Способ определения концентрации кислых продуктов термолиза органических примесей в паре прямоточных энергетических котлов
Иллюстрации
Показать всеИзобретение относится к количественному определению содержания потенциально кислых органических примесей питательной воды прямоточных котлов и может быть использовано на тепловых электростанциях. Способ включает измерение значений удельной электропроводности охлажденных проб острого пара и питательной воды и расчет концентрации компонентов раствора, причем измерение производят в пробах, пропущенных через Н-катионитный фильтр, определение осуществляют по разности двух измеренных значений удельной электропроводности охлажденных проб, а расчетной концентрацией компонента раствора является концентрация условной уксусной кислоты, определяемая из соотношения:
Сук=153,6·(χнОП-χнПВ)
где Сук - концентрация условной уксусной кислоты, мкг/дм3;
χнОП и χнПВ - удельные электропроводности острого пара и питательной воды, мкСм/см. Технический результат изобретения заключается в повышении информативности данных, полученных от автоматических кондуктометров. 2 табл., 2 ил.
Реферат
Изобретение относится к количественному определению содержания потенциально кислых органических веществ, присутствующих в питательной воде прямоточных энергетических котлов, которые в процессе парообразования подвергаются термической деструкции с образованием слабых кислот, принимающих участие в коррозионных процессах на металлах, контактирующих с паром и его конденсатом, и может быть использовано на тепловых электростанциях.
Питательная вода прямоточных котлов сверхкритических параметров характеризуется почти полным отсутствием минеральных примесей (удельная электропроводность χн<0,3 мкСм/см) и присутствием небольшого количества органических веществ. В условиях окислительного водно-химического режима при концентрации кислорода от 100 мкг/кг до 400 мкг/кг и возрастании температуры теплоносителя от 300°С на входе и до 550°С на выходе из котла органические вещества подвергаются глубокой термической деструкции (термолизу), часто с образованием продуктов кислого характера.
Органические вещества поступают в питательную воду энергетических котлов с основным конденсатом (нефтепродукты, продукты деструкции ионитов блочной обессоливающей установки (БОУ), присосы охлаждающей воды в конденсаторах турбин и сетевой воды в сетевых подогревателях) и с добавочной водой их бака запаса конденсата. Наиболее вероятным продуктом термолиза таких веществ является уксусная кислота. Появление уксусной кислоты и других веществ кислого характера в паре прямоточных котлов повышает коррозионную агрессивность этой среды и нередко является причиной коррозионных повреждений трубок подогревателей высокого давления (ПВД) и сетевых подогревателей, использующих пар из отборов прочной части турбины.
Нормы качества питательной воды и пара энергетических котлов Российских ТЭС в настоящее время не предусматривают контроль органических примесей - потенциально кислых веществ (ПКВ) ввиду отсутствия надежных измерителей.
На зарубежных электростанциях такой контроль часто ведется по показателю «Общий органический углерод» (ТОС) и «Общий неорганический углерод» (ТТС) в питательной воде и паре, где установлена норма ТОС в 100 мкгС/кг [Мартынова О.И. Поведение органики и растворенной углекислоты в пароводяном тракте электростанций. // Теплоэнергетика. 2002. №7. С.67-70]. На отечественных электростанциях предпринимаются попытки оценки количества ПКВ по измерению удельной электропроводности и рН в питательной воде и паре прямоточных котлов [Пути совершенствования водно-химического режима энергоблоков СКД в системе ОА «Свердловэнерго» / Л.В.Корюкова, А.Ф.Белоконова, Н.А.Белоконова и др. // Теплоэнергетика. 1999. №7. С.30-34]. Такой способ осуществляется измерениями в охлажденных пробах автоматическими кондуктометрами и рН-метрами при непрерывном протоке пробы через датчики. Для оценки концентрации ПКВ способ малоинформативен ввиду многофакторности влияния на электропроводность и рН со стороны присутствующих в воде и паре примесей, например аммиака.
