Высокопрочная коррозионно-стойкая сталь
Изобретение относится к металлургии стали, в частности к области легированных коррозионно-стойких высокопрочных сталей, используемых для высоконагруженных деталей в машиностроении и судостроении. Заявлена сталь, содержащая, мас.%: углерод 0,04-0,07, кремний не более 0,6, хром 15,5-16,5, никель 4,8-5,8, азот 0,11-0,18, ниобий 0,03-0,08, ванадий 0,03-0,08, марганец 0,5-1,0, кальций 0,02-0,03, железо и неизбежные примеси остальное, при выполнении условий ([V]+[Nb])/([С]+[N])=0,4÷0,6 и [Cr]-1,5[Ni]+2[Si]-0,75[Mn]-30[C+N]+1,5[V]+0,9[Nb]=1÷4. После закалки и/или пластической деформации с последующем обработкой холодом, отпуска или холодной пластической деформации сталь обладает мелкозернистой структурой с размером зерна 15-25 мкм с количеством мартенсита 75-90% и аустенита 25-10%. Достигается повышение прочности при сохранении удовлетворительной пластичности, что обеспечивает повышение эксплуатационной надежности и увеличение срока службы конструкций из этой стали при их эксплуатации. 4 з.п. ф-лы, 2 табл.
Реферат
Изобретение относится к металлургии стали, в частности к высокопрочным коррозионно-стойким сталям мартенситно-аустенитного класса, упрочняемых азотом, обладающими наряду с высокой прочностью повышенными значениями пластичности.
Сталь предназначена для изготовления высоконагруженных деталей машин, работающих при температурах -70 ÷ +400°С.
Известна коррозионно-стойкая хромоникелевая сталь 14Х17Н2 (ГОСТ 5632-72) следующего химического состава, мас.%:
углерод | 0,11-0,17 |
хром | 16,0-18,0 |
никель | 1,5-2,5 |
титан | ≤0,2 |
железо | остальное |
Основными недостатками этой стали являются низкая прочность (σв<1100 МПа, σ0,2<900 МПа) и склонность к отпускной хрупкости.
Известна хромоникелевая сталь 25Х13Н2 (ГОСТ 5632-72) следующего химического состава, мас.%:
углерод | 0,2-0,3 |
хром | 12-14 |
никель | 1,5-2,0 |
титан | ≤0,2 |
железо | остальное |
Недостатком данной стали является низкая пластичность (δ=3-7%).
Наиболее близкой к заявляемой по химическому составу является сталь 09Х16Н4Б (ГОСТ 5632-72), содержащая, мас.%:
углерод | 0,08-0,12 |
кремний | не более 0,6 |
хром | 15,0-16,5 |
марганец | не более 0,5 |
никель | 4,0-4,5 |
ниобий | 0,05-0,15 |
железо и неизбежные примеси | остальное |
Существенным недостатком данной стали является недостаточная для высоконагруженных деталей прочность (σ0,2<1100 МПа), крупное зерно (>40 мкм) при изготовлении крупногабаритных изделий (поковок и горячедеформированных труб) и плохая обрабатываемость резанием.
Техническим результатом предлагаемого изобретения является создание стали, обладающей мелкозернистой структурой и обеспечивающей повышение прочности при сохранении пластичности.
Технический результат достигается за счет дополнительного введения азота, ванадия, кальция при следующем соотношении компонентов, мас.%:
углерод | 0,04-0,07 |
кремний | не более 0,6 |
хром | 15,5-16,5 |
никель | 4,8-5,8 |
азот | 0,11-0,18 |
ниобий | 0,03-0,08 |
ванадий | 0,03-0,08 |
марганец | 0,5-1,0 |
кальций | 0,02-0,03 |
железо и неизбежные примеси | остальное |
при этом должны выполняться условия
где [Cr], [Ni], [Mn], [Si], [C+N], [V], [Nb] - концентрация в стали хрома, никеля, марганца, кремния, углерода и азота, ванадия, ниобия соответственно, выраженная в мас.%.
Элементы ванадий, ниобий, углерод и азот образуют в стали дисперсные частицы нитридов и карбонитридов ванадия и ниобия, сдерживающие рост зерна в стали при нагреве под закалку, т.е. способствующие формированию мелкозернистой структуры стали, необходимой для получения высокой прочности. Уравнение (1) регулирует соотношение V, Nb, С и N таким образом, чтобы в стали образовывалось оптимальное количество частиц нитридов и карбонитридов и сталь при высокой прочности сохраняла пластичность. Так, при избыточном содержании ванадия и ниобия, приводящем к получению больших, чем в уравнении (1), значений, сталь имеет низкие значения характеристик пластичности стали из-за высокого содержания карбонитридов ванадия и ниобия (плавка 6 в табл.2).
Уравнение (2) регулирует соотношение и количество мартенсита и остаточного аустенита в стали за счет учета феррито- и аустенитообразующей способности входящих в состав стали элементов (с использованием коэффициентов из уравнений для оценки эквивалентов феррито- и аустенитообразования). Соотношение компонентов в рамках уравнения 2 (при соблюдении уравнения 1) позволяет получить оптимальную структуру с заданным количеством мартенсита (75-90%) и аустенита (25-10%), не содержащую δ-феррит.
