Способы получения 2-хлор-1,1,1,2,3,3,3-гептафторпропана, гексафторпропена и 1,1,1,2,3,3,3-гептафторпропана

Изобретение относится к способу получения 2-хлор-1,1,1,2,3,3,3-гептафторпропана, который включает (а) контактирование смеси, содержащей фтороводород, хлор и, по меньшей мере, одно исходное вещество, выбранное из группы, состоящей из галогенпропенов формулы СХ3CCl=СХ2 и галогенпропанов формулы CX3CClYCX3, где каждый X независимо представляет F или Cl и Y представляет Н, Cl и F (при условии, что число X и Y, которые являются F, в целом не более шести) с катализатором хлорфторирования в зоне реакции с получением продукта в виде смеси, содержащей CF3CClFCF3, HCl, HF и недостаточно фторированные галогенированные углеводородные промежуточные соединения и (b) разделение полученного продукта с выделение CF3CClFCF3. Указанный катализатор хлорфторирования, содержащий, по меньшей мере, один содержащий хром компонент, выбранный из (i) кристаллического альфа-оксида хрома, где, по меньшей мере, 0,05 атом.% атомов хрома в кристаллической решетке альфа-оксида хрома заменено на никель, трехвалентный кобальт или как на никель, так и на трехвалентный кобальт, при условии, что не более 2 атом.% атомов хрома в кристаллической решетке альфа-оксида хрома заменено на никель и что общее количество атомов хрома в кристаллической решетке альфа-оксида хрома, которые заменены никелем и трехвалентным кобальтом, составляет не более 6 атом.%, и (ii) фторированного кристаллического оксида (i). Также изобретение относится к способу получения смеси гексафторпропена и 1,1,1,2,3,3,3-гептафторпропана посредством взаимодействия исходной смеси, состоящей из CF3CClFCF3, который получен способом, описанным выше, и водорода, в паровой фазе при повышенной температуре, возможно, в присутствии катализатора гидрогенизации. Технический результат - улучшение активности катализатора, влияющего на селективность превращения в продукт. 2 н. и 1 з.п. ф-лы, 2 табл.

Реферат

Данное изобретение относится к синтезу 2-хлор-1,1,1,2,3,3,3-гептафторпропана и его внедрению в производство гексафторпропена и 1,1,1,2,3,3,3-гептафторпропана.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Соединение 2-хлор-1,1,1,2,3,3,3-гептафторпропан (CF3CClFCF3, CFC-217bа) является промежуточным соединением, пригодным для получения гексафторпропена (С3F6, HFP), ценного фтормономера, и 1,1,1,2,3,3,3-гептафторпропана (CF3CHFCF3, HFC-227еа), огнегасителя и газа-вытеснителя.

Промышленные способы получения гексафторпропена обычно связаны с рабочими температурами более чем примерно 600°С. Высокие температуры реакции приводят к образованию перфторизобутилена, чрезвычайно токсичного соединения, которое является дорогостоящим с точки зрения удаления и уничтожения (например, см. Европейскую патентную заявку № 002098 В1). Способы производства HFP при более низких температурах на основе использования ациклических трехуглеродных углеводородов или частично галогенированных трехуглеродных углеводородов описаны в патенте США № 5043491, патенте США № 5057634 и патенте США № 5068472.

В патенте США № 6018083 описан способ производства HFP и HFC-227еа, включающий (а) подачу CCl2=CClCF3, HF и Cl2 в первую зону реакции, в которой находится катализатор, состоящий из трехвалентного хрома и работающий при температуре, равной, по меньшей мере, 250°С, но не более чем 325°C, с получением выходящего из реактора потока, состоящего из С3Cl3F5, С3Cl2F6 и CFC-217bа, HCl и HF; (b) перегонку выходящего из реактора потока (а) с получением (i) потока низкокипящего продукта, содержащего HCl, (ii) потока реагента, содержащего азеотропную смесь CFC-217ba и HF и (iii) потока высококипящего продукта, содержащего С3Cl3F5 и С3Cl2F6; (с) взаимодействие CFC-217bа потока реагента (ii) с водородом в присутствии катализатора с получением смеси, состоящей из HFP и HFC-227еа; (d) подачу С3Cl3F5 и С3Cl2F6 потока высококипящего продукта (iii) вместе с HF во вторую зону реакции, в которой находится катализатор, состоящий из трехвалентного хрома и работающий при температуре, равной, по меньшей мере, примерно 375°С с получением продукта реакции, содержащего CFC-217bа и HF; и (е) повторное использование продукта реакции (d) в первой зоне реакции. В патенте США № 3865885 описано каталитическое хлорфторирование СН3CHFCH3 до CCl2=CClCF3; в WO РСТ 99/51555 описаны способы очистки и использования CFC-217bа (например, дегалогенирование CFC-217ba с получением HFP или гидродехлорирование CFC-217bа с получением HFC-227еа) и азеотропов CFC-217bа с HF; и в патенте США № 5364992 описан гидрогенолиз галогенуглеродов (например, CFC-217bа).

Сохраняется потребность в способах производства CFC-217bа.

КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ

Данное изобретение представляет способ получения 2-хлор-1,1,1,2,3,3,3-гептафторпропана. Данный способ включает (а) контактирование смеси, содержащей фтороводород (HF), хлор (Cl2) и, по меньшей мере, одно исходное вещество, выбранное из группы, состоящей из галогенпропенов формулы СХ3CCl=СХ2 и галогенпропанов формулы СХ3CClYCX3, где каждый Х, независимо выбран из группы, состоящей из F и Cl, и Y выбран из группы, состоящей из Н, Cl и F (при условии, что число Х и Y, которые представляют собой F, в целом не более шести) с катализатором хлорфторирования в реакционной зоне с получением смеси, состоящей из CF3CClFCF3, HCl, HF и недостаточно фторированных галогенированных углеводородных промежуточных соединений. Данный способ отличается указанным катализатором хлорфторирования, содержащим, по меньшей мере, один содержащий хром компонент, выбранный из (i) кристаллического альфа-оксида хрома, в котором, по меньшей мере, 0,05 атом.% атомов хрома в кристаллической решетке альфа-оксида хрома заменено никелем, трехвалентным кобальтом или как никелем, так и трехвалентным кобальтом, при условии, что не более 2 атом.% атомов хрома в кристаллической решетке альфа-оксида хрома заменено никелем, и что общее количество атомов хрома в кристаллической решетке альфа-оксида хрома, которое заменено никелем и трехвалентным кобальтом, составляет не более 6 атом.%, и (ii) фторированного кристаллического оксида (i).

Данное изобретение относится также к способу получения смеси HFC-227еа и гексафторпропена путем взаимодействия исходной смеси, состоящей из CFC-217bа и водорода в газообразной фазе при повышенной температуре, возможно, в присутствии катализатора гидрогенизации. Данный способ отличается получением CFC-217bа по способу, описанному выше.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

На стадии хлорфторирования способа данного изобретения одно или более из галогенпропеновых соединений, имеющих формулу СХ3CCl=СХ2, и галогенпропаны формулы СХ3CClYCX3 обычно взаимодействуют с хлором (Cl2) и по существу безводным фтороводородом (HF). Подходящие галогенпропеновые исходные вещества для способа данного изобретения включают CCl3CCl=CCl2 (НСР), CCl2FCCl=CCl2, CClF2CCl=CCl2, CF3CCl=CCl2 (CFC-1213ха), Е- и Z-CF3CCl=CClF и CF3CCl=CF2 (CFC-1215хс). НСР можно получить путем взаимодействия тетрахлоретена с хлороформом в присутствии хлорида алюминия с получением 1,1,1,2,2,3,3-гептахлорпропана, который, в свою очередь, обрабатывают основанием, как описано в Prins in Journal fuer Praktische Chemie, volume 89, pages 414-424 (1914). CFC-1213ха можно получить хлорфторированием изопропилфторида, как описано в патенте США 3865885. CFC-1215хс можно получить фторированием CFC-1213ха в присутствии катализатора из оксида хрома(III) и соединения двухвалентного цинка, как описано в патенте США 3878257. Подходящие галогенпропановые исходные вещества для процесса данного изобретения включают CF3CCl2CCl3 (CFC-213аb), CF3CCl2CCl2F (CFC-214аb), CF3CHClCClF2 (HCFC-225dа) и CF3CHClCF3 (HCFC-226dа). CFC-213аb и CFC-214аb можно получить хлорфторированием пропана или пропилена, как описано в патенте США № 5057634. HCFC-225dа и HCFC-226dа можно получить путем реакции CFC-1213ха с HF и пентахлорида сурьмы, как описано McBee et al., Journal of American Chemical Society, vol. 70, pages 2023-2024 (1948).

Предпочтительно, реакцию HF и Cl2 с галогенпропеном(ами) СХ3CCl=СХ2 и/или галогенпропаном(ами) СХ3CClYCX3 проводят в газообразной фазе в нагретом трубчатом реакторе. Возможен ряд конфигураций реактора, включая горизонтальную или вертикальную ориентацию реактора и разные способы контактирования галогенпропеновых исходных веществ с HF и хлором.

В одном из воплощений данного изобретения исходный(е) галогенпропен(ы) СХ3CCl=СХ2 и/или галогенпропан(ы) СХ3CClYCX3 могут быть сначала превращены в пар, а затем поданы в реактор в виде газа.

В другом воплощении данного изобретения исходный(е) галогенпропен(ы) СХ3CCl=СХ2 и/или галогенпропан(ы) СХ3CClYCX3 можно приводить в контакт с HF в предварительном реакторе. Предварительный реактор может быть пустым, но предпочтительно заполненным подходящим наполнителем, таким как стружки или волокно из никелевого сплава Monel™ или Hastelloy™ или другого материала, инертного к HCl и HF, что дает возможность эффективного смешивания СХ3CCl=СХ2 и/или СХ3CClYCX3 и паров HF.

