Терминал мобильной связи и система радиосвязи

Иллюстрации

Показать все

Изобретение относится к системе и устройству радиосвязи. Технический результат заключается в улучшении качества приема мультимедийных данных. Мобильная станция содержит: блок приема соотношения мощностей, предназначенный для приема информации о соотношении между мощностью общего физического канала управления, используемого для многоадресной или широковещательной передачи упомянутых мультимедийных данных в каждой из заданных ячеек, и мощностью общего пилот-канала, используемого для передачи информации об опорном сигнале синхронизации в каждой из заданных ячеек; блок приема информации об услуге, предназначенный для приема информации об услуге, указывающей состояние услуги MBMS в каждой из заданных ячеек; и блок выбора ячеек, предназначенный для определения группы, включающей в себя множество ячеек, от которых мобильная станция может получать услугу MBMS, на основе информации об упомянутом соотношении мощностей, которая принята упомянутым блоком приема информации о соотношении мощностей, и на основе упомянутой информации об услуге, принятой упомянутым блоком приема информации об услуге. 6 н. и 10 з.п. ф-лы, 16 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к терминалу мобильной связи и системе радиосвязи, которые при приеме мультимедийных данных, передаваемых базовой станцией с использованием способа CDMA (Коллективный доступ с кодовым разделением каналов), могут улучшать качество приема упомянутых мультимедийных данных.

Предшествующий уровень техники

Известные в данной области техники системы радиосвязи основаны на предпосылке, что между базовыми станциями и терминалами мобильной связи (например, мобильными телефонами и мобильными ПК (PC, Personal Computer - персональный компьютер)) существует соответствие "один к одному", и, следовательно, они не поддерживают услуги передачи данных двум или более терминалам мобильной связи одновременно с использованием базовой станции. Существует ранее известный способ сообщения широковещательной информации от базовой станции всем терминалам мобильной связи, находящимся в зоне, контролируемой этой базовой станцией, одновременно с использованием общего канала. Однако этот способ предназначен для сообщения одновременно всем терминалам мобильной связи, находящимся в упомянутой зоне, информации, касающейся управления, и не предназначен для передачи данных, например, звука и изображения, одновременно всем терминалам мобильной связи, находящимся в упомянутой зоне.

В последние годы большие надежды стали возлагаться на использование мультимедийных услуг в качестве услуг мобильной связи. В частности, в центре внимания оказалась технология одновременной доставки мультимедийных данных, касающихся спортивного вещания в прямом эфире, прогнозов погоды и радиопередач и т.д., двум или более терминалам мобильной связи.

Предложена технология, включающая предоставление, в дополнение к первому общему каналу (P-CCPCH: Основной - общий физический канал управления), который базовая станция использует при сообщении широковещательной информации двум или более терминалам мобильной связи, второго общего канала (S-CCPCH: Дополнительный - общий физический канал управления), который базовая станция использует при доставке служебной информации (сигнализации) или мультимедийных данных двум или более терминалам мобильной связи, и включающая доставку мультимедийных данных от этой базовой станции двум или более терминалам мобильной связи с использованием упомянутого канала S-CCPCH (см. патентный документ 1 и непатентный документ 1).

При такой доставке мультимедийных данных с использованием канала S-CCPCH базовая станция может одновременно предоставлять мультимедийные данные двум или более терминалам мобильной связи. Однако, если терминал мобильной связи находится поблизости от границы зоны, контролируемой базовой станцией, то электромагнитный сигнал, передаваемый этой базовой станцией, может ослабнуть, и, следовательно, качество приема этого сигнала может ухудшиться, даже если упомянутый терминал мобильной связи остается в зоне, контролируемой базовой станцией.

Для решения этой проблемы базовая станция обладает функцией управления мощностью своей передачи таким образом, что терминал мобильной связи, имеющий наименьшую мощность приема из всех терминалов мобильной связи, которые находятся в зоне, контролируемой этой базовой станцией, будет иметь мощность приема, превышающую опорный уровень мощности.

С другой стороны, каждый терминал мобильной связи при приеме одних и тех же мультимедийных данных от двух или более базовых станций обладает функцией улучшения качества приема путем оптимального сложения двух или более совокупностей мультимедийных данных.

Однако, так как пути распространения двух или более совокупностей мультимедийных данных от двух или более базовых станций к каждому терминалу мобильной связи отличаются друг от друга, моменты приема каждым терминалом мобильной связи упомянутых двух или более совокупностей мультимедийных данных, передаваемых двумя или более базовыми станциями, отличаются друг от друга, и в результате каждый из терминалов мобильной связи не может выполнить оптимальное сложение этих двух или более совокупностей мультимедийных данных, если разница во времени приема выходит за пределы заранее определенного периода времени.

