Способ передачи сообщений любой физической природы, например способ передачи звуковых сообщений, и система для его осуществления

Иллюстрации

Показать все

Изобретение относится к радиотехнике. Технический результат состоит в нахождении оптимального способа передачи сообщений в каналах с помехами. Для этого предлагаются различные варианты способа для активного понижения шумов и передачи сообщений на примере передачи и понижения шумов звуковых сигналов. В изобретении описан процесс усиления электрических сигналов, например, в усилителях мощности, а также многополосно-пороговый шумоподавитель. При усилении электрических сигналов традиционная обратная связь выполняется в виде нового многофункционального узла - блока обработки сигналов. Этот узел может быть выполнен, например, с использованием ЭВМ и позволяет обеспечить формирование требуемых электрических параметров цепи обратной связи, а также сформировать ряд новых сигналов управления для оптимизации режима работы усилителей. 3 н. и 33 з.п. ф-лы, 22 ил.

Реферат

Область техники

Изобретение относится к кибернетике и может быть использовано, например, в радиотехнике.

Предшествующий уровень техники

В науке и технике известно большое число различных методов и способов для передачи сообщений различной физической природы. Они основаны на фильтрации и обработке сигналов в частотной, временной, пространственной областях за счет использования поляризационных свойств сигналов, их кодирования и т.д.

В качестве примера научного подхода к решению задачи повышения точности передаваемых сообщений можно отметить работу В.П.Бакалова "оптимальная пространственно-временная фильтрация", опубликованную в журнале "Радиотехника" (1984 г., №12, стр.3-8). В этой статье рассмотрена линейная оптимальная пространственно-временная фильтрация случайных стационарных и нестационарных процессов и полей. Определены оптимальные передаточные функции компенсационных каналов, минимизирующие среднеквадратическое отклонение (СКО) сигналов и максимизирующие отношение сигнал-помеха.

В статье показано, что для информационной системы, в которой имеется один или несколько источников сигналов сообщений с не изменяющимися в пространстве координатами, а также один или несколько источников помех, координаты которых также неизменны, можно в рамках модели постановки задачи найти структурные схемы оптимальных фильтров, дающих дополнительный выигрыш в помехоустойчивости по сравнению с обычными винеровскими фильтрами. Наиболее показателен в этом смысле случай, когда спектральная плотность помехи велика по сравнению со спектральной плотностью сигнала сообщения. Найденные структурные схемы представляют собой пример научного формально-символьного решения этой задачи в рамках модели ее постановки. При этом остается в стороне вопрос практического синтеза оптимального фильтра со сложной передаточной характеристикой, представляющей собой комплексную функцию частоты, получаемую в результате различных математических операций над рядом других комплексных функций частоты: передаточных функций по сигналу и помехе, оценок передаточных функций канала от точек излучения сигналов и помех до точек измерения (приема), спектральных плотностей сигнала и помехи. Получение этих функции требует специального, предварительного исследования информационной системы.

Основным недостатком этого метода является узость практических областей его использования и высокая трудоемкость при реализации подобных фильтров. Действительно, синтезированный для одного временного отрезка фильтр уже не будет оптимальным для другого отрезка времени, если в информационной системе произошло, например, относительное перемещение точек расположения источников сообщений и источников помех, что имеет место быть в подавляющем большинстве реальных прикладных задач теории информации. Кроме того, известные в настоящее время методы синтеза фильтров с требуемой передаточной характеристикой по заданному виду амплитудно-частотной характеристики (АЧХ) и фазо- или время-частотной характеристикам (ФЧХ или ВЧХ) сводятся к методам экспериментального итерационного подбора различной комбинации фильтров низких частот (ФНЧ), фильтров высоких частот (ФВЧ) определенного порядка или комбинации полосовых фильтров (ПФ) различной добротности. Поскольку данный способ не дает однозначного технического решения задачи, описанного через совокупность общеизвестных узлов, блоков и связей между ними, а задача решена в виде формально-символьных, научных категорий (формул), то он не является патентоспособным техническим решением.