Подходящая температура для предварительного реактора находится в интервале от примерно 80°С до примерно 250°С, предпочтительно, от примерно 100°С до примерно 200°С. В отношении исходных веществ, имеющих менее трех заместителей в виде атомов фтора, некоторая замена атомов хлора на фтор может происходить в предварительном реакторе. Более высокая температура приводит к большему превращению галогенпропена(ов) СХ3CCl=СХ2 и/или галогенпропана(ов) СХ3CClYCX3 в предварительном реакторе и большей степени фторирования в превращенных продуктах. В этих условиях, например, гексахлорпропен превращается в смесь, содержащую преимущественно CFC-1213ха.

Термин «степень фторирования» отражает число атомов фтора, которые замещают атомы хлора в исходных веществах СХ3CClYCX3 и СХ3CCl=СХ2. Например, CF3CCl=CClF представляет более высокую степень фторирования, чем CClF2CCl=CCl2, и CF3CCl2CF3 представляет более высокую степень фторирования, чем CCl2FCCl2CF3. Термин «недостаточно галогенированные углеводородные промежуточные соединения» означает галогенпропаны формулы СХ3CClYCX3 и галогенпропены формулы СХ3CCl=СХ2, где число Х и Y, которые являются фтором, в целом не более шести. Примерами недостаточно фторированных промежуточных соединений являются CCl2=CClCCl3, CClF=CClCF3, CCl2=CClCClF2, CCl2=CClCF3, CF2=CClCF3, CCl2=CClCCl2F, CF3CCl2CCl3, CF3CCl2CCl2F, CF3CHClCClF2 и CF3CHClCF3 (т.е. те же соединения, подходящие в качестве исходных веществ). Недостаточно фторированные промежуточные соединения галогенированных углеводородов могут включать непрореагировавшее исходное вещество, но не включают ни CFC-217bа (т.е. желаемый продукт), ни 1-хлоргептафторпропан (т.е. CFC-217са).

Молярное отношение HF к исходному веществу в предварительном реакторе СХ3CCl=СХ2 и/или СХ3CClYCX3 составляет обычно от примерно стехиометрического отношения HF к галогенпропену до примерно 50:1. Стехиометрическое отношение HF к исходному веществу зависит от того, является ли исходное вещество галогенпропеном или галогенпропаном, или смесью, и от средней степени фторирования исходного вещества, подаваемого в предварительный реактор. Например, если галогенпропен является НСР, а желаемый конечный продукт является CFC-217bа, стехиометрическое отношение HF к НСР составляет 7:1; если галогенпропен является CFC-1213ха, стехиометрическое отношение HF к CFC-1213ха составляет 4:1; и если галогенпропан является CFC-214аb, стехиометрическое отношение HF к CFC-214аb равно 3:1. Предпочтительно, молярное отношение HF к исходному веществу в предварительном реакторе составляет от примерно двойного стехиометрического отношения HF к галогенпропану или галогенпропену до примерно 40:1. Более высокое молярное отношение HF к исходному веществу не дает особого преимущества. Более низкое отношение приводит к сниженному выходу CFC-217bа, если дополнительное количество HF не подается одновременно в зону реакции.

Если исходные вещества приводят в контакт с HF в предварительном реакторе, выходящий поток из предварительного реактора приводят в контакт с хлором в зоне реакции на стадии (а).

При другом осуществлении данного изобретения исходное(ые) вещество(а) можно приводить в контакт с Cl2 в предварительном реакторе, необязательно в присутствии HF. Предварительный реактор может быть пустым, но предпочтительно, заполненным подходящим наполнителем, таким как стружки или волокно из никелевого сплава Monel™ или Hastelloy™, активированный уголь или другой материал, инертный к HCl и Cl2, что дает возможность эффективного смешивания СХ3CClYCX3 и/или СХ3CCl=СХ2 и паров Cl2.

Обычно, по меньшей мере, часть любого галогенпропенового исходного вещества взаимодействует с Cl2 в предварительном реакторе путем присоединения к олефиновой связи с получением насыщенного галогенпропана. Кроме того, если присутствует HF, он может также реагировать в предварительном реакторе. Подходящая температура для предварительного реактора в этом воплощении данного изобретения находится в интервале от примерно 80°С до примерно 250°С, предпочтительно, от примерно 100°С до примерно 200°С. Более высокая температура приводит к большему превращению галогенпропенового исходного вещества в насыщенные продукты и большей степени галогенирования. В присутствии HF степень фторирования также будет повышаться при более высокой температуре в предварительном реакторе.

Термин «степень галогенирования» отражает общее число галогеновых заместителей (хлора плюс фтора) в галогенпропановом или галогенпропеновом продукте. Например, CF3CCl2CClF2 имеет более высокую степень галогенирования, чем CF3CCl=Cl2, а также CF3CClFCF3 имеет более высокую степень галогенирования, чем CF3CHClCF3.

Молярное отношение Cl2 к исходному веществу в подаваемом потоке или в предварительный реактор или в зону реакции на стадии (а) составляет обычно от примерно 1:1 до примерно 10:1, предпочтительно, от примерно 1:1 до примерно 5:1.