Патентный документ 1 - JP, 2003-188818,A

Непатентный документ 1 - Документ по стандартизации 3GPP (3-rd Generation Partnership Project - Проект партнерства по развитию сетей 3-го поколения) R1-031103 "Избирательное сложение для услуги MBMS (Multimedia Broadcast Multicast Service - Мультимедийная широковещательная/многоадресная услуга).

Проблема, связанная с известными в данной области техники системами радиосвязи, имеющими упомянутую выше структуру, заключается в том, что, хотя базовая станция может обеспечивать качество приема каждого терминала мобильной связи, находящегося в контролируемой ею зоне, путем управления мощностью передачи, в результате чего терминал мобильной связи, имеющий наименьшую мощность приема из всех терминалов мобильной связи, которые находятся в упомянутой зоне, будет иметь мощность приема, превышающую опорный уровень, увеличение мощности передачи, назначенной каналу S-CCPCH, может ухудшить качество приема информации, передаваемой терминалу мобильной связи с использованием другого канала, так как мощность передачи, назначенная упомянутому другому каналу, становится относительно низкой.

Другая проблема заключается в том, что хотя, если каждый терминал мобильной связи объединяет по методу оптимального сложения одну и ту же совокупность мультимедийных данных, передаваемую двумя или более базовыми станциями, каждый терминал мобильной связи может улучшить качество приема этой совокупности мультимедийных данных без необходимости управления каждой из базовых станций мощностью передачи, так как пути распространения двух или более совокупностей мультимедийных данных от двух или более базовых станций к каждому терминалу мобильной связи отличаются друг от друга, то моменты приема каждым из терминалов мобильной связи упомянутых двух или более совокупностей мультимедийных данных, передаваемых двумя или более базовыми станциями, отличаются друг от друга, и в результате каждый из терминалов мобильной связи не может выполнить оптимальное сложение этих двух или более совокупностей мультимедийных данных, если разница во времени приема выходит за пределы заранее определенного периода времени.

Настоящее изобретение создано для решения упомянутых выше проблем и, следовательно, его задачей является предложить терминал мобильной связи и систему радиосвязи, которые могут улучшить качество приема мультимедийных данных без управления мощностью, требуемой для передачи этих мультимедийных данных, при помощи базовой станции.

Сущность изобретения

Согласно настоящему изобретению предлагается терминал мобильной связи, включающий в себя: средство оптимального сложения, предназначенное для разделения множества многолучевых сигналов, связанных с радиосигналами, передаваемыми множеством базовых станций с использованием общего канала, на группы по базовым станциям, т.е. по источникам передачи, а также для оптимального сложения множества многолучевых сигналов, связанных с одной и той же базовой станцией, являющейся источником передачи, в составной сигнал; и средство декодирования, предназначенное для декодирования упомянутого составного сигнала, поступившего от упомянутого средства оптимального сложения, причем терминал мобильной связи выбирает из составных сигналов, декодированных упомянутым средством декодирования, составной сигнал, имеющий хороший результат декодирования.

Таким образом, настоящее изобретение обеспечивает преимущества, заключающиеся в способности улучшить качество приема радиосигналов без управления мощностью передачи каждой из базовых станций.

Краткое описание чертежей

Фиг.1 - структурная схема системы радиосвязи, соответствующей варианту 1 реализации настоящего изобретения;

Фиг.2 - структурная схема терминала мобильной связи, соответствующего варианту 1 реализации настоящего изобретения;

Фиг.3 - структурная схема базовой станции, соответствующей варианту 1 реализации настоящего изобретения;

Фиг.4 - структурная схема устройства управления базовыми станциями, соответствующего варианту 1 реализации настоящего изобретения;

Фиг.5 - пояснительная схема, демонстрирующая конфигурацию каналов между терминалом мобильной связи и базовой станцией;

Фиг.6 - пояснительная схема, на которой показана отслеживаемая базовая станция;

Фиг.7 - блок-схема алгоритма обработки, выполняемой терминалом мобильной связи в соответствии с вариантом 1 реализации настоящего изобретения;

Фиг.8 - блок-схема алгоритма обработки, выполняемой терминалом мобильной связи в соответствии с вариантом 1 реализации настоящего изобретения;

Фиг.9 - блок-схема алгоритма обработки, выполняемой терминалом мобильной связи в соответствии с вариантом 2 реализации настоящего изобретения;