Учитывая эти обстоятельства, модель информационной системы должна быть усложнена. В отличие от вышеописанной модели системы, необходимо ее усложнить и решать задачу оптимальной фильтрации нестационарных, неэргодических процессов, полей, сигналов или, по-другому, задачу передачи сообщений любой физической природы в каналах с изменяющимися параметрами и случайными помехами, когда местоположение передатчиков сигналов и помех, а также точки приема сообщения могут случайным образом меняться. Эту задачу можно еще усложнить, если рассматривать не собственно фильтрацию электрических сигналов в оптимальном фильтре, а рассматривать все действия и преобразования над сигналами (любой физической природы) по их передаче из одной точки пространства и времени в другую точку - точку получения или приема сообщения этой же физической природы. Понятно, что подобным образом сформулированную задачу можно рассматривать как центральную задачу теории информации, поскольку ее решение может дать ответ на вопрос: как можно минимизировать потери информации или, по-другому, рост энтропии любой реальной системы связи.

В рамках вышеизложенной постановки эта задача была решена в изобретении "Способ оптимальной передачи сообщений любой физической природы, например способ оптимального звуковоспроизведения и система для его осуществления. Способ оптимального пространственного активного понижения уровня сигналов любой физической природы" (RU, А, 2145446). В изобретениях RU, A, 2106075; RU, A, 2106074; RU, А, 2106075 описаны технические решения, присутствующие в способе оптимальной передачи сообщений в качестве его части.

Способ оптимальной передачи сообщений, описанный в этом изобретении, основан на базовых положениях кибернетики. Система для его реализации построена по схеме с обратной связью и специальной обработкой передаваемого и принимаемого сообщений. Обработка этих сигналов ведется многополосным методом, при котором анализируются в реальном масштабе времени энергетические и временные параметры компонентов сигналов сообщений и помех, попадающих в соответствующие полосы анализа сигналов. В результате этой обработки удается непосредственно в процессе передачи сообщений осуществлять оптимальные предыскажения сигналов передаваемого сообщения и формировать сигналы для активного понижения шумов в точке получения сообщения. Причем все действия полностью автоматизированы и не требуют вмешательства человека, который, например, как в традиционном звуковоспроизведении, осуществляет аналогичные действия по компенсации искажающих свойств канала связи с помощью эквалайзера и корректора частотно-временных задержек сигналов на слух или с помощью соответствующего измерительного комплекса.