Анализ изменений χ и рН в питательной воде и паре прямоточных котлов ряда ТЭС показывает, что с переходом от питательной воды к пару удельная электропроводность проб (или удельная электропроводность Н-катионированных проб, если производится дозирование аммиака в питательную воду) увеличивается от 0,05 мкСм/см до 0,20 мкСм/см, а рН проб уменьшается на 0,1-0,3 единицы. Такие изменения носят устойчивый характер и относятся на счет термолиза органических примесей питательной воды [Michal A.S., Kevin J.S. Minimizing levels of Volatile Organic Acids and Carbon Diaxide in Steam / Water circnits. - Proc. Int. Con. Interaction of Organics and Organic Cycle Treatment Chemicals with Water, Steam. Germany, Stuttgart, 4-6 Oct. 2005].
Известен способ расчетного определения рН на электростанциях по дифференциальному измерению электропроводимости до (электропроводимость прямой пробы, χ) и после Н-катионитного фильтра (электропроводимость Н-катионированной пробы, χн) [Анализатор FAM Deltacon рН. Технические данные №23.14. Представительство: Техноприбор. М.]. Сущность способа состоит в пересчете разности электропроводностей (χ-χн) на концентрацию аммиака (гидроксида аммония) и далее на концентрацию ионов гидроксила, концентрацию ионов водорода и расчете рН=-lgCH +.
Известен способ определения концентрации анионов слабых кислот - примесей воды (питательной воды, пара или конденсата турбины) методом жидкостной ионной хроматографии [О применении хроматографии для контроля качества воды и пара на ТЭС. / О.И.Мартынова, В.И.Кашинский, А.Ю.Петрова и др. // Теплоэнергетика. - 1996. №8. С.39-42], обеспечивающий количественное определение ацетатов, формиатов и др. Стоимость одного промышленного измерителя типа IC Online составляет от 150 тысяч Евро.
Известен способ контроля качества питательной воды по величине удельной электропроводности прямой пробы воды и пробы, прошедшей Н-катионитовую колонку, при этом может быть определено общее солесодержание питательной воды, концентрации аммиака и углекислоты [Патент РФ №2168172. Способ контроля качества конденсата и питательной воды. // Н.А.Еремина, В.Г.Киет, А.Н.Коротков и др. М.: Изобретения. 2001. №13].
Недостатками перечисленных способов являются отсутствие определения органики по измерениям электропроводностей и применение дорогих и сложных в эксплуатации приборов (автоматический ионный хроматограф).
Известен принимаемый в качестве прототипа способ контроля за содержанием коррозионно-опасных органических соединений в водопаровом тракте энергоблока с паровым котлом по величине отношения χОП/χПВ значений электропроводности соответственно острого пара и питательной воды, сравниваемого с заданным предельным значением такого отношения отдельно для испарительных участков и пароперегревательных участков котла. Превышение соотношения χОП/χПВ на испарительных участках выше 1,3 и на пароперегревательных выше 1,15 свидетельствует о наличие продуктов термолиза органических веществ кислого характера [Патент РФ №2231778. Способ контроля за содержанием коррозионно-опасных органических соединений в водопаровом тракте теплового энергоблока. // Вайнман А.Б., Малахов И.А. Опубликовано 2004.06.27].
Недостатком такого способа является необходимость измерения электропроводности охлажденных проб теплоносителя после каждой температурной зоны котла: до 160°С; до 280°С; до 440°С; до 545°С, а также получение результата лишь качественного характера без количественного определения концентрации органических веществ или продуктов их термического преобразования.
Технический результат предлагаемого изобретения состоит в повышении информативности данных, получаемых от автоматических приборов кондуктометрического контроля путем количественной оценки содержания кислых продуктов термолиза органических примесей в паре прямоточных энергетических котлов в пересчете на концентрацию уксусной кислоты. Технический результат достигается тем, что проводят измерения удельной электропроводности Н-катионированной пробы питательной воды и острого пара прямоточного энергетического котла и полученные данные используют для расчета концентрации кислых продуктов термолиза органических примесей питательной воды в пересчете на концентрацию уксусной кислоты.
Уравнения электронейтральности записываются в следующем виде:
а) для Н-катионированной пробы острого пара
б) для Н-катионированной пробы питательной воды
В уравнениях (1) и (2) концентрации ионов натрия и хлоридов в питательной воде и паре равны, т.е. и из условия полного перехода этих примесей из воды в пар. Тогда разность уравнений (1) и (2) дает выражение
Концентрация ацетат-иона [СН3СОО-] в уравнении (3) может быть принята приближенно равной полной концентрации уксусной кислоты, т.е. [СН3СОО-]=Сук. Для Н-катионированной охлажденной пробы пара при обычных значениях рН около 6,0 и выше соотношения форм [СН3СОО-]/[СН3СООН] составляет 20:1 и более, а значит принятое допущение справедливо в пределах 5% ошибки.