Фиг.10 - блок-схема алгоритма обработки, выполняемой терминалом мобильной связи в соответствии с вариантом 3 реализации настоящего изобретения;

Фиг.11 - блок-схема алгоритма обработки, выполняемой терминалом мобильной связи в соответствии с вариантом 3 реализации настоящего изобретения;

Фиг.12 - схема последовательности операций, на которой показана передача служебной информации (сигнализация) при обновлении активной группы в системе радиосвязи;

Фиг.13 - схема последовательности операций, на которой показана информация о параметрах во время обновления активной группы в системе радиосвязи;

Фиг.14 - блок-схема процесса обновления активной группы в терминале мобильной связи;

Фиг.15 - схема последовательности операций при уведомлении о соотношении между мощностью канала CPICH (Common PIlot CHannel - Общий пилот-канал) и мощностью канала S-CCPCH; и

Фиг.16 - блок-схема процесса обновления активной группы в терминале мобильной связи.

Предпочтительные варианты реализации

Далее, чтобы рассмотреть данное изобретение более подробно, со ссылкой на сопровождающие чертежи будут описаны предпочтительные варианты его реализации.

Вариант реализации 1.

Фиг.1 - структурная схема системы радиосвязи, соответствующей варианту 1 настоящего изобретения, и на этом чертеже обслуживающий центр 1 хранит контенты (содержимое), предназначенные для доставки, и обеспечивает их доставку. Узел GGSN 2 (Шлюзовой узел поддержки GPRS (General Packet Radio Service - Услуга пакетной передачи данных по радиоканалу)) представляет собой сопряжение с внешней сетью (например, сетью Интернет), которое служит шлюзом с внешним окружением системы радиосвязи и обеспечивает путь прохождения пакетов. Узел GGSN также осуществляет процессы, включающие в себя сбор информации по учету использования ресурсов, управление мобильностью, согласование QoS (Качества обслуживания) и управления политикой для регулирования трафика. Узел SGSN 3 (Обслуживающий узел поддержки GPRS) несет ответственность за обмен пакетами и имеет дело с аутентификацией каждого пользователя, подпиской на услуги, маршрутизацией, управлением мобильностью, ограничениями в предоставлении услуг, хранением контекста, информацией по учету использования ресурсов и т.д.

Каждое устройство 4 управления базовыми станциями соединено с узлом SGSN 3 и выполняет функцию ретрансляции между базовой сетью и радиоканалами с базовыми станциями 5. Каждое устройство 4 управления базовыми станциями, главным образом, управляет радиоресурсами и выдает команду на установление или освобождение канала с базовой станцией 5. Каждая базовая станция 5 обеспечивает передачу радиосигнала (например, мультимедийных данных или пилотного сигнала) терминалу 6 мобильной связи, находящемуся в контролируемой ею зоне, с использованием, например, канала S-CCPCH (или общего канала) в соответствии с командой, поступившей от устройства 4 управления базовыми станциями.

Каждый терминал 6 мобильной связи обладает, при приеме многолучевых сигналов, связанных с радиосигналами, передаваемыми множеством базовых станций 5 с использованием канала S-CCPCH, функцией разделения многолучевых сигналов на группы по базовым станциям 5, т.е. по источникам передачи, оптимального сложения множества многолучевых сигналов, которые сгруппированы для каждой базовой станции 5, т.е. каждого источника передачи, в составной сигнал, декодирование составного сигнала и выбора из декодированных составных сигналов декодированного составного сигнала, имеющего хороший результат декодирования.

Фиг.2 - структурная схема каждого из терминалов мобильной связи, соответствующих варианту 1 реализации настоящего изобретения. Как показано на этом чертеже, блок 12 малошумящего усилителя усиливает многолучевой сигнал, который является слабым радиосигналом, принятым антенной 11. Блок 13 преобразования частоты преобразует частоту многолучевого сигнала, усиленного блоком 12 малошумящего усилителя, для вывода РЧ-сигнала (радиочастотного сигнала). АЦП 14 (A/D, Analog to Digital - Аналого-цифровой преобразователь) преобразует РЧ-сигнал, поступивший от блока 13 преобразования частоты, который является аналоговым сигналом, в цифровой сигнал. Средство приема сигнала включает в себя антенну 11, блок 12 малошумящего усилителя, блок 13 преобразования частоты и АЦП 14.

При приеме РЧ-сигнала, являющегося цифровым сигналом, от АЦП 14 блок 15 поиска определяет базовую станцию 5, которая является источником передачи многолучевого сигнала, выполняя процесс поиска по ячейкам. Генератор 16 кода генерирует скремблирующий код, соответствующий базовой станции 5, определенной блоком 15 поиска.