Таким образом, данный способ передачи сообщений позволяет все время автоматически рассчитывать энтропию системы передачи сообщений и компенсировать, насколько это возможно, рост энтропии. Рост энтропии в системах "тормозится" за счет внешнего источника энергии, энергия которого используется для генерации шумопонижающих сигналов, энергетических предыскажений сигналов сообщений, обработки сигналов и принципиально новой структурной схемы системы передачи сообщений, содержащей новые узлы: зондирующее устройство (например, микрофон), установленное вблизи точки получения сообщения, блок обработки сигналов и линию связи, предназначенную для передачи сигналов обратной связи в блок обработки сигналов. Важно отметить, что расположение зондирующего устройства вблизи точки получения сообщения обусловлено, с одной стороны, необходимостью реализации вышеуказанных функциональных возможностей блока обработки, а с другой стороны, предельно широкой постановкой задачи, в которой отсутствует информация о форме, свойствах канала связи, априорные сведения о характеристиках помех и сигналов, их мест расположения, информация о возможных их относительных перемещениях. Поэтому использование единственного зондирующего устройства логически вытекает из-за отсутствия априорной информации, в первую очередь, о канале связи. Если приемный элемент зондирующего устройства удалять от точки получения сообщения или использовать дополнительный приемный элемент, наугад разместив его в пространстве, то можно оказаться вне канала связи или передачи сообщений, например вне салона автомобиля, в котором передают звуковые сообщения. Поэтому способ является оптимальным с конструктивно-функциональной точки зрения только в рамках постановки задачи этого изобретения. При изменении постановки задачи этот способ можно усовершенствовать, введя новые действия (существенные признаки). Например, в изобретении RU, A, 2211491 решалась задача повышения точности передачи сообщений любой физической природы в каналах с мало изменяющимися параметрами удаленности точек излучения сигналов сообщений от точек их приема при наличии помех. Эта дополнительная информация о свойствах системы связи позволила найти новое техническое решение, позволяющее повысить эффективность подавления помех. Но наличие времени задержки сигналов для активного понижения шумов и помех не позволило полностью синхронизировать моменты времени прихода помех в точку получения сообщения и сигналов для их активного подавления. Кроме того, как показали исследования, эффект подавления помех и шумов в способах, описанных в патентах RU, А, 2145446 и RU, A, 2211491, ограничивается не только вышеуказанными задержками, но и уровнем развязки сигналов, принимаемых зондирующим устройством вблизи точки получения сообщения, и сигналами для активного понижения шума, излучаемыми в эту же точку пространства. При подобной структурной схеме система склонна к самовозбуждению. Спектр турбулентности подобной системы зависит от ряда параметров: частоты подавляемой помехи, скорости передачи сообщения в канале, задержки сигналов для активного понижения шумов и напоминает биения между сигналами шумов и сигналами для их активного подавления. В результате этого приходится ограничивать динамический диапазон сигналов для активного понижения шума, что приводит к незначительному (порядка единиц децибелл) эффекту понижения уровня шумов. Ниже будет показано, что если изменить вышеуказанную постановку задачи повышения точности передаваемого сообщения в каналах с помехами, то можно усовершенствовать известные из уровня техники способы передачи сообщений и способы понижения шумов.

Поскольку вышеописанные способы передачи сообщений в качестве своей части содержат способы понижения шумов, то целесообразно сделать краткий обзор известных из уровня техники способов понижения уровня шумов.

Известен способ подавления шумов преимущественно самолетов (JP, A, 52-15721). Способ заключается в приеме и преобразовании звуковых шумовых сигналов авиамоторного средства (самолета) в электрические сигналы, передаче принятых сигналов к месту их обработки, обработке этих сигналов посредством блока обработки, на вход которого подают эти сигналы, выполненного с возможностью осуществления энергетических и временных предыскажений принятых сигналов при формировании его выходных электрических сигналов, предназначенных для активного понижения шумовых сигналов, их преобразовании в звуковые сигналы, при этом место расположения точки приема сигналов находится ближе к источнику шума (двигателю), чем область пространства понижения шума. Эта область находится на земле.

Энергетические и временные предыскажения принятых шумовых сигналов осуществляют путем подбора уровней и фаз компонентов принятого электрического сигнала и запоминания (фиксации) энергетических и временных предыскажений, обеспечивающих эффект понижения шума в вышеуказанной области пространства. Конструктивно, блок обработки содержит транзистор, на эмиттере и коллекторе которого формируются противофазные сигналы, а также узел, в котором с помощью этих сигналов формируют выходной сигнал, фаза и уровень которого обеспечивает эффект шумопонижения. В варианте, используются усилители и громкоговорители для многоканального шумопонижения во все стороны от самолета. Пространственное разнесение приемного микрофона и громкоговорителя обеспечивает достаточно высокий уровень развязки между принимаемыми и излучаемыми сигналами. Это позволяет сформировать сигналы для шумопонижения, уровень которых сопоставим с уровнем шумовых сигналов. В результате, эффективность понижения шумовых сигналов, например, на частотах их наибольшей интенсивности достаточно высока.