При предпочтительном осуществлении данного изобретения на стадии хлорфторирования исходные вещества переводят в пар, предпочтительно в присутствии HF, и приводят в контакт с HF и Cl2 в предварительном реакторе, а затем подают в зону реакции. Если в предварительный реактор подают предпочтительные количества HF и Cl2, то нет необходимости дополнительно вводить HF и Cl2 в зону реакции. Подходящая температура в зоне реакции находится в интервале от примерно 280°С до не более 450°С, предпочтительно, от примерно 300°С до примерно 425°С. Более высокие температуры приводят к большему превращению исходных веществ, но также способствуют снижению срока службы катализатора. Более низкие температуры, чем примерно 280°С, приводят к выходу CFC-217bа часто ниже 10% и повышенному количеству изомеров дихлоргексафторпропана. Тем не менее изомеры дихлоргексафторпропана могут быть затем отделены от CFC-217bа и возвращены обратно в зону реакции.

Подходящее давление в реакторе для осуществления данного изобретения в газовой фазе может находиться в интервале от примерно 1 до примерно 30 атмосфер. Давление в реакторе, равное от примерно 5 атмосфер до примерно 30 атмосфер, можно предпочтительно использовать для облегчения отделения HCl от других продуктов реакции на стадии (b) данного способа.

В зоне реакции стадии хлорфторирования способа данного изобретения может быть помещен катализатор хлорфторирования, состоящий из кристаллического замещенного металлом альфа-оксида хрома, где трехвалентный кобальт и/или никель заменяет хром в кристаллической решетке оксида хрома. Количество никеля должно составлять не более 2 атом.%, рассчитывая от положений в кристаллической решетке альфа-оксида хрома, занятых хромом (до замещения), и количество кобальта должно быть не более 6 атом.%, рассчитывая от положений в кристаллической решетке альфа-оксида хрома, занятых хромом (до замещения). А также количество кобальта, никеля или как никеля, так и кобальта должно составлять, по меньшей мере, 0,05 атом.%, но общее количество кобальта и никеля вместе должно составлять не более 6 атом.%, рассчитывая от положений в кристаллической решетке альфа-оксида хрома, занятых хромом (до замещения). Соответственно, замещенные металлом оксиды хрома могут быть представлены общей формулой α-NixСоyCr2-x-yО3, где x равно от 0 до 0,04; y равно от 0 до 0,12; x, y или каждый из x и y равен, по меньшеймере, 0,001; и х+y в целом равно от 0,001 до 0,12. Кристаллические оксиды данной формулы могут быть фторированы перед использованием в зоне реакции. Дополнительная информация по замещенным кобальтом альфа-оксидам хрома, пригодным для данного изобретения, представлена в патентной заявке США 60/405220 [CL2099 US PRV], зарегистрированной 22 августа 2002 г. и включенной сюда в виде ссылки во всей полноте. Дополнительная информация по замещенным никелем альфа-оксидам хрома и смешанным замещенным никелем и кобальтом альфа-оксидам хрома, пригодным для данного изобретения, представлена в патентной заявке США 60/405221 [CL2100 US PRV], зарегистрированной 22 августа 2002 г. и включенной сюда в виде ссылки во всей полноте.

Эти кобальт/никель/хромоксидные композиции можно получить путем соосаждения из водных растворов соответствующих солей кобальта(II), кобальта(III), никеля(II) и хрома(III). Предпочтительно соли кобальта, никеля и хрома соосаждают добавлением гидроксида аммония (водного раствора аммиака) к водному раствору растворимых солей. Концентрация двухвалентного или трехвалентного кобальта и/или концентрация двухвалентного никеля должна составлять, по меньшей мере, 0,05 мол.% от общего содержания кобальта, никеля и хрома в растворе, при условии, что концентрация двухвалентного никеля должна быть не более чем от примерно 2 мол.% от общего содержания кобальта, никеля и хрома в растворе, и общая концентрация двухвалентного или трехвалентного кобальта и двухвалентного никеля должна составлять не более примерно 6 мол.%. Раствор должен содержать, по меньшей мере, три моля нитрата (т.е. NO3-) на моль хрома в целом (т.е. Cr3+). По меньшей мере три моля аммония (т.е. NH4+) на моль хрома (т.е. Cr3+) должно быть добавлено перед тем, как будет собрано соосажденное твердое вещество. После того, как осаждение завершается, воду выпаривают из смеси и полученное твердое вещество сушат и кальцинируют, как обсуждено в двух одновременно зарегистрированных патентных заявках, упомянутых выше и включенных сюда в виде ссылки.

Следует отметить способы получения, когда в водном растворе присутствует избыток нитрата аммония (т.е. более трех молей нитрата аммония на моль хрома). Например, в дополнение к нитрату аммония, уже присутствующему в результате реакции гидроксида аммония с нитратом хрома, в раствор можно добавить от примерно 0,1 моль до примерно 7,0 моль дополнительного нитрата аммония на моль хрома перед соосаждением, во время или после соосаждения композиций. Добавление избытка нитрата аммония к соосажденной смеси гидроксидов кобальта, никеля и хрома перед стадией дегидратации можно использовать для снижения размера частиц фазы формулы α-NixСоyCr2-x-yО3, что, в свою очередь, увеличивает площадь поверхности этой фазы и активность катализатора (см., примеры получения 9 и 11 и примеры 9 и 10).