Если базовые станции А и В, включенные во множество базовых станций 5, заданы как отслеживаемые базовые станции 5 (далее называемые активной группой), то блок 17 управления назначением отводов управляет блоком 18 RAKE-сложения (многоотводного сложения) таким образом, что РЧ-сигнал (далее называемый РЧ-сигналом А-1), связанный с первым многолучевым сигналом, передаваемым базовой станцией А, назначается блоку-отводу 18а, РЧ-сигнал (далее называемый РЧ-сигналом А-2), связанный со вторым многолучевым сигналом, передаваемым базовой станцией А, назначается блоку-отводу 18b, РЧ-сигнал (далее называемый РЧ-сигналом В-1), связанный с первым многолучевым сигналом, передаваемым базовой станцией В, назначается блоку-отводу 18с, и РЧ-сигнал (далее называемый РЧ-сигналом В-2), связанный со вторым многолучевым сигналом, передаваемым базовой станцией В, назначается блоку-отводу 18d.

Блок 18е сложения для ячейки, входящий в состав блока 18 RAKE-сложения, выполняет оптимальное сложение РЧ-сигнала А-1, назначенного блоку-отводу 18а, и РЧ-сигнала А-2, назначенного блоку-отводу 18b, в составной сигнал и сохраняет этот составной сигнал во входной памяти 19а для ячейки. Блок 18f сложения для ячейки, входящий в состав блока 18 RAKE-сложения, выполняет оптимальное сложение РЧ-сигнала В-1, назначенного блоку-отводу 18с, и РЧ-сигнала В-2, назначенного блоку-отводу 18d, в составной сигнал и сохраняет этот составной сигнал во входной памяти 19b для ячейки.

Средство оптимального сложения включает в себя блок 15 поиска, генератор 16 кода, блок 17 управления назначением отводов, блок 18 RAKE-сложения и входную память 19а и 19b для ячеек.

Блок 20 декодирования декодирует составной сигнал, хранящийся во входной памяти 19а для ячейки, и сохраняет декодированный составной сигнал в выходной памяти 21а для ячейки, а также декодирует составной сигнал, хранящийся во входной памяти 19b для ячейки, и сохраняет декодированный составной сигнал в выходной памяти 21b для ячейки.

Средство декодирования включает в себя блок 20 декодирования и выходную память 21а и 21b для ячеек.

Блок 22 выбора выбирает составной сигнал, имеющий хороший результат декодирования, из декодированных составных сигналов, хранящихся в выходной памяти 21а и 21b для ячеек, и выводит выбранный составной сигнал в блок 23 приема по нисходящему общему каналу. Блок 22 выбора образует средство выбора.

Блок 23 приема по нисходящему общему каналу выводит выбранный составной сигнал, поступивший от блока 22 выбора, в блок 26 обработки протокола, если составной сигнал представляет собой информацию управления, в то же время упомянутый блок 23 выводит этот составной сигнал в блок 27 обработки приложения, если составной сигнал представляет собой данные приложения. Так как блок 22 выбора не осуществляет выбор составного сигнала, если декодированный составной сигнал, хранящийся в выходной памяти 21а для ячейки, представляет собой широковещательную информацию, то прием составного сигнала, хранящегося в выходной памяти 21а для ячейки, осуществляется блоком 24 приема широковещательной информации, который выводит упомянутый составной сигнал в блок 26 обработки протокола.

Так как блок 22 выбора не осуществляет выбор составного сигнала, если декодированный составной сигнал, хранящийся в выходной памяти 21а для ячейки, представляет собой данные приложения или информацию управления и передан терминалу мобильной связи базовой станцией 5 с использованием нисходящего выделенного канала, то этот составной сигнал, хранящийся в выходной памяти 21а для ячейки, принимается блоком 25 приема по нисходящему выделенному каналу, который выводит упомянутый составной сигнал в блок 27 обработки приложения, если составной сигнал представляет собой данные приложения, в то же время упомянутый блок 25 выводит этот составной сигнал в блок 26 обработки протокола, если составной сигнал представляет собой информацию управления.

Блок 26 обработки протокола осуществляет процессы, касающиеся управления связью, например, установление или освобождение канала, либо эстафетная передача, в соответствии с составным сигналом (информация управления или широковещательная информация), поступившим от блока 23 приема по нисходящему общему каналу, блока 24 приема широковещательной информации или блока 25 приема по нисходящему выделенному каналу.