Недостатком этой системы можно считать узкополосный характер эффекта понижения шума. Причина этого заключается в отличии спектров шумового сигнала источника шума - двигателя в различных точках области пространства на земле от спектра шумового сигнала в точке его приема, поскольку источником шума является пространственно распределенная совокупность различных шумящих узлов, деталей и агрегатов двигателя, представляющего собой, например, бочкоподобный агрегат диаметром порядка 1-2 м и длинной порядка 2-5 м, подвешенный к крылу самолета. Составляющие звуковых шумовых сигналов от различных узлов двигателя приходят в область пространства на земле и к точке расположения микрофона для приема шумовых сигналов на самолете с разными уровнями и фазами. Поэтому с помощью вышеописанного блока обработки удается подобрать уровни и фазы компонентов шумовых сигналов лишь в узкой полосе частот. Для других шумовых компонентов энергетические и временные предыскажения оказываются неоптимальными. Вместо эффекта понижения шума на этих частотах может, наоборот, наблюдаться эффект усиления уровня шума. По этой причине вариант понижения уровня шума во все стороны от самолета физически не реализуем. В результате общий уровень снижения шума в подобных системах невысок. Этим, по всей видимости, объясняется невнедренность способа понижения шума на авиатранспорте.

Более эффективно добиваться шумопонижающего эффекта можно, если использовать методы многополосной обработки шумовых сигналов, которые подробно описаны в вышеуказанных изобретениях (BU, A, 2145446 и RU, A, 2211491). В этих изобретениях показано, что многополосно отфильтровав сигналы (в данном случае шума), можно путем экспериментального подбора уровней и фаз (времени задержки) компонентов этих сигналов, попадающих в эти полосы частот, до определенной степени независимо, осуществлять формирование требуемых частотно-энергетических и частотно-временных предыскажений этих сигналов, например, для формирования сигналов активного понижения шумов. Говоря другими словами, осуществлять формирование АЧХ и ФЧХ фильтра, обеспечивающего наибольший эффект понижения шумов в требуемой области пространства. Ниже будет показано, что соответствующим образом доработав эти изобретения, можно избавиться от их недостатков и повысить точность передачи сообщений за счет более эффективного активного подавления помех и шумов.

В определенном смысле схожая проблема - повышения точности передачи сообщений, уже достаточно давно решается в такой области радиотехники как конструирование усилителей мощности, например, низких частот.

Известно большое число технических решений, направленных на повышение линейности усилителей электрических сигналов, например, посредством общей отрицательной обратной связи, которую изобрел и запатентовал в 1927 г. Харольд Блэк.

В основе этого технического решения лежит принцип суммирования сигнала с выхода каскада усиления или всего усилителя, если он выполнен в виде нескольких последовательно включенных каскадов усиления, и входного сигнала в противофазе и подачи суммы этих сигналов на вход усилителя. Данное техническое решение позволяет повышать линейность усилителя за счет снижения продуктов нелинейных и интермодуляционных искажений, происходящих собственно в усилителе электрических сигналов. Этот процесс во многом аналогичен процессу активного понижения шумов, но не в пространстве, например, где-то вне узлов и блоков шумопонижающей системы, а непосредственно внутри усилителя. Недостатком известных технических решений по повышению линейности усилителей можно считать низкую точность формирования передаточной характеристики цепи обратной связи с использованием традиционных решений.

В качестве прототипа способа передачи сообщений любой физической природы в этом изобретении выбрано устройство для воспроизведения звуковых сигналов при наличии помех и шумов San Francisco CD 70 фирмы Blaupunkt (журнал "Автозвук" №12, декабрь 2001 г., стр.103-115). Это проигрыватель компакт-дисков и радиоприемник, конструктивно объединенный с многофункциональным блоком обработки сигналов. К этому устройству можно подключить измерительный микрофон и ряд периферийных устройств (дополнительные усилители, громкоговорители). Измерительный микрофон предназначен для решения двух задач.