Уравнения электропроводности в Н-катионированной пробе записываются в следующем виде:
а) для острого пара
б) для питательной воды
С учетом принятых выше допущений разность уравнений (4) и (5) с подстановкой выражения (3) позволяет получить выражение (6):
где и - измеренные значения удельной электропроводности Н-катионированной пробы острого пара и питательной воды, мкСм/см; - табличные значения предельных электрических подвижностей ионов H+, НСО3 -, СН3СОО-.
Концентрация уксусной кислоты в охлажденной Н-катионированной пробе пара обычно существенно больше изменения концентрации гидрокарбонатов с переходом от питательной воды к пару, т.е.:
Тогда вторым слагаемым в правой части уравнения (6) можно пренебречь и разрешить его относительно концентрации уксусной кислоты в виде уравнения (8), мкмоль/дм3:
которое для 25°С приобретает простой вид, мкмоль/дм3:
где , - приведенные к 25°С значения удельной электропроводности Н-катионированных проб острого пара и питательной воды.
В этом случае уравнение (9) дает концентрацию потенциально кислых веществ в питательной воде прямоточного котла, выраженную через концентрацию уксусной кислоты в паре этого котла по измеренным значениям удельной электропроводности Н-катионированных охлажденных проб пара и питательной воды. Если аммиак не дозируется в питательную воду, то расчет по уравнению (9) можно производить для значений удельной электропроводности как Н-катионированных, так и прямых проб острого пара () и питательной воды
Обычно концентрации примесей в питательной воде энергетических котлов выражают в мкг/дм3. Тогда из уравнения (9) можно получить следующее выражение концентрации условной уксусной кислоты, мкг/дм3:
Для проверки проведения косвенных измерений используется приборный комплекс по моделированию проб питательной воды и пара прямоточных котлов (фиг.1). Приборный комплекс состоит из двух ионоообменных фильтров: Н-катионитного (1) и ОН-анионитного (2) для глубокого обессоливания дистиллированной воды, дозировочного устройства (3) и измерительного блока, содержащего датчики кондуктометров до Н-колонки (4) и после (χ и χН).
Дистиллированная вода поступает на Н-катионитный фильтр (1) и ОН-анионитный фильтр (2) для дообессоливания. Обессоленная вода после Н-ОН-ионитных фильтров имеет высокое качество (χ=0,2-0,15 мкСм/см) и очень малую концентрацию минеральных солей. После дозировки раствора (3) (аммиака и уксусной кислоты для имитации пробы пара) измеряется удельная электропроводность (χ) смешанного раствора (прямая проба), и затем вода поступает на Н-колонку (HR1). После Н-колонки измеряется удельная электропроводность Н-катионированной пробы (χН), и вода поступает в бак обессоленной воды.
При смешении имитируется водный теплоноситель, содержащий аммиак и образующуюся при термолизе органических примесей уксусную кислоту. В растворе происходит нейтрализация одного из этих компонентов, находящегося в меньшей эквивалентной концентрации. Однако в растворе остаются катионы NH4 + и анионы СН3COO-. При пропуске такого предельно разбавленного раствора через колонку с Н-катионитом катионы NH4 + замещаются катионами H+ из катионита, что вновь возвращает ацетат-ионы в равновесие с уксусной кислотой.
Приготовление рабочего раствора смеси аммиака и уксусной кислоты для дозирования в глубокообессоленную воду производится введением раствора уксусной кислоты в раствор аммиака. Однако это не имеет существенного значения ввиду последующего пропуска предельно разбавленного раствора их смеси через катионит в Н-форме с заменой ионов NH4 + на ионы H+ и нейтрализацией OH--ионов.
Результаты опытов представлены в виде таблицы (табл.1) и графических зависимостей удельной электропроводности Н-катионированной пробы (фиг.2) от концентрации уксусной кислоты при разных концентрациях аммиака в пробах. Откуда видно, что электропроводность Н-катионированной пробы дает устойчивую линейную зависимость и мало зависит от концентрации аммиака в пробе (чего никак нельзя сказать о подобном соответствии в прямой пробе - табл.1, колонки 3 и 5).