Блок 27 обработки приложения осуществляет процессы преобразования, например, кодирование/декодирование речи и кодирование/декодирование изображения, в соответствии с составным сигналом (данные приложения), поступившим от блока 23 приема по нисходящему общему каналу или блока 25 приема по нисходящему выделенному каналу, а также осуществляет процессы, связанные с интерфейсами человек/машина, например, ввод с клавиатуры и отображение на экране.

Блок 28 передачи по восходящему общему каналу осуществляет процессы для общего канала, например, кодирование канала и синхронизацию передачи, при приеме информации управления, поступившей от блока 26 обработки протокола. Блок 29 передачи по восходящему выделенному каналу осуществляет процессы для выделенного канала, например, кодирование канала и синхронизацию передачи, при приеме телефонного номера или тому подобного, поступившего от блока 27 обработки приложения.

Генератор 30 кода генерирует расширяющий спектр код, а блок 31 модуляции выполняет модуляцию с расширением спектра для сигнала, поступившего от блока 28 передачи по восходящему общему каналу или блока 29 передачи по восходящему выделенному каналу, используя упомянутый выше расширяющий спектр код.

ЦАП 32 (D/A, Digital to Analog - Цифро-аналоговый преобразователь) преобразует модулированный сигнал, поступивший от блока 31 модуляции, который является цифровым сигналом, в аналоговый сигнал. Блок 33 преобразования частоты преобразует частоту модулированного сигнала, для которого ЦАП 32 выполнил цифроаналоговое преобразование, с целью вывода РЧ-сигнала. Блок 34 усиления мощности усиливает мощность РЧ-сигнала и выводит его на антенну 11.

Фиг.3 - структурная схема каждой из базовых станций, соответствующих варианту 1 настоящего изобретения. Как показано на этом чертеже, при приеме широковещательной информации от соответствующего устройства 4 управления базовыми станциями блок 41 передачи широковещательной информации выполняет кодирование для размещения упомянутой широковещательной информации на канале P-CCPCH. При приеме данных или информации управления, которые должны быть переданы с использованием выделенного канала (DPCH: Выделенный физический канал) и поступают от соответствующего устройства 4 управления базовыми станциями, блок 42 передачи по нисходящему выделенному каналу выполняет кодирование для размещения упомянутых данных или информации управления на канале DPCH. При приеме информации управления или мультимедийных данных, которые должны быть переданы с использованием канала S-CCPCH и поступают от соответствующего устройства 4 управления базовыми станциями, блок 43 передачи по нисходящему общему каналу выполняет кодирование для размещения упомянутых информации управления или мультимедийных данных на канале S-CCPCH.

Генератор 44 кода нисходящих каналов генерирует каналообразующий код и скремблирующий код для нисходящих каналов. Блок 45 модуляции выполняет модуляцию с расширением спектра для сигнала, поступившего от блока 41 передачи широковещательной информации, блока 42 передачи по нисходящему выделенному каналу или блока 43 передачи по нисходящему общему каналу, используя коды для нисходящих каналов, сгенерированных генератором 44 кода.

ЦАП 46 преобразует модулированный сигнал, поступивший от блока 45 модуляции, который является цифровым сигналом, в аналоговый сигнал. Блок 47 преобразования частоты преобразует частоту модулированного сигнала, для которого ЦАП 46 выполнил цифроаналоговое преобразование, с целью вывода РЧ-сигнала. Блок 48 усиления мощности усиливает мощность РЧ-сигнала и выводит его на антенну 49.

Когда антенна 49 принимает слабый радиосигнал, передаваемый терминалом 6 мобильной связи, блок 50 малошумящего усилителя усиливает этот радиосигнал. Блок 51 преобразования частоты преобразует частоту радиосигнала, усиленного блоком 50 малошумящего усилителя, для вывода РЧ-сигнала. АЦП 52 преобразует РЧ-сигнал, поступивший от блока 51 преобразования частоты, который является аналоговым сигналом, в цифровой сигнал.

Генератор 53 кода восходящих каналов генерирует каналообразующий код и скремблирующий код для восходящих каналов. Блок 54 демодуляции демодулирует РЧ-сигнал, поступивший от АЦП 52, с использованием скремблирующего кода для восходящих каналов, который сгенерирован генератором 53 кода, а также демультиплексирует демодулированный РЧ-сигнал в сигналы для каждого канала с использованием каналообразующего кода для восходящих каналов, который сгенерирован генератором 53 кода. Блок 55 приема по восходящему выделенному каналу поканально декодирует сигнал, связанный с каждым каналом, и передает его в соответствующее устройство 4 управления базовыми станциями. Блок 56 приема по восходящему общему каналу поканально декодирует сигнал, связанный с общим каналом (RACH: Канал произвольного доступа), и передает его в соответствующее устройство 4 управления базовыми станциями.