"Во-первых, это автоматическое регулирование громкости в зависимости от фоновых шумов, фактически - от скорости движения. На кратковременные всплески система не реагирует - такие уж там заложены постоянные времени. Зато на предсказуемое плавное повышение шумов ... реагирует своевременно и аккуратно. Вторая задача будет посложней. В San Francisco CD 70 имеется семиполосный эквалайзер, и для него предусмотрены три предустановки: EQ1, EQ2, EQ3. С помощью микрофона можно автоматически выровнять АЧХ по звуковому давлению при различном заполнении салона... Коррекция устанавливается независимо для каналов L и R (!), а если что ... вручную ... В звуковом тракте в дополнение к эквалайзеру здесь есть и обычный регулятор тембра НЧ и ВЧ... Встроенный кроссовер - ФНЧ для сабвуферного выхода и ФВЧ для остальных... Тонкомпенсапия здесь тоже имеет пять градаций глубины обработки... от низкой вибростойкости удалось избавиться". Этот проигрыватель укомплектован более совершенной системой антивибрации автомобильных проигрывателей CD - "анти-шок". В этом устройстве реализуется следующий способ передачи звуковых сообщений.

Сигналы сообщений преобразуют в электрические сигналы источника сообщений с помощью проигрывателя CD или радиоприемного устройства. Эти сигналы подают на один из входов блока обработки сигналов, который выполнен с возможностью осуществления энергетических (посредством регулятора уровня или громкости) и/или временных (посредством тонкомпенсированного регулятора громкости или путем задержки сигналов сообщений в системе антивибрации) предыскажений электрических сигналов источника сообщений при формировании выходных сигналов блока обработки. Эти сигналы усиливают, преобразуют в сигналы той же физической природы (в звуковые сигналы) и излучают в канал передачи сообщений до области пространства их получения - в салон автомобиля. Шумы, присутствующие в этом автомобиле, не подавляют, а увеличивают уровень громкости в салоне автомобиля пропорционально усредненному уровню шумов. В результате этих действий полезный информационный сигнал сообщения модулируется усредненным уровнем шума, т.е. приобретает новый специфический вид искажений. Это не только заметно на слух и раздражает слушателя (водителя) "плавающим" уровнем громкости, но и приводит к повышенной утомляемости слушателя, вынужденного вне своего желания слушать сигналы сообщений на повышенном уровне громкости совместно с высоким уровнем шумов. Использование подобной системы резко повышает аварийность и никак не согласуется с общеизвестными запатентованными положениями современной теории информации. Подобные методы повышения помехоустойчивости можно применять в радиосвязи, где сообщение передают посредством высокочастотного переносчика сообщений - несущей, повышая уровень которой, можно добиться роста соотношения сигнал/шум (помеха) в точке приема радиосигнала. Но при этом рост радиосигнала компенсируется в радиоприемном устройстве, например, с помощью системы АРУ, а также в результате специфических особенностей детектирования радиосигналов с различным видом модуляции. В звукотехнике подобный подход неприменим. Здесь нет никаких переносчиков сообщений. Передаваемый из одной точки пространства и времени в другую точку процесс конкретной физической природы (сигнал, поле и т.д. - это все синонимы), например звуковой сигнал, как раз и есть само сообщение. Современные научные положения о принципах передачи сообщений общеизвестны и подробно изложены, например, в патенте RU, А, 2145446. В этом источнике информации строго научно доказано, что при реализации оптимальных способов передачи сообщений в условиях помех необходимо стараться предельно точно повторить форму сигнала сообщения в точке его получения, а шумы и помехи надо подавлять. Только реализуя такой подход, можно создавать системы высшей формы организации, класса качества, группы сложности и реально повышать, например, потребительские свойства звуковоспроизводящей аппаратуры. Ниже будет показано, как можно реализовать этот подход, если имеется возможность априорного получения информации о канале передачи сообщений.

Раскрытие изобретения

В основу настоящего изобретения положена задача создать такие способы и системы для их осуществления, которые позволяют повысить точность передачи сообщений любой физической природы в каналах с помехами, если заранее известно, где находятся источники помех по отношению к области пространства получения сообщения, каков их спектр и каковы размеры и форма области пространства получения сообщения, и, таким образом, более эффективно понижать уровень помех и шумов, и повысить соотношение сигнал/шум (помеха) при передаче сообщений любой физической природы. Дополнительным техническим результатом является повышение соотношения сигнал/дум электрических сигналов источника сообщений и повышение линейности и помехозащищенности усилителей электрических сигналов.

