Состав пенокриогеля и способ его формирования
Изобретение относится к составу для получения пенокриогеля, содержащему поливиниловый спирт, хлорид натрия, нитрит натрия, хлористый аммоний, сажу и воду. Также изобретение относится к способу формирования пенокриогеля путем вспенивания его состава химическим способом с помощью азота, выделяющегося в результате окислительно-восстановительной реакции между эквимолярными количествами нитрита натрия и хлористого аммония, с последующим циклом замораживание-размораживание состава. Технической задачей изобретения является разработка пенокриогеля с улучшенными теплофизическими и механическими свойствами, необходимыми для теплоизоляции устья добывающих скважин и предотвращение выпадения в них парафиновых отложений. Поставленная задача решается тем, что вспенивание исходного состава производят химическим способом, в результате чего образуется мелкодисперсная пена высокой кратности, также в ходе экзотермической реакции выделяется тепло, улучшающее гомогенизацию исходного полимерного раствора, и, кроме того, присутствие хлорида натрия упрочняет пенокриогель и повышает температуру плавления материала. Полученный пенокриогель может использоваться при строительстве и обустройстве нефтяных и газовых скважин в районах Севера, при рекультивации земель в районах криолитозоны, в технологических процессах добычи и транспорта нефти. 2 н.п.ф-лы, 1 табл.
Реферат
Изобретение относится к нефтедобывающей промышленности, а именно к разработке оптимального компонентного состава и способа получения пенокриогелей - вспененных материалов, которые могут быть использованы при строительстве и обустройстве нефтяных и газовых скважин в районах Севера, при рекультивации земель в районах криолитозоны, в технологических процессах добычи и транспорта нефти.
Процесс криотропного гелеобразования протекает при отрицательных температурах в многокомпонентных композициях на основе водных растворов поливинилового спирта. После замораживания водных растворов поливинилового спирта (ПВС) при отрицательной температуре и последующего их оттаивания при положительной температуре образуются упругие полимерные тела, называемые криогелями [В.И.Лозинский. Криогели на основе природных и синтетических полимеров: получение, свойства и области применений. Успехи химии. Т.71. №6. 2002].
Известен способ получения пенокриогеля путем замораживания-оттаивания взбитых механическим способом водных растворов ПВС [В.И.Лозинский, Л.Г.Дамшкалн. Journal of Applied Polymer Science, vol.82, 1609-1619 (2001)]. Недостатком этого способа является нестабильность крупнодисперсных исходных пен и, как следствие, плохая воспроизводимость свойств получаемых пенокриогелей.
Известны композиция и способ получения криогеля (РФ 2252945 С1, опубл. 27.05.2005) на основе поливинилового спирта. Заявляемая полимерная композиция, имеющая взаимосвязанные макропоры криогеля поливинилового спирта, содержит 3-25 мас.% поливинилового спирта, 0,001-1 мас.% ионогенного - катионного, анионного или амфотерного или неионогенного поверхностно-активного вещества и воду (до 100 мас.%). Недостатком известного решения является плохая воспроизводимость свойств получаемых криогелей и сложная технология, включающая удаления растворителя из системы.
Известен способ химического вспенивания композиции на основе полиакриламида с помощью газа, выделяющегося в результате окислительно-восстановительной реакции. (РФ 2087673 С1, опубл. 20.08.1997). Вязкоупругий вспененный гель образуется с помощью азота, полученного в результате реакции между нитритом щелочного или щелочноземельного металла и хлористым аммонием. Недостатком этого способа является сложная технология.
Наиболее близким к предлагаемому составу является состав криогеля (пат. РФ №2258141 С1, опубл. 10.08.2005), который используется в горном деле и предназначен для защиты горных выработок от протоков подземных вод, включающих, мас.% поливиниловый спирт - 5%, хлорид натрия - 11% и воду - 84%, Криогель перед нагнетанием в скважины вспенивают. Данный вспененный криогель, нагнетенный в скважины, обладает пластической вязкостью, не разрушается при проведении буровзрывных работ и возможной деформации массива при многократном изменении температур от положительной к отрицательной и наоборот. Недостатком данного геля является сложность его формирования и применения, недостаточная стабильность и воспроизводимость.
Наиболее близким к предлагаемому способу является способ по (пат. РФ №2258141 С1, опубл. 10.08.2005). Недостатком данного способа является сложная технология (сложное технологическое оснащение), плохая воспроизводимость свойств полученных вспененных криогелей, необходимость бурения дополнительных скважин.
Задача настоящего изобретения - разработать состав и способ получения пенокриогеля с теплофизическими и механическими свойствами, необходимыми для теплоизоляции устья добывающих скважин и предотвращения выпадения в них парафиновых отложений.