Фиг.4 - структурная схема каждого из устройств управления базовыми станциями, соответствующих варианту 1 настоящего изобретения. Как показано на этом чертеже, блок 61 обработки приема-передачи для базовой сети выполняет процессы, связанные с протоколами связи, например, процесс, относящийся к протоколу, предназначенному для использования при работе с базовой сетью, такому как RANAP (Прикладной протокол сети радиодоступа), и процесс, относящийся к протоколу, предназначенному для использования при работе с другим устройством управления базовыми станциями, такому как RNSAP(Протокол прикладной подсистемы сети радиодоступа).

Блок 62 отображения параметров QoS определяет параметры радиоканалов, которые удовлетворяют требованиям в соответствии с командой QoS, поступившей от базовой сети. Блок 63 управления радиоресурсами выполняет процесс, связанный с радиоресурсами, а также осуществляет управление терминалами 6 мобильной связи и сообщает о параметрах, используя передачу служебной информации в формате RRC (Radio Resource Control - Управление радиоресурсами). Блок 64 управления радиолинией осуществляет буферизацию и управление повторной передачей данных по радиолинии.

Блок 65 обработки приема-передачи для базовой станции выполняет процессы, связанные с протоколами связи, например, процесс, связанный с протоколом, предназначенным для использования при работе с базовыми станциями (Узел В), таким как NBAP (Прикладная подсистема Узлов В).

Однако то, как функции каждого из устройств 4 управления базовыми станциями распределяются среди компонентов, определяется на основе их логических функций, и они не обязательно четко разделены при их реализации на практике при помощи аппаратных средств или программного обеспечения.

Фиг.5 - пояснительная схема, демонстрирующая конфигурацию каналов между каждым из терминалов 6 мобильной связи и каждой из базовых станций 5. В примере, показанном на Фиг.5, изображена конфигурация каналов в случае использования способа W-CDMA (Wideband CDMA - Широкополосный CDMA). Однако в действительности возможна реализация множества каналов путем разделения одного канала.

Сначала рассмотрим нисходящий физический канал от каждой базовой станции 5 к каждому терминалу 6 мобильной связи.

Канал CPICH (Общий пилот-канал), который каждая из базовых станций использует, чтобы предоставить опорный сигнал синхронизации, и канал P-CCPCH (Основной - общий физический канал управления), который каждая из базовых станций использует, чтобы предоставить другую широковещательную информацию, установленный для всех терминалов 6 мобильной связи, которые находятся в зоне, контролируемой соответствующей базовой станцией 5. Канал P-CCPCH используется в качестве канала BCH (Широковещательный канал) для предоставления широковещательной информации.

Канал S-CCPCH (Дополнительный - общий физический канал управления), который каждая из базовых станций 5 использует при передаче служебной информации или данных каждому из терминалов 6 мобильной связи, обеспечен от каждой из базовых станций 5 к каждому из терминалов 6 мобильной связи. Может существовать множество каналов S-CCPCH.

Канал PICH (Канал указания персонального вызова) предоставляется в качестве указателя для вызова по нисходящему каналу.

Далее рассмотрим восходящие каналы от каждого из терминалов 6 мобильной связи к каждой из базовых станций 5.

В качестве общего канала предоставляется канал RACH (Канал произвольного доступа), кроме того, в виде индивидуальных восходящих и нисходящих каналов предоставляется канал DPCH (Выделенный физический канал), который индивидуально создается при установлении связи каждой из базовых станций с конкретным терминалом 6 мобильной связи. Канал DPCH устанавливается в виде индивидуальных восходящих и нисходящих каналов и используется для передачи речи, данных и т.д., либо передачи служебной информации верхнего уровня. Канал DPCH может быть разделен на DPDCH (Выделенный физический канал данных), который является той частью, по которой передаются данные, и канал DPCCH (Выделенный физический канал управления), который является той частью, по которой передаются биты управления.

Канал DPCH называется выделенным каналом, так как он используется отдельным терминалом, в то же время другие каналы называются общими каналами, так как каждый из них используется совместно двумя или более терминалами.

Далее будет рассмотрена работа системы радиосвязи, соответствующей данному варианту реализации настоящего изобретения.

Сначала узел GGSN 2 извлекает мультимедийные данные, относящиеся к контентам (содержимому), в настоящее время хранящимся в обслуживающем центре 1, а затем передает эти мультимедийные данные узлу SGSN 3.