Поставленная задача решается тем, что в известном способе передачи сообщений любой физической природы, заключающемся в преобразовании сообщений в электрические сигналы источника сообщений, их передаче к месту обработки, обработке сигналов источника посредством блока обработки, на второй вход которого подают эти сигналы, и выполненного с возможностью осуществления энергетических и/или временных предыскажений электрических сигналов источника сообщений при формировании выходных сигналов блока обработки, их усиления, преобразования в сигналы той же физической природы и излучения в канал передачи сообщений до области пространства их получения, в котором присутствуют помехи или шумы той же физической природы. Согласно изобретению осуществляют прием шумовых сигналов любой физической природы, их преобразование в принятые шумовые электрические сигналы, передачу их к месту обработки, обработку этих сигналов посредством блока обработки, снабженного первым входом, на который подают эти сигналы, и выполненного с возможностью осуществления энергетических и временных предыскажений принятых шумовых сигналов при формировании выходных электрических сигналов блока обработки, предназначенных для активного понижения шума в области пространства получения сообщения, их усиление, преобразование в сигналы той же физический природы и излучение до области пространства получения сообщения, причем место приема шумовых сигналов выбирают ближе к источнику шума, чем область пространства получения сообщения, а энергетические и временные предыскажения принятых шумовых электрических сигналов осуществляют путем подбора уровней и фаз их компонентов при нулевом уровне электрических сигналов источника сообщений или при уровне электрических сигналов источника сообщений ниже наперед заданного порога, запоминания энергетических и временных предыскажений, обеспечивающих эффект понижения уровня шума в области пространства получения сообщения.

Возможны варианты реализации способа, такие, что:

электрические сигналы для активного понижения шума формируют в ограниченной полосе частот низкочастотной части шумового спектра принятого шумового сигнала для увеличения размеров области пространства понижения шума;

энергетические предыскажения электрических сигналов источника сообщений осуществляют путем регулирования уровня сигнала источника сообщений, энергетические и временные - путем тонкомпенсированного регулирования уровня сигнала источника, а временные - путем задержки сигнала источника сообщений, например в системе антивибрации автомобильного проигрывателя компакт-дисков;

для корректировки спектра сигналов сообщений с учетом возможных искажений передаваемых сообщений в канале осуществляют неавтоматические частотно-энергетические и/или частотно-временные предыскажения электрических сигналов источника сообщений посредством блока обработки, выполненного с возможностью многополосной обработки электрических сигналов источника сообщений при формировании его выходных сигналов;

частотно-энергетические предыскажения осуществляют посредством эквалайзера, частотно-временные предыскажения - с помощью частотно-временных или частотно-фазовых корректоров, а частотно-энергетические и частотно-временные предыскажения осуществляют посредством темброблоков или фиксированных предустановок амплитудно-частотных и фазочастотных характеристик в предыскажающих фильтрах;

для реализации режима понижения уровня различных шумовых компонентов во всей вышеуказанной области шумового спектра с учетом возможных почти постоянных отличий спектра шумовых сигналов в области пространства получения сообщения и спектра принятого шумового сигнала осуществляют неавтоматические частотно-энергетические и частотно-временные предыскажения принятых шумовых электрических сигналов посредством блока обработки, выполненного с возможностью многополосной обработки принятых шумовых сигналов при формировании его выходных сигналов;

в области пространства получения сообщения осуществляют дополнительный прием сигналов любой физической природы, представляющих собой сигнал сообщения плюс шум, спектр которых может изменяться со временем по отношению к спектру принятого шумового сигнала не только за счет текущих изменений спектра передаваемого сообщения, но и за счет изменений собственно спектра шума в области пространства получения сообщений по отношению к спектру принятого шумового сигнала, преобразование дополнительно принятого сигнала любой физической природы в электрические сигналы обратной связи, их передачу к месту обработки, их обработку посредством блока обработки, выполненного с дополнительным входом, на который подают эти сигналы, и выполненного с возможностью автоматического формирования энергетических и временных или частотно-энергетических и/или частотно-временных предыскажений принятых шумовых сигналов любой физической природы посредством введения в блок обработки узлов, позволяющих автоматизировать действия по подбору уровней и/или фаз компонентов формируемых сигналов для активного понижения шума, а также действия по запоминанию и формированию энергетических и/или временных предыскажений этих сигналов, обеспечивающих эффект понижения уровня шума в области пространства получения сообщения;