Состав для получения пенокриогеля содержит поливиниловый спирт, хлорид натрия, нитрит натрия, хлористый аммоний, сажу и воду при следующих соотношениях компонентов, мас.%:
Поливиниловый спирт | 5-10 |
Хлорид натрия | 7-11 |
Нитрит натрия | 7-14 |
Хлорид аммония | 6-12 |
Сажа | 3-7 |
Вода | остальное |
Способ формирования включает вспенивание водного раствора поливинилового спирта с добавками хлорида натрия, нитрита натрия, хлористого аммония и сажи химическим способом с помощью азота, выделяющегося в результате окислительно-восстановительной реакции между эквимолярными количествами нитрита натрия и хлористого аммония, затем проводят цикл замораживание-размораживание состава.
Химический способ формирования пенокриогеля, обладающего улучшенными теплоизолирующими свойствами, заключается в том, что в исходном водном растворе поливинилового спирта, концентрацию которого варьируют в интервале от 5 до 10%, для получения пены проводят окислительно-восстановительную реакцию:
NaNO2+NH4Cl→NaCl+2Н2О+N2↑, ΔН= - 309 кДж/моль.
Для проведения вспенивания готовят два равных объема раствора поливинилового спирта в воде одинаковой концентрации. В каждый из растворов при перемешивании добавляют эквимолярные количества нитрита натрия и хлористого аммония. В один раствор при перемешивании добавляют нитрит натрия NaNO2, а в другом растворяют эквимолярное нитриту натрия количество хлористого аммония NH4Cl. Затем сливают эти растворы и тщательно перемешивают. В результате окислительно-восстановительной реакции выделяется азот, который и вспенивает полимерную систему.
Химический способ генерирования пены обладает рядом преимуществ по сравнению с механическим. Во-первых, образуется устойчивая мелкодисперсная пена высокой кратности, которую невозможно получить в высоковязком растворе механическим способом. Во-вторых, при хранении полимерного раствора при комнатной температуре наблюдается ассоциирование макромолекул и расслоение раствора, вследствие седиминтации ассоциатов, имеющих несколько большую плотность, чем растворитель. Это негативно отражается на прочностных свойствах получаемых пенокриогелей. В ходе же экзотермической реакции выделяется тепло, которое способствует гомогенизации исходного полимерного раствора. В-третьих, продуктом реакции кроме азота является также и хлорид натрия, присутствие которого упрочняет пенокриогель и повышает температуру плавления материала.
Стандартный способ получения двухкомпонентных гомогенных криогелей без газовой фазы (кратность пены равна 1) описан в примерах 1-2. Физические свойства образующихся криогелей зависят от концентрации полимера и условий проведения цикла замораживания-размораживания.
Для улучшения теплоизоляционных свойств криогелей (для уменьшения коэффициента теплопроводности) в гомогенный двухкомпонентный раствор ПВС необходимо ввести газовую фазу и из образовавшейся пены после цикла замораживания -размораживания получить пенокриогель. В примере 3 описан механический способ получения пен. В соответствии с предлагаемым изобретением в примерах 4-9 газовую фазу вводили, проводя в полимерном растворе окислительно-восстановительную реакцию, одним из продуктов которой является азот. Из полученной пены после цикла замораживания - размораживания получали пенокриогель.
Пример 1-2. Водные растворы ПВС, массовое содержание полимера в которых составляет 5 и 10%, заливают в цилиндрическую кювету и ставят на 20 часов в холодильную камеру при температуре (-20°С). После окончания замораживания из цилиндра вынимают ледяной жесткий образец и размораживают при комнатной температуре (+20°С) в течение 4 часов. После размораживания образец переходит из кристаллического в эластичное (каучукоподобное) состояние. Характеристики полученного двухкомпонентного гомогенного криогеля (модуль упругости G, температура плавления Тпл и коэффициенты теплопроводности λ) приведены в таблице 1.
Пример 3. Барботируя воздух через пористый фильтр, вспенивают жидкую многокомпонентную композицию, в состав которой входит ПВС - 5%; NaCl - 10%; сажи - 3% и воды - 82%. Затем для получения пенокриогеля из пены, содержащей равные объемы жидкой и газовой фазы (кратность 2), проводят цикл замораживания-размораживания. Результаты измерений физических характеристик полученных пенокриогелей приведены в таблице 1. Полученные пенокриогели имеют заметно меньшие коэффициенты теплопроводности по сравнению со сплошными двухкомпонентными криогелями.