При приеме мультимедийных данных от узла GGSN 2 узел SGSN 3 ищет один или более терминалов 6 мобильной связи, которые используют услугу доставки контента, и передает мультимедийные данные, относящиеся к контентам, о которых идет речь, устройству 4 управления базовыми станциями, соединенному с базовыми станциями 5, которые обслуживают эти терминалы 6 мобильной связи.

При приеме мультимедийных данных от узла SGSN 3 каждое из устройств 4 управления базовыми станциями управляет базовыми станциями 5 таким образом, что каждая из них доставляет мультимедийные данные целевым терминалам мобильной связи, используя канал S-CCPCH.

Каждый целевой терминал 6 мобильной связи принимает мультимедийные данные, доставленные от одной из множества базовых станций 5 с использованием канала S-CCPCH.

При этом, например, если каждый из целевых терминалов 6 мобильной связи находится поблизости от границы зоны, контролируемой базовой станцией 5, которая доставила ему мультимедийные данные, электромагнитный сигнал, переданный от базовой станции 5, может ослабнуть, и, следовательно, качество приема этого электромагнитного сигнала может ухудшиться, даже если каждый из терминалов 6 мобильной связи находится в упомянутой контролируемой зоне.

Причина, почему качество приема канала S-CCPCH ухудшается, когда каждый из терминалов мобильной связи находится на границе зоны, контролируемой базовой станцией, которая доставила ему мультимедийные данные, заключается в следующем. Для простоты предположим, что устройство 4 управления базовыми станциями соединено с базовой станцией А и базовой станцией В, а терминал 6 мобильной связи находится на границе зоны, контролируемой базовой станцией А, как показано на Фиг.6.

В этом случае, так как расстояние между терминалом 6 мобильной связи и базовой станцией В является относительно небольшим, то канал DPCH, который является выделенным каналом, устанавливается между терминалом 6 мобильной связи и базовой станцией А и может быть также установлен между терминалом 6 мобильной связи и базовой станцией В.

Когда канал DPCH устанавливается между терминалом 6 мобильной связи и каждой из базовых станций А и В, терминал 6 мобильной связи может принимать данные, передаваемые каждой из упомянутых базовых станций А и В, используя канал DPCH, и может улучшать качество приема данных путем оптимального сложения обеих совокупностей данных, поступающих от базовых станций А и В.

Однако, так как каналы S-CCPCH, связанные с базовыми станциями А и В, которые являются общими каналами, устанавливаются соответственно между терминалом 6 мобильной связи и базовыми станциями А и В, терминал 6 мобильной связи не может выполнять оптимальное сложение обеих совокупностей данных, передаваемых базовыми станциями А и В, и это приводит к ухудшению качества приема данных.

Поэтому, чтобы улучшить качество приема канала S-CCPCH, базовой станции 5 необходимо всего лишь передавать данные при увеличении мощности, которая назначена каналу S-CCPCH. Однако качество приема информации, передаваемой с использованием другого канала, может ухудшиться, так как мощность передачи, назначенная этому другому каналу, становится относительно низкой, когда базовая станция 5 увеличивает мощность, назначенную каналу S-CCPCH, как упомянуто выше.

В противоположность этому, в соответствии с данным вариантом 1 воплощения каждый терминал 6 мобильной связи выполнен такой конструкции, как показано на Фиг.2, чтобы улучшать качество приема канала S-CCPCH без повышения каждой из базовых станций 5 мощности, которая назначена каналу S-CCPCH.

Ниже будет рассмотрена работа каждого из терминалов 6 мобильной связи, соответствующих Фиг.2. Фиг.7 и Фиг.8 - блок-схемы процессов обработки, выполняемых каждым из терминалов мобильной связи, в соответствии с вариантом 1 реализации настоящего изобретения.

Хотя каждый из терминалов 6 мобильной связи может быть способен принимать радиосигналы, передаваемые тремя или более базовыми станциями 5 с использованием канала S-CCPCH, предположим, что из-за ограничений, накладываемых на аппаратные средства принимающей части каждого из терминалов 6 мобильной связи, каждый из этих терминалов выбирает в качестве отслеживаемой цели не все базовые станции 5, а только те, которые предоставляют достаточную возможность увеличения качества приема радиосигнала (т.е. базовые станции 5, каждая из которых обеспечивает высокую вероятность улучшения качества приема). В этом случае, как показано на Фиг.6, терминал 6 мобильной связи выбирает в качестве отслеживаемой цели базовые станции А и В и принимает радиосигналы, передаваемые этими станциями. Однако, так как радиосигналы достигают терминала 6 мобильной связи после прохождения разных путей от базовых станций А и В, радиосигнал, передаваемый каждой из базовых станций А и В, принимается терминалом 6 мобильной связи как многолучевой сигнал несколько раз.