в области пространства получения сообщения осуществляют дополнительный прием сигналов любой физической природы, представляющих собой сигнал сообщения плюс шум, спектр которых может изменяться по отношению к спектру сигналов источника не только за счет текущих изменений спектра передаваемого сообщения и случайных помех или шумов, но и за счет случайных изменений передаточной функции канала передачи сообщений, преобразование дополнительно принятого сигнала любой физической природы в электрические сигналы обратной связи, их передачу к месту обработки, обработку посредством блока обработки, снабженного дополнительным входом, на который подают эти сигналы, и выполненного с возможностью автоматического формирования частотно-энергетических и/или частотно-временных предыскажений электрических сигналов источника сообщений посредством введения в блок обработки узлов, позволяющих автоматизировать действия по подбору уровней и/или фаз многополосно формируемых компонентов сигналов источника сообщений;

для реализации режима понижения уровня различных шумовых компонентов во всей вышеуказанной области шумового спектра с учетом почти постоянных отличий спектра шумовых сигналов в области пространства получения сообщений по отношению к спектру принятого шумового сигнала осуществляют частотно-энергетические и частотно-временные предыскажения принятых шумовых электрических сигналов посредством блока обработки, выполненного с возможностью многополосной неавтоматической обработки принятых шумовых электрических сигналов при формировании выходных сигналов блока обработки;

для реализации режима понижения уровня различных шумовых компонентов во всей вышеуказанной области шумового спектра с учетом возможных случайных изменений во времени спектра шумовых сигналов в области пространства получения сообщений по отношению к спектру принятого шумового сигнала осуществляют автоматические частотно-энергетические и частотно-временные предыскажения принятых шумовых электрических сигналов посредством блока обработки, выполненного с возможностью осуществления этих предыскажений лишь в те моменты времени, когда уровень сигналов источника сообщений ниже наперед заданного, например перед передачей сообщений или в паузах во время передачи сообщений, посредством введения в блок обработки узлов, позволяющих автоматизировать действия по подбору уровней и фаз многополосно формируемых сигналов для активного понижения шума в эти моменты времени и их запоминания и формирования запомненных значений предыскажений во время передачи сигналов источника сообщений, когда уровень сигналов источника сообщений выше наперед заданного;

блок обработки выполняют с возможностью суммирования обработанных сигналов источника сообщений и обработанных принятых шумовых сигналов любой физической природы посредством сумматора для формирования таким образом его выходных сигналов и реализации одноканального способа передачи сообщений любой физической природы;

блок обработки выполняют с возможностью суммирований многополосно обработанных сигналов источника сообщений и многополосно обработанных принятых шумовых сигналов любой физической природы посредством не менее двух сумматоров для формирования таким образом его выходных сигналов и реализации многополосного способа передачи сообщений любой физической природы;

преобразование сообщений в электрические сигналы источника сообщений осуществляют многоканальным способом для реализации многоканального способа передачи сообщений в соответствующее числу каналов области пространства получения сообщений, в каждом из этих каналов осуществляют один из описанных вариантов способа передачи сообщений, при этим принятый шумовой сигнал является общим для этих каналов и подается на дополнительные входы блоков обработки, число которых равняется числу каналов передачи сообщений;

преобразование сообщений в электрические сигналы источника сообщений осуществляют многоканальным способом для реализации многоканального способа передачи сообщений в соответствующее числу каналов области пространства получения сообщений, в каждом из этих каналов осуществляют один из описанных вариантов способа передачи сообщений, при этим число принятых шумовых сигналов равняется числу каналов передачи сообщений, и они подаются на дополнительные входы блоков обработки, число которых равняется числу каналов передачи сообщений;

каждый выходной сигнал блока обработки усиливают посредством усилителя электрических сигналов и излучают до области или областей пространства получения сообщений любой физической природы;

места расположения блока обработки и источника сигналов сообщений пространственно не совпадают для осуществления возможности их поблочной реализации и комплектации системы передачи сообщений блоками с вышеуказанными функциональными возможностями, или места их расположения находятся поблизости для их конструктивной реализации в одном устройстве;

в качестве сообщений любой физической природы используют звуковые сообщения.