Пример 4. В водном растворе ПВС, содержание полимера в котором 10%, проводят окислительно-восстановительную реакцию, приливая эквимолярные объемы окислителя NaNO2 и восстановителя NH4Cl. В результате реакции выделяется газ и образуется пена (кратность 5), которую подвергают циклу замораживания-размораживания аналогично примеру 1. Результаты измерений физических характеристик полученных пенокриогелей приведены в таблице 1. Полученные пенокриогели имеют заметно меньшие коэффициенты теплопроводности по сравнению с однофазными двухкомпонентными криогелями (примеры 1 и 2).
Пример 5-6. По методике, описанной в примере 3, из 5%-ного раствора ПВС готовят и исследуют пенокриогели кратности 5 и 10. Результаты приведены в таблице 1. Уменьшение кратности пены незначительно повышает модуль упругости и не влияет на коэффициент теплопроводности и температуру плавления пенокриогеля.
Пример 7. В двухкомпонентную систему, состоящую из ПВС - 5% и воды - 95%, вводят сажу 5%. В этом растворе проводят окислительно-восстановительную реакцию, получают пену. После цикла замораживания-размораживания приготовленной композиции образуется пенокриогель (таблица 1). Добавление сажи в композицию увеличивает модуль упругости пенокриогеля, не влияет на коэффициент теплопроводности, но понижает температуру плавления пенокриогеля.
Пример 8. Готовят состав, в котором содержится ПВС - 5%, NaCl - 4% и воды - 91%. Добавляют эквимолярные объемы окислителя и восстановителя (1,25 моль/л), образуется пена. Как упоминалось ранее, продуктом реакции кроме азота является также и хлорид натрия, поэтому суммарная концентрация соли в системе достигается максимального значения (11%), при превышении которой происходит высаживание полимера. Проводят цикл замораживания-размораживания. Результаты измерений физических характеристик полученных пенокриогелей приведены в таблице 1. Полученный пенокриогель практически не отличается упругими и теплоизолирующими свойствами от предыдущих образцов (примеры 4-6), зато температура его плавления заметно повышается.
Пример 9. В многокомпонентную систему, состоящую из ПВС - 5%, NaNO2 - 7%, NH4Cl - 6%, NaCl - 4% и воды - 73%, дополнительно вводят 5% сажи и вспенивают с помощью химической реакции до кратности пены, равной 5. После цикла замораживания-размораживания получают пенокриогель с большим значением модуля упругости, чем у образца в примере 8.
Таким образом, предложенный состав и способ генерирования пен при проведении химической реакции позволяет получать стабильные пенокриогели высокой кратности с улучшенными теплофизическим свойствами.
Таблица 1. | ||||||
№ | Состав | Концентрация, % | Кратность пены | λ, Вт/К·м | G, кПа | Тпл, °С |
1 | ПВСН2O | 595 | 1 | 0,35 | 4 | 73 |
2 | ПВСН2O | 1090 | 1 | 0,33 | 30 | 73 |
3 | ПВСNaClсажаН2O | 510382 | 2 | 0,26 | 6 | 110 |
4 | ПВСNaNO2NH4ClН2O | 107677 | 5 | 0,13 | 7 | 85 |
5 | ПВСNaNO2NH4ClН2O | 57682 | 10 | 0,12 | 1,5 | 85 |
6 | ПВСNaNO2NH4ClН2O | 57682 | 5 | 0,14 | 2.0 | 85 |
7 | ПВСNaNO2NH4ClсажаН2O | 576577 | 5 | 0,14 | 5 | 80 |
8 | ПВСNaNO2NH4ClNaClН2O | 576478 | 5 | 0,14 | 2,5 | 110 |
9 | ПВСNaNO2NH4ClсажаNaClН2O | 5765473 | 5 | 0,14 | 7 | 110 |
1. Состав для получения пенокриогеля, содержащий поливиниловый спирт, хлорид натрия и воду, отличающийся тем, что дополнительно состав содержит нитрит натрия, хлористый аммоний и сажу при следующих соотношениях компонентов, мас.%:
Поливиниловый спирт | 5-10 |
Хлорид натрия | 7-11 |
Нитрит натрия | 7-14 |
Хлорид аммония | 6-12 |
Сажа | 3-7 |
Вода | остальное |
2. Способ формирования пенокриогеля путем вспенивания водного раствора поливинилового спирта, отличающийся тем, что вспенивание водного раствора поливинилового спирта с добавками хлорида натрия, нитрита натрия, хлористого аммония и сажи проводят химическим способом с помощью азота, выделяющегося в результате окислительно-восстановительной реакции между эквимолярными количествами нитрита натрия и хлористого аммония, затем проводят цикл замораживание-размораживание состава.