Хотя можно считать, что каждая из двух или более базовых станций 5 не передает мультимедийные данные внезапно, а передает пилот-сигналы как радиосигнал, когда между каждой из этих станций и терминалом 6 мобильной связи не установлен канал S-CCPCH, каждая из двух или более базовых станций 5 может передавать мультимедийные данные терминалу 6 мобильной связи внезапно.

Сначала, когда антенна 11 принимает многолучевой сигнал, который является радиосигналом, передаваемым базовой станцией А или В, блок 12 малошумящего усилителя терминала 6 мобильной связи усиливает этот многолучевой сигнал.

После усиления многолучевого сигнала блоком 12 малошумящего усилителя блок 13 преобразования частоты преобразует частоту этого многолучевого сигнала для генерации и вывода РЧ-сигнала в АЦП 14.

При приеме РЧ-сигнала, который является аналоговым сигналом, от блока 13 преобразования частоты АЦП 14 осуществляет аналого-цифровое преобразование этого РЧ-сигнала для генерации и вывода РЧ-сигнала, который является цифровым сигналом, как в блок 18 RAKE-сложения, так и в блок 15 поиска.

При приеме РЧ-сигнала, который является цифровым сигналом, от АЦП 14 блок 15 поиска определяет базовую станцию 5, являющуюся источником передачи многолучевого сигнала, о котором идет речь, выполняя поиск по ячейкам. Другими словами, блок 15 поиска выполняет проверку, чтобы выяснить передан ли многолучевой сигнал, принятый антенной 11, базовой станцией А или базовой станцией В.

Если говорить более конкретно, так как многолучевой сигнал изменяется под влиянием замирания по мере перемещения терминала 6 мобильной связи, блок 15 поиска задает код, синхронизацию и т.д. для канала S-CCPCH и ищет канал S-CCPCH (на этапе ST1), а также вычисляет профиль задержки и т.д. для искомого канала S-CCPCH (т.е. канала S-CCPCH, связанного с базовой станцией А, или канала S-CCPCH, связанного с базовой станцией В) (на этапе ST2).

Блок 17 управления назначением отводов ищет максимум профиля задержки, вычисленного блоком 15 поиска, и управляет блоком 18 RAKE-сложения таким образом, чтобы многолучевой сигнал, соответствующий упомянутому максимуму, назначался блоку-отводу блока 18 RAKE-сложения (на этапе ST3).

При этом, так как активная группа отслеживаемых базовых станций 5 включает в себя только базовые станции А и В, если источником передачи многолучевого сигнала, принятого антенной 11, является базовая станция А, и РЧ-сигнал, поступивший от АЦП 14, не назначен блоку-отводу 18а блока 18 RAKE-сложения, то блок 17 управления назначением отводов управляет блоком 18 RAKE-сложения таким образом, что РЧ-сигнал (далее называемый РЧ-сигналом А-1) назначается блоку-отводу 18а.

В противоположность этому, если источником передачи многолучевого сигнала, принятого антенной 11, является базовая станция А, и РЧ-сигнал, поступивший от АЦП 14, назначен блоку-отводу 18а блока 18 RAKE-сложения, то блок 17 управления назначением отводов управляет блоком 18 RAKE-сложения таким образом, что РЧ-сигнал (далее называемый РЧ-сигналом А-2) назначается блоку-отводу 18b.

Если источником передачи многолучевого сигнала, принятого антенной 11, является базовая станция В, и РЧ-сигнал, поступивший от АЦП 14, не назначен блоку-отводу 18с блока 18 RAKE-сложения, то блок 17 управления назначением отводов управляет блоком 18 RAKE-сложения таким образом, что РЧ-сигнал (далее называемый РЧ-сигналом В-1) назначается блоку-отводу 18с.

В противоположность этому, если источником передачи многолучевого сигнала, принятого антенной 11, является базовая станция В, и РЧ-сигнал, поступивший от АЦП 14, назначен блоку-отводу 18с блока 18 RAKE-сложения, то блок 17 управления назначением отводов управляет блоком 18 RAKE-сложения таким образом, что РЧ-сигнал (далее называемый РЧ-сигналом В-2) назначается блоку-отводу 18d.

Генератор 16 кода генерирует скремблирующий код, соответствую