Граничные условия по концентрациям отдельных элементов, входящих в состав стали, обусловлены следующими факторами. У стали с содержанием хрома более 16,5% и никеля менее 4,8% (пл.6) не достигается достаточной для практического использования пластичности. При концентрации хрома менее 15,5% (плавка 5) и никеля более 5,8%, а азота более 0,18% невозможно получить качественные (без пор) крупные слитки из-за низкой растворимости азота в жидкой стали при таком содержании хрома и никеля. Содержание азота менее 0,11% (пл. 5) не обеспечивает достаточной прочности, а более 0,18% (пл.6) - пластичности стали. Введение в заявляемую сталь более 0,07% углерода (пл.6) приводит к понижению пластичности в результате преимущественного выделения по границам зерен крупных частиц карбида хрома типа Cr23C6. Для получения стали с содержанием углерода менее 0,04% необходима специальная технология выплавки. Добавки ванадия и ниобия в количестве 0,03-0,08% каждого обеспечивают получение мелкозернистой структуры. Добавки этих элементов в меньшем количестве, чем 0,03%, неэффективны, а при их концентрации свыше 0,08% возможны низкие значения характеристик пластичности стали из-за высокого содержания карбонитридов ванадия и ниобия. Добавки кальция в количестве 0,02-0,03% в заявляемую сталь существенно улучшают ее обрабатываемость резанием.
Химический состав и механические свойства металла исследованных плавок предложенной и известной сталей приведены в табл.1 и 2.
Таблица 1Химический состав предложенной и известной сталей (мас.%). | ||||||||||||
Сталь | № пл. | С | N | C+N | Cr | Ni | Mn | Ca | Si | Nb | V | Nb+V |
известная | 1 | 0,115 | - | 0,115 | 15,50 | 4,01 | 0,39 | - | 0,34 | 0,09 | - | 0,09 |
предложенная | 2 | 0,040 | 0,11 | 0,15 | 15,50 | 4,80 | 0,51 | 0,020 | 0,20 | 0,03 | 0,03 | 0,06 |
3 | 0,040 | 0,13 | 0,17 | 16,25 | 5,36 | 0,69 | 0,030 | 0,51 | 0,07 | 0,03 | 0,10 | |
4 | 0,070 | 0,18 | 0,25 | 16,50 | 5,80 | 0,91 | 0,030 | 0,41 | 0,08 | 0,08 | 0,16 | |
**) | 5 | 0,025 | 0,10 | 0,125 | 14,20 | 2,10 | 0,41 | 0,005 | 0,10 | 0,03 | 0,02 | 0,05 |
6 | 0,100 | 0,20 | 0,30 | 17,10 | 4,60 | 1,22 | 0,050 | 0,45 | 0,23 | 0,12 | 0,35 | |
*) железо - остальное | ||||||||||||
**) сталь, химический состав которой выходит за рамки состава предлагаемой стали |
Таблица 2Механические свойства предложенной и известной сталей после оптимальных режимов обработки | |||||
Сталь | Обработка | № пл. | σ0,2, МПа | δ,% | ψ, % |
известная | Закалка 1050°С + отпуск 380°С 2 ч | 1 | 1080 | 18 | 57 |
предложенная | Закалка 1000°С + отпуск 400°С 2 ч | 2 | 1254 | 20 | 62 |
3 | 1350 | 18 | 59 | ||
4 | 1370 | 18 | 57 | ||
Закалка 1050°С + обработка холодом при -70°С 3 ч + отпуск 500°С 2 ч | 2 | 1410 | 21 | 60 | |
3 | 1465 | 19 | 61 | ||
4 | 1468 | 18 | 60 | ||
Закалка 1050°С + холодная прокатка со степенью обжатия 25% | 2 | 1813 | 19 | 61 | |
3 | 1875 | 14 | 53 | ||
4 | 1880 | 13 | 52 | ||
**) | Закалка 1000°С + отпуск 400°С 2 ч | 5 | 1020 | 19 | 60 |
6 | 1170 | 5 | 33 | ||
**) указаны концентрации элементов |
Высокопрочное состояние стали достигается у заявляемой стали с соотношением компонентов согласно уравнениям 1 и 2 в результате указанных ниже обработок.
1. Закалка от температуры 1000-1050°С и/или пластическая деформация при температурах 900-1100°С, после которой сталь обладает мелкозернистой структурой с размером зерна 15-25 мкм с количеством мартенсита 75-90% и аустенита 25-10%.
2. Закалка от температуры 1000-1050°С и/или пластическая деформация при температурах 900-1100°С и последующая обработка холодом при температурах -60 - -80°С, после которых сталь обладает мелкозернистой структурой с размером зерна 15-25 мкм с количеством мартенсита 75-90% и аустенита 25-10%.