После того, как к смеси добавлен нитрат аммония, ее предпочтительно перемешивают в течение примерно от 0,5 до десяти часов (более предпочтительно, от одного до пяти часов) при температуре от примерно 20°С до примерно 60°С. Затем смесь сушат и кальцинируют.

Другие средства, которые служат этой цели, включают водный раствор пероксида водорода (растворы от 1% до 30%), озон, пероксикислоты, такие как пероксиуксусная кислота и персульфат аммония. Можно использовать такие средства, как галогены, но они не предпочтительны. Также можно использовать средства, содержащие щелочные металлы, такие как персульфат калия или перборат натрия, но они не предпочтительны.

После того, как осаждение смеси гидроксидов кобальта, никеляи хрома завершается и, если требуется, добавлены избыток нитрата аммония или другие средства, смесь сушат выпариванием.

Возможно осажденную смесь гидроксидов кобальта, никеля и хрома можно собрать и, если требуется, промыть деионизированной водой перед сушкой. Это может влиять на активность катализатора (см. примеры получения 7 и 8 и примеры 7 и 8).

После того, как смесь гидроксидов кобальта, никеляи хрома высушена, нитратные соли разлагают нагреванием твердого вещества от примерно 250°С до примерно 350°С. Полученное твердое вещество затем кальцинируют при температуре от примерно 375°С до примерно 1000°С, предпочтительно от примерно 400°С до примерно 600°С. Более низкие температуры кальцинирования могут приводить к наличию некоторых остаточных примесей нитратов в оксиде металлов. Температура кальцинирования может влиять на активность катализаторов и, в свою очередь, на распределение продукта, когда катализаторы используют для изменения распределения фтора в углеводородах и галогенированных углеводородах (см., примеры получения 3, 4, 9 и 10 и примеры 3, 4, 9 и 11).

Кальцинирование предпочтительно проводят в присутствии кислорода, наиболее предпочтительно в присутствии воздуха.

После кальцинирования полученные металлзамещенные кристаллиты обычно визуально неотличимы от вещества формулы α-Cr2О3 при трансмиссионной электронной микроскопии. Кроме того, исследования рентгеновской и электронной дифракцией обычно полностью согласуются со структурой формулы α-Cr2О3 с некоторым сжатием кристаллической решетки, пропорциональным количеству Со(III), заменяющего Cr(III) в структуре, и с некоторым расширением или сжатием кристаллической решетки, пропорциональным количеству и Ni(II) и Ni(III), соответственно, заменяющего Cr(III) в структуре. Кроме того, детали по характеристикам этих композиций представлены в двух одновременно зарегистрированных патентных заявках, упомянутых выше и включенных сюда в виде ссылки. Содержание металла в композициях оксида хрома данного изобретения влияет на активность катализатора, полученного после фторирования смешанного оксида металлов. Например, при хлорфторировании CCl2=CClCF3 до CF3CClFCF3 активность катализаторов из фторированного оксида металлов для образования CF3CClFCF3 при температуре около 400°С улучшается в отношении композиций, имеющих номинально 1-3 атом.% кобальта и/или до 2 атом.% никеля в катализаторе по сравнению с катализатором из оксида хрома, не имеющего добавленных металлов (см. таблицу 1).

ТАБЛИЦА 1Активность фторированных замещенных металлом оксидов хрома при хлорфторировании CCl2=CClCF3 до CF3CClFCF3а
НоминальноеотношениеCr/Со/NiТемпература кальцинированиякатализатораТемпература вРеакторе% CF3CClFCF3в продукте
100/0/0400°C400°C24,1
99,1,0400°C400°C, промытый47,4
98/2/0400°C400°C46,6
98/2/0550°C400°C36,7
98/2/0900°C400°C14,8b
98/0/2400°C375°C27,4
97/3/0400°C400°C, промытый31,7
95/3/2400°C375°C, избытокNH4NO334,0
a Катализаторы получали методом соосаждения, используя аммиак. Молярное отношение в подаваемой смеси HF, 1213ха и Cl2=30:1:2. Время контакта составляет 15 секунд.b Молярное отношение в подаваемой смеси HF, 1213ха и Cl2=20:1:4.

Никелевохромовая шпинель (хромит никеля, NiCr2О4) служила катализатором превращения CFC-1213ха в CFC-215аа (CF3CCl2CClF2) с хорошей селективностью, тогда как кобальтхромовая шпинель (хромит кобальта, CoCr2О4) нет (см. сравнительные примеры 16 и 17). Каталитические композиции, используемые в данном изобретении, могут дополнительно включать одну или более добавок в виде соединений металлов, которые изменяют селективность или активность катализаторов из кристаллических замещенных металлом альфа-оксидов хрома или фторированного оксида металла, содержащих хром, кобальт и/или никель. Подходящие добавки могут быть выбраны из группы, состоящей из фторидов, оксидов или оксифторидных соединений Mg, Са, Sc, Y, La, Ti, Zr, Hf, V, Nb, Та, Мо, W, Mn, Re, Fe, Ru, Со, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Се и Zn.