Поставленная задача изобретения решается тем, что в известном способе передачи сообщений любой физической природы, заключающемся в преобразовании сообщений в электрические сигналы источника сообщений, в усилении этих сигналов посредством усилителя, выполненного в виде одного или нескольких каскадов усиления, подачи усиленных электрических сигналов источника сообщений на нагрузку, формировании электрических сигналов обратной связи, их подачи хотя бы на один из каскадов усиления, согласно изобретению хотя бы один из сформированных сигналов обратной связи подвергают многополосной обработке посредством блока обработки сигналов, которые подают на его первый вход, в блоке обработки сигналы обратной связи многополосно фильтруют для формирования не менее двух каналов многополосной обработки компонентов сигналов обратной связи, каждый многополосно сформированный канал выполняют с возможностью осуществления энергетических и временных предыскажений компонентов сигналов обратной связи для повышения точности передаваемого сообщения за счет реализации возможности более точного формирования требуемой передаточной функции цепи обратной связи, многополосно обработанные компоненты сигналов обратной связи используют для формирования выходных сигналов блока обработки сигналов, которые подают на вышеуказанный хотя бы один из каскадов усиления электрических сигналов сообщений.

Возможны варианты реализации способа, такие, что:

в блоке обработки сигналов многополосно обработанные компоненты сигналов обратной связи суммируют для формирования выходных сигналов блока обработки;

в блоке обработки многополосно обработанные сигналы обратной связи дополнительно фильтруют для уменьшения нелинейных и интермодуляционных искажений компонентов сигналов обратной связи в полосах их обработки, многополосно обработанные и дополнительно отфильтрованные компоненты сигналов обратной связи суммируют, полученные таким образом сигналы являются выходными сигналами блока обработки;

сигналы обратной связи являются отрицательными или положительными сигналами обратной связи;

усиление электрических сигналов источника сообщений осуществляют путем многокаскадного усиления с комбинированной обратной связью отрицательной и положительной, при этом хотя бы одна из обратных связей подвергается многополосной обработке посредством блока обработки сигналов в соответствии с последовательностью вышеописанных действий, если многополосной обработке подвергается несколько сформированных сигналов обратной связи, то используют соответствующее число блоков обработки сигналов, на первые входы которых подают соответствующие сформированные сигналы обратной связи, а соответствующие выходные сигналы блоков обработки подают на соответствующие каскады усиления электрических сигналов источника сообщений;

в качестве усилителя используют усилитель мощности, нагрузкой усилителя служит излучатель сигналов, предназначенный для преобразования электрических усиленна сигналов сообщений в сигналы сообщений любой физической природы, а электрические сигналы обратной связи формируют с выхода усилителя, или с входа излучателя, или путем дополнительного преобразования сигналов любой физической природы в непосредственной близости от излучателя в электрические сигналы обратной связи;

энергетические и временные предыскажения компонентов электрических сигналов обратной связи осуществляют путем предварительного неавтоматического подбора регулировок уровней и фаз многополосно обрабатываемых сигналов обратной связи по настроечным сигналам сообщений удобной для этого формы, например шумоподобным сигналам или синусоидально-подобным сигналам различных частот по критерию, например, минимума среднеквадратического отклонения сигналов передаваемого сообщения;

энергетические и временные предыскажения компонентов сигналов обратной связи осуществляют автоматически по сигналам источника сообщений, например, шумоподобной формы или собственно по самим передаваемым сигналам сообщений посредством блока обработки сигналов, выполненного с возможностью автомат