:

1