Общее содержание добавки(ок) в композициях данного изобретения может составлять от примерно 0,05 атом.% до примерно 15 атом.% от всего содержания металла в композициях. Добавки могут быть включены в композиции данного изобретения с помощью стандартных методов, таких как метод пропитывания.

Обычно кальцинированные композиции предварительно будут обрабатываться фторирующим средством перед использованием в качестве катализаторов для изменения содержания фтора в галогенированных углеродных соединениях. Обычно это фторирующее средство является HF, хотя можно использовать и другие вещества, такие как тетрафторид серы, карбонилфторид и фторированные углеродные соединения, такие как трихлорфторметан, дихлордифторметан, хлордифторметан, трифторметан или 1,1,2-трихлортрифторэтан. Эта предварительная обработка может быть выполнена, например, путем помещения катализатора в подходящий контейнер, который может быть реактором, который используют для осуществления способа данного изобретения, а затем пропускания HF над сухим кальцинированным катализатором так, чтобы частично насытить катализатор HF. Это легко осуществить посредством пропускания HF над катализатором в течение периода времени, равного, например, от примерно 0,1 час до примерно 10 час, при температуре, например, от примерно 200°С до примерно 450°С.

Примеры соединений, полученных на стадии (а) способа данного изобретения, включают CF3CClFCF3 (CFC-217bа) и HCl в дополнение к недостаточно фторированным галогенированным пропанам и пропенам, включающим CF3CHClCF3 (HCFC-226dа), CF3CCl2CF3 (CFC-216аа), CF3CClFCClF2 (CFC-216bа), CF3CCl2CClF2 (CFC-215аа), CF3CClFCCl2F(CFC-215bb), CF3CCl2CCl2F(CFC-214аb) и CF3CCl=CF2 (CFC-1215хс).

Данный способ позволяет возвращать в оборот исходное вещество и другие недостаточно фторированные промежуточные соединения в реактор для производства дополнительного CFC-217bа. Например, за стадией хлорфторирования (стадия (а)) может преимущественно следовать стадия разделения (стадия (b)) разделения продукта со стадии (а) для выделения CF3CClFCF3 в качестве продукта и с получением недостаточно фторированных галогенированных промежуточных углеводородных соединений; и стадия рециркуляции (стадия (с)) с возвращением недостаточно фторированных галогенированных промежуточных углеводородных соединений, полученных на стадии (b), обратно на стадию (а) в зону реакции.

На стадии (b) способа данного изобретения поток из зоны реакции на стадии (а), состоящий из CF3CClFCF3 (CFC-217bа), HCl, HF и недостаточно фторированных галогенированных пропанов и пропенов, доставляется в одну или более зон разделения, в которых CF3CClFCF3 с его азеотропным HF отделяют от HCl, избытка HF и недостаточно фторированных галогенированных пропанов и пропенов. Зоны разделения могут состоять из обычного оборудования для химического процесса, такого как, но не ограничиваясь этим, скрубберы, декантаторы и/или колонны дистилляции. Выделяют CFC-217bа. Азеотроп CFC-217bа/HF, так же как и выделение HF и CFC-217bа из указанного азеотропа описаны в Международной патентной заявке WO 99/51555, основные идеи которой включены настоящим в виде ссылки.

На стадии (с) способа данного изобретения недостаточно фторированные галогенированные пропаны и пропены, а также избыток HF, полученные в зоне(ах) разделения, могут быть возвращены на стадию (а). Ограниченные количества CFC-217bа и CFC-217са могут быть также возвращены в зону реакции.

Зона реакции и связанные с ней подающие трубопроводы, отводящие трубопроводы и связанные установки должны быть сконструированы из материалов, устойчивых к фтороводороду и хлороводороду. Типичные материалы конструкции, хорошо известные в области фторирования, включают нержавеющую сталь, в частности аустенитного типа, хорошо известные высоконикелевые сплавы, такие как никелево-медные сплавы Monel™, сплавы на основе никеля Hastelloy™ и никелево-хромовые сплавы Inconel™ и плакированная медью сталь.

Продукт данного изобретения, 2-хлор-1,1,1,2,3,3,3-гептафторпропан (CFC-217bа), пригоден в качестве промежуточного соединения для коммерчески ценных фторуглеродов. Например, гидродехлорирование CFC-217bа дает или гексафторпропен, полезное полимерное промежуточное соединение, или 1,1,1,2,3,3,3-гептафторпропан (HFC-227еа), который находит применение в качестве пропелланта и огнегасителя. Фторирование CFC-217bа дает октафторпропан (FC-218), который пригоден в качестве травильного средства в электронной промышленности.

Использование CFC-217bа в качестве исходного вещества для реакции с Н2 хорошо известно. Например, CFC-217bа можно превратить в продукт, состоящий из HFC-227еа и HFP, путем контактирования CFC-217bа с водородом при повышенной температуре в газовой фазе над катализатором, состоящим из, по меньшей мере, одного металла, выбранного из группы, состоящей из рения, рутения, родия и палладия. Реакционная температура для этих содержащих металл катализаторов составляет, по меньшей мере, примерно 100°С. Дополнительные детали и другие способы гидродехлорирования CFC-217bа описаны в патенте США № 6018083. CFC-217bа можно также превратить в продукт, состоящий из HFC-227еа и HFP, путем контакта CFC-217bа с водородом при повышенной температуре в пустом реакционном сосуде из никеля, железа и их сплавов при давлении от 0 до 69 атмосфер и температуре от примерно 350°С до 700°С, как описано в патенте США № 5364992.