Расчетные значения Сук в среднем в пределах 15% отклонения согласуются с измеренными значениями уксусной кислоты (табл.1).
Предложенный способ использовался для расчетной оценки концентрации потенциально кислых веществ в питательной воде энергоблоков с прямоточными котлами Конаковской и Пермской ГРЭС. Некоторые результаты приведены в табл.2 и согласуются с данными исследований, приведенными в литературе.
Таким образом, предлагаемый способ определения концентрации кислых продуктов термолиза органических примесей в паре прямоточных энергетических котлов на ТЭС позволяет повысить информативность данных, получаемых от автоматических приборов, и количественно оценить содержание этих веществ в пересчете на концентрацию уксусной кислоты.
Таблица 1 | |||||||
Некоторые результаты измерения электропроводности и расчета концентрации уксусной кислоты по лабораторным исследованиям проб воды | |||||||
Показание приборов | Измеренные концентрации | Расчетные концентрации | ΔСук, % | ||||
Исходная вода | После дозировки | ||||||
χ | χН | χ | χН | , мкг/дм3 | Сук, мкг/дм3 | Сук, мкг/дм3 | |
0,27 | 0,25 | 0,22 | 0,48 | - | 25 | 34,7 | +38,8 |
0,28 | 0,27 | 0,21 | 0,45 | - | 24 | 27,9 | +16,4 |
0,19 | 0,15 | 0,28 | 0,57 | - | 60 | 63,9 | +6,48 |
0,15 | 0,24 | 0,46 | 0,85 | - | 90 | 93,2 | +3,58 |
0,12 | 0,22 | 0,25 | 0,36 | 19,2 | 7,7 | 8,3 | +7,66 |
0,13 | 0,23 | 0,27 | 0,41 | 19,2 | 23 | 27,3 | +18,8 |
0,15 | 0,24 | 0,32 | 0,65 | 19,2 | 78 | 62,5 | -19,9 |
0,15 | 0,32 | 0,53 | 0,52 | 45 | 27,2 | 29,9 | +10,1 |
0,14 | 0,31 | 0,42 | 0,93 | 45 | 108 | 96,1 | -11,3 |
Средняя погрешность: | 14,78 | ||||||
Примечание. Единицы измерений χ и χН - мкСм/см; Сук= |
Таблица 2 | ||||||
Результаты расчета концентрации уксусной кислоты по программе авторов на энергоблоках с прямоточными котлами | ||||||
Измеренные значения | Расчетные значения | |||||
рНПВ | χН, ПВ,мкСм/см | χПВ,мкСм/см | рНОП | χН, ОП,мкСм/см | , мкг/л | ,мкг/л |
8,179 | 0,090 | 0,40 | 7,97 | 0,13 | 21,1 | 6,14 |
8,083 | 0,083 | 0,28 | 7,74 | 0,14 | 10,3 | 8,76 |
8,08 | 0,100 | 0,31 | 7,87 | 0,16 | 13,8 | 9,22 |
8,30 | 0,103 | 0,593 | 8,01 | 0,125 | 38,0 | 3,38 |
7,99 | 0,080 | 0,28 | 7,9 | 0,11 | 14,9 | 4,62 |
6,60 | 0,188 | 0,153 | 6,5 | 0,230 | 0 | 6,40 |
6,60 | 0,214 | 0,176 | 6,5 | 0,272 | 0 | 8,90 |
Способ определения концентрации кислых продуктов термолиза органических примесей в паре прямоточных энергетических котлов, включающий измерение значений удельной электропроводности охлажденных проб острого пара и питательной воды и расчет концентрации компонентов раствора, отличающийся тем, что измерение производят в пробах, пропущенных через Н-катионитный фильтр, определение осуществляют по разности двух измеренных значений удельной электропроводности охлажденных проб, а расчетной концентрацией компонента раствора является концентрация условной уксусной кислоты, определяемая из соотношения
Сук=153,6·(χнОП-χнПВ),
где Сук - концентрация условной уксусной кислоты, мкг/дм3;
χнОП и χнПВ - удельные электропроводности острого пара и питательной воды, мкСм/см.