3. Закалка от температуры 1000-1050°С и/или пластическая деформация при температурах 900-1100°С и последующий отпуск при температурах 400-500°, после которых сталь обладает мелкозернистой структурой с размером зерна 15-25 мкм с количеством мартенсита 75-90% и аустенита 25-10%.
4. Закалка от температуры 1000-1050°С и/или пластическая деформация при температурах 900-1100°С и последующая холодная пластическая деформация, после которых сталь обладает мелкозернистой структурой с размером зерна 15-25 мкм с количеством мартенсита 75-90% и аустенита 25-10%.
Сталь подвергнутых проверке составов выплавляли в открытой индукционной печи. Азот при выплавке вводили с помощью азотированного феррохрома. Термическую обработку указанной стали производили по режимам:
(б1) закалка от 1000°С с охлаждением в воде и последующий отпуск при температуре 400°С в течение двух часов;
(в1) закалка от 1050°С с охлаждением в воде, последующая обработка холодом при -70°С (3 часа) и последующий отпуск при температуре 500°С в течение двух часов.
(г1) закалка от 1050°С с охлаждением в воде с последующей холодной прокаткой со степенью обжатия 25%.
Легирование заявляемой стали азотом, ванадием и кальцием в указанных пределах (пл.2, 3 и 4) приводит после термической обработки по режимам б-г к повышению по сравнению с прототипом (пл.1) предела текучести до 1254-1880 МПа при сохранении удовлетворительной пластичности (δ=13-21% и ψ=52-62%).
Новая сталь имеет после оптимальных режимов обработки (табл.2):
- режима б1 (закалка с отпуском):
предел текучести σ0,2=1254-1370 МПа,
относительное удлинение δ=18-20%,
относительное сужение Ψ=57-62%;
- режима в1 (закалки, обработки холодом и отпуска):
предел текучести σ0,2=1410-1468 МПа,
относительное удлинение δ=18-21%,
относительное сужение Ψ=60-62%;
- режима г1 (закалки и холодной прокатки):
предел текучести σ0,2=1813-1880 МПа,
относительное удлинение δ=13-19%,
относительное сужение Ψ=52-61%.
Закалка от температуры ниже 1000°С приводит к снижению пластических характеристик. Закалка от температуры выше 1050°С приводит к снижению прочностных характеристик. Обработка холодом при температурах -60 - -80°С увеличивает количество мартенсита в структуре и повышает прочность стали при сохранении повышенной пластичности. Отпуск при температурах 300-500°С приводит к повышению показателей прочности за счет выделения дисперсных карбонитридов хрома. При температуре выше 500°С достигается снижение показателей прочности в результате укрупнения частиц карбонитридов хрома. Холодная прокатка со степенью обжатия 25% вызывает упрочнение вследствие наклепа стали.
Таким образом, по результатам проведенных испытаний видно, что предлагаемая сталь (пл.2, 3 и 4) в отличие от прототипа (пл. 1) обладает более высоким пределом текучести при сохранении повышенной пластичности, что приводит к увеличению срока службы и надежности конструкций из этой стали.
1. Высокопрочная коррозионно-стойкая сталь, содержащая углерод, хром, кремний, никель, ниобий, марганец, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит азот, ванадий и кальций при следующем соотношении компонентов, мас.%:
углерод | 0,04-0,07 |
кремний | не более 0,6 |
хром | 15,5-16,5 |
никель | 4,8-5,8 |
азот | 0,11-0,18 |
ниобий | 0,03-0,08 |
ванадий | 0,03-0,08 |
марганец | 0,5-1,0 |
кальций | 0,02-0,03 |
железо и неизбежные примеси | остальное |
при выполнении условий
и
[Cr]-1,5[Ni]+2[Si]-0,75[Mn]-30[C+N]+1,5[V]+0,9[Nb]=1÷4.
2. Сталь по п.1, отличающаяся тем, что после закалки от температуры 1000-1050°С и/или пластической деформации при температурах 900-1100°С она обладает мелкозернистой структурой с размером зерна 15-25 мкм с количеством мартенсита 75-90% и аустенита 25-10%.
3. Сталь по п.1, отличающаяся тем, что после закалки от температуры 1000-1050°С и/или пластической деформации при температурах 900÷1100°С и последующей обработкой холодом при температурах -60 ÷ -80°С она обладает мелкозернистой структурой с размером зерна 15-25 мкм с количеством мартенсита 75-90% и аустенита 25-10%.
4. Сталь по п.2, отличающаяся тем, что после закалки от температуры 1000-1050°С и/или пластической деформации при температурах 900-1100°С и последующего отпуска при температурах 400-500°С она обладает мелкозернистой структурой с размером зерна 15-25 мкм с количеством мартенсита 75-90% и аустенита 25-10%.
5. Сталь по п.1, отличающаяся тем, что после закалки от температуры 1000-1050°С и/или пластической деформации при температурах 900-1100°С и последующей холодной пластической деформации она обладает мелкозернистой структурой с размером зерна 15-25 мкм с количеством мартенсита 75-90% и аустенита 25-10%.