Полагают, что специалист в данной области без дополнительной разработки с использованием данного описания использует настоящее изобретение в самой полной его степени. Поэтому следующие конкретные воплощения следует считать как иллюстративные, а не ограничивающие объема притязаний настоящей заявки.

ПРИМЕРЫ

Получение катализаторов

СРАВНИТЕЛЬНЫЙ ПРИМЕР ПОЛУЧЕНИЯ 1

Получение 100% хромового катализатора (400°С)

В раствор 400 г Cr(NO3)3[9(Н2О)] (1,0 моль) в 1000 мл деионизированной воды добавляли по каплям 477 мл 7,4 М водного раствора аммиака, повышая рН до примерно 8,5. Густую суспензию перемешивали при комнатной температуре в течение ночи. После повторного доведения рН до 8,5 раствором аммиака смесь выливали в выпарные чаши и сушили на воздухе при 120°С. Полученное твердое вещество затем кальцинировали на воздухе при 400°С в течение 24 часов.

ПРИМЕР ПОЛУЧЕНИЯ 2

Получение катализатора с 99% хрома/1% кобальта (промытый, 400°С)

Раствор 792,29 г Cr(NO3)3[9(Н2О)] (1,98 моль) и 5,82 г Со(NO3)2[6(Н2О)] (0,0200 моль) готовили в 2000 мл деионизированной воды. В данный раствор добавляли по каплям 955 мл 7,4 М водного раствора аммиака, что повышало рН до примерно 8,5. Густую суспензию перемешивали при комнатной температуре в течение ночи. Показатель рН доводили до 8,5 на следующий день. Твердое вещество затем собирали, используя две воронки из фриттового фарфора; полученное твердое вещество в каждой воронке промывали 15-20 литрами деионизированной воды. Твердые вещества сушили на воздухе при 120°С в течение 24 часов, а затем кальцинировали на воздухе при 400°С в течение 24 часов.

ПРИМЕР ПОЛУЧЕНИЯ 3

Получение катализатора из 98% хрома/2% кобальта (400°С)

Раствор 784,30 г Cr(NO3)3[9(Н2О)] (1,96 моль) и 11,64 г Со(NO3)2[6(Н2О)] (0,040 моль) готовили в 2000 мл деионизированной воды. В данный раствор добавляли по каплям 950 мл 7,4 М водного раствора аммиака, что повышало рН с примерно 1,8 до примерно 8,5. Густую суспензию перемешивали при комнатной температуре в течение ночи и затем выпаривали досуха на воздухе при 110-120°С в течение 48 часов. Сухой катализатор делили пополам. Одну половину кальцинировали на воздухе при 400°С в течение 24 часов.

ПРИМЕР ПОЛУЧЕНИЯ 4

Получение катализатора из 98% хрома/2% кобальта (900°С)

Другую половину высушенного катализатора, полученного в примере получения 3, кальцинировали на воздухе при 900°С в течение 24 часов.

ПРИМЕР ПОЛУЧЕНИЯ 5

Получение катализатора из 98% хрома/2% кобальта (550°С)

Раствор 1,010 г Cr(NO3)3[9(Н2О)] (2,52 моль) и 14,6 г Со(NO3)2[6(Н2О)] (0,050 моль) готовили в 1000 мл деионизированной воды. Зеленый раствор выпаривали при температуре примерно 100°С до тех пор, пока не образовывался плотный черный осадок. Твердое вещество сушили при 300-325°С на горячей пластине. Затем твердое вещество переносили в фарфоровую чашку и кальцинировали в печи при 550°С в течение 20 часов.

ПРИМЕР ПОЛУЧЕНИЯ 6

Получение катализатора с 98% хрома/2% кобальта (550°С)

Раствор 1,010 г Cr(NO3)3[9(Н2О)] (2,52 моль) и 14,6 г Со(NO3)2[6(Н2О)] (0,0502 моль) готовили в 1500 мл деионизированной воды. Раствор обрабатывали 500 мл 29% (по весу) водного раствора аммиака при перемешивании, обеспечиваемом механической мешалкой. Смесь перемешивали в течение двух часов и рН стабилизировали при показателе 6,0. Смесь переносили в большую керамическую чашку. Воду удаляли нагреванием. После того, как большая часть воды выпарилась, образец нагревали до 250-300°С на горячей пластине. Полученное твердое вещество затем переносили в фарфоровую чашку и кальцинировали в печи при 550°С в течение 20 часов.

ПРИМЕР ПОЛУЧЕНИЯ 7

Получение катализатора с 97% хрома/3% кобальта (непромытый, 400°С)

Раствор 776,29 г Cr(NO3)3[9(Н2О)] (1,94 моль) и 17,46 г Со(NO3)2[6(Н2О)] (0,060 моль) готовили в 2000 мл деионизированной воды. В данный раствор добавляли по каплям 950 мл 7,4 М водного раствора аммиака до тех пор, пока рН не достигал примерно 8,5. Густую суспензию перемешивали при комнатной температуре в течение 24 часов и затем выпаривали досуха на воздухе при 110-120°С. Сухой катализатор измельчали до порошка и затем кальцинировали на воздухе при 400°С в течение 24 часов.

ПРИМЕР ПОЛУЧЕНИЯ 8

Получение катализатора с 97% хрома/3% кобальта (промытый, 400°С)

Раствор 776,29 г Cr(NO3)3[9(Н2О)] (1,94 моль) и 17,46 г Со(NO3)2[6(Н2О)] (0,060 моль) готовили в 2000 мл деионизированной воды. В данный раствор добавляли по каплям 955 мл 7,4 М водного раствора аммиака до тех пор, пока рН не достигал примерно 8,5. Густую суспензию перемешивали при комнатной температуре в течение ночи и затем рН доводили до 8,5 на следующий день. Твердое вещество собирали в две 3 л воронки из фриттового фарфора, и каждую порцию промывали 15-20 л деионизированной воды. Промытое твердое вещество затем выпаривали досуха на воздухе при 120°С в течение 24 часов и затем кальцинировали на воздухе при 400°С в течение 24 часов.

ПРИМЕР ПОЛУЧЕНИЯ 9

Получение катализатора с 95% хрома/5% кобальта (400°С)

Раствор 760,28 г Cr(NO3)3[9(Н2О)] (1,90 моль) и 29,10 г Со(NO3)2[6(Н2О)] (0,10 моль) готовили в 2000 мл деионизированной воды. В данный раствор добавляли по каплям 950 мл 7,4 М водного раствора аммиака, что повышало рН до примерно 8,5. Густую суспензию перемешивали при комнатной температуре в течение ночи и затем выпаривали досуха на воздухе при 110-120°С в течение 48 часов. Сухой катализатор делили пополам. Одну половину кальцинировали на воздухе при 400°С в течение 24 часов.

ПРИМЕР ПОЛУЧЕНИЯ 10

Получение катализатора с 95% хрома/5% кобальта (900°С)

Другую половину высушенного катализатора, полученного в примере получения 9, кальцинировали на воздухе при 900°С в течение 24 часов.

ПРИМЕР ПОЛУЧЕНИЯ 11

Получение катализатора с 95% хрома/5% кобальта

(1,6 экв. избытка NH4NO3, 400°С)

Раствор 760,28 г Cr(NO3)3[9(Н2О)] (1,90 моль) и 29,10 г Со(NO3)2[6(Н2О)] (0,10 моль) готовили в 2000 мл деионизированной воды. В раствор добавляли по каплям 950 мл 7,4 М водного раствора аммиака; рН достигал 8,5. Густую суспензию перемешивали при комнатной температуре в течение 24 часов и затем обрабатывали раствором 240,12 г NH4NO3 (3,0 моль). После перемешивания при комнатной температуре в течение 2 часов смесь выпаривали досуха на воздухе при 120°С и выдерживали при данной температуре в течение выходных дней. Сухой катализатор измельчали до порошка с помощью ступки и пестика и затем кальцинировали на воздухе при 400°С в течение 24 часов.

ПРИМЕР ПОЛУЧЕНИЯ 12

Получение катализатора с 90% хрома/10% кобальта (промытый; 400°С)

Раствор 720,27 г Cr(NO3)3[9(Н2О)] (1,80 моль) и 58,21 г Со(NO3)2[6(Н2О)] (0,20 моль) готовили в 2000 мл деионизированной воды. В данный раствор добавляли по каплям 955 мл 7,4 М водного раствора аммиака, что повышало рН с примерно 2,1 до примерно 8,5. Густую суспензию перемешивали при комнатной температуре в течение ночи. На следующий день рН повышали с примерно 8,05 до 8,5 добавлением водного раствора аммиака. Твердое вещество затем собирали в две 3 л воронки из фриттового фарфора и каждую порцию промывали 15-20 литрами деионизированной воды. Промытое твердое вещество затем выпаривали досуха на воздухе при 120°С в течение 24 часов. Сухой катализатор затем кальцинировали на воздухе при 400°С в течение 24 часов.

ПРИМЕР ПОЛУЧЕНИЯ 13

Получение катализатора с 90% хрома/10% кобальта

(избыток 3,3 экв. NH4NO3, 400°С)

Раствор 72,03 г Cr(NO3)3[9(Н2О)] (0,18 моль) и 5,82 г Со(NO3)2[6(Н2О)] (0,020 моль) готовили в 200 мл деионизированной воды. Данный раствор доводили до рН 8,5 обработкой 7,4 М водным раствором аммиака. Густую суспензию перемешивали при комнатной температуре в течение 24 часов. Смесь затем обрабатывали раствором 48,02 г NH4NO3 (0,60 моль), растворенного в 100 мл воды. Густую суспензию перемешивали в течение одного часа и затем сушили